JPH0720159A - Photoelectric field sensor - Google Patents

Photoelectric field sensor

Info

Publication number
JPH0720159A
JPH0720159A JP5151655A JP15165593A JPH0720159A JP H0720159 A JPH0720159 A JP H0720159A JP 5151655 A JP5151655 A JP 5151655A JP 15165593 A JP15165593 A JP 15165593A JP H0720159 A JPH0720159 A JP H0720159A
Authority
JP
Japan
Prior art keywords
optical
electric field
field sensor
electro
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5151655A
Other languages
Japanese (ja)
Inventor
Shogo Tejima
正吾 手島
Kazuo Kobayashi
一雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5151655A priority Critical patent/JPH0720159A/en
Publication of JPH0720159A publication Critical patent/JPH0720159A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE:To enhance the measurement accuracy of a photoelectric field sensor by making the base, to which optical components are secured, of such material as having the linear expansion coefficient substantially equal to that of the optical components, thereby retarding generation of stress in the optical components even upon vibration of the sensor or the ambient temperature variation. CONSTITUTION:A polarizer 4, a quarter wavelength plate 5, an electrooptical crystal 6, and an analyzer 7 are bonded through a silicon based adhesive 16 onto a base 15 made of BK 7 glass. The quarter wavelength plate 5 has main aligned with that of the crystal 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気光学結晶を用いた
光電界センサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical electric field sensor using an electro-optic crystal.

【0002】[0002]

【従来の技術】電気光学結晶の電気光学効果(ポッケル
ス効果)を利用して電界を測定する光電界センサは、信
号伝達を光ファイバを利用して行うため、電気的な絶縁
性が高く電磁誘導雑音を受けにくい測定系を構成するこ
とが出来るので、近年注目を浴びている。
2. Description of the Related Art An optical electric field sensor which measures an electric field by utilizing the electro-optic effect (Pockels effect) of an electro-optic crystal has a high electrical insulation property because it uses an optical fiber for signal transmission. Since it is possible to configure a measurement system that is less susceptible to noise, it has been receiving attention in recent years.

【0003】図5は、電気光学結晶を利用した従来の光
電界センサを示す構成図であり、図5に用いられている
光学部品の主軸の方位を図6に示す。図5において、1
は発光ダイオ―ド等からなる光源、2は光源1からの光
を伝送する送光ファイバ、3は送光ファイバ2の出射光
を概略平行ビ―ムにするための送光レンズ、4は送光レ
ンズ3から出射された光を直線偏光波Eo とするための
偏光子、5は直線偏光波Eo に位相差π/2を与える1
/4波長板、6は被測定電界に比例した位相差Γを通過
する光に与える電気光学結晶(ポッケルス素子)、7は
その主軸方位の電界ベクトルの光Ex を検出する検光
子、8は検光子7で検出された光を受光ファイバ9に集
光するための受光ファイバ、10は受光ファイバで伝送さ
れた光を電気信号に変換するフォトダイオ―ド等からな
る光電変換器、11は電気信号を増幅し電気信号Ix を得
る増幅器、12は電気信号Ix から、直流信号Ixdを得る
ためのロ―パスフィルタ、13は電気信号Ix から直流信
号Ixdを減算し、交流信号Ixaを得るための減算器であ
り、14は交流信号Ixaを直流信号Ixdで割算して出力信
号Iを得るための割算器である。
FIG. 5 is a block diagram showing a conventional optical electric field sensor using an electro-optic crystal, and FIG. 6 shows the directions of the principal axes of the optical components used in FIG. In FIG. 5, 1
Is a light source including a light emitting diode, 2 is a light transmitting fiber for transmitting the light from the light source 1, 3 is a light transmitting lens for making the light emitted from the light transmitting fiber 2 into a substantially parallel beam, and 4 is a light transmitting lens. A polarizer 5 for converting the light emitted from the optical lens 3 into a linearly polarized wave E o gives a phase difference π / 2 to the linearly polarized wave E o 1
/ 4 wavelength plate, 6 analyzer electro-optic crystal to give the light passing through the phase difference Γ proportional to the measured electric field (Pockels element) 7 for detecting light E x of the electric field vector of the principal axis direction, the 8 A light receiving fiber for condensing the light detected by the analyzer 7 on the light receiving fiber 9, 10 is a photoelectric converter including a photodiode for converting the light transmitted by the light receiving fiber into an electric signal, and 11 is an electric An amplifier for amplifying a signal to obtain an electric signal I x , 12 is a low- pass filter for obtaining a DC signal I xd from the electric signal I x , 13 is an AC signal subtracting the DC signal I xd from the electric signal I x Numeral 14 is a subtracter for obtaining I xa , and 14 is a divider for dividing the AC signal I xa by the DC signal I xd to obtain the output signal I.

【0004】また図6における各光学部品の主軸は、偏
光子4は垂直,1/4波長板5および電気光学結晶6は
水平から45°傾いており、検光子は水平に配置され
る。ここで、偏光子4を通過した光の電界ベクトルをE
o とし、1/4波長板5の主軸方位の電界ベクトルをE
ox,Eoyとしたとき、1/4波長板5と電気光学結晶6
を通過した光の電界ベクトルEox,Eoyは(Γ+π/
2)の位相差を生じている。次に、図5及び図6に示し
た光電界センサの作用を説明する。検光子7で、検出さ
れた光の電界ベクトルEx
The principal axes of the respective optical components in FIG. 6 are such that the polarizer 4 is vertical, the quarter-wave plate 5 and the electro-optic crystal 6 are inclined 45 ° from the horizontal, and the analyzer is arranged horizontally. Here, the electric field vector of the light passing through the polarizer 4 is E
o and the electric field vector in the principal axis direction of the quarter-wave plate 5 is E
Assuming that ox and E oy are 1/4 wave plate 5 and electro-optic crystal 6,
The electric field vectors E ox and E oy of the light passing through are (Γ + π /
The phase difference of 2) occurs. Next, the operation of the optical electric field sensor shown in FIGS. 5 and 6 will be described. The electric field vector E x of the light detected by the analyzer 7 is

【0005】[0005]

【数1】 この電界ベクトルEx による電気信号Ix は、[Equation 1] Electrical signals I x according to the electric field vector E x is

【0006】[0006]

【数2】 Ix =|Ex2 =|Eo2 (1+ sinΓ)/2 …(2)式 電気信号Ix によるロ―パスフィルタ12の直流信号Ixd
は、
[Expression 2] I x = | E x | 2 = | E o | 2 (1 + sin Γ) / 2 (2) Expression (2) DC signal I xd of the low-pass filter 12 based on the electric signal I x
Is

【0007】[0007]

【数3】 Ixd=|Eo2 /2 …(3)式 であり、減算器13の出力である交流信号Ixaは、Equation 3] I xd = | E o | 2 /2 ... (3) an expression, an AC signal I xa is the output of the subtracter 13,

【0008】[0008]

【数4】 Ixa=Ix −Ixd=|Eo2 ( sinΓ)/2 …(4)式 となることから、割算器14での出力信号Iは、## EQU4 ## Since I xa = I x −I xd = | E o | 2 (sin Γ) / 2 (4), the output signal I from the divider 14 is

【0009】[0009]

【数5】 となる。ここで、被測定電界に比例した位相差Γが十分
小さく
[Equation 5] Becomes Here, the phase difference Γ proportional to the measured electric field is sufficiently small.

【0010】[0010]

【数6】 の近似ができる範囲において、被測定電界に比例した出
力信号Iを得ることができる。
[Equation 6] An output signal I proportional to the electric field to be measured can be obtained in a range where the above can be approximated.

【0011】このような従来の光電界センサは振動や、
温度変化を受けると、偏光子4、1/4波長板5、電気
光学結晶6、検光子7といった光学部品に応力が生じ
る。この応力は光弾性効果に影響を及ぼすためセンサの
出力信号が変化してしまうという問題があった。
Such a conventional optical electric field sensor has a vibration and
When the temperature changes, stress is generated in optical components such as the polarizer 4, the quarter-wave plate 5, the electro-optic crystal 6, and the analyzer 7. This stress has a problem that the output signal of the sensor changes because it affects the photoelastic effect.

【0012】例えば1/4波長板5において、応力によ
る弾性効果で、主軸の方位に位相差Kが生じた場合、1
/4波長板5と電気光学結晶6を通過した光の電界ベク
トルEox,Eoyには(Γ+π/2+K)の位相差が生じ
ることになる。このため、検光子7で検出された光の電
界ベクトルEx ′による電気信号Ix′は
For example, in the quarter wave plate 5, when a phase difference K occurs in the azimuth of the principal axis due to the elastic effect of stress, 1
A phase difference of (Γ + π / 2 + K) occurs in the electric field vectors E ox and E oy of the light that has passed through the / 4 wavelength plate 5 and the electro-optic crystal 6. Therefore, the electric signal I x ′ due to the electric field vector E x ′ of the light detected by the analyzer 7 is

【0013】[0013]

【数7】 Ix ′=|Ex ′|2 =|Eo2 {1+sin(Γ+K)}/2…(7)式 となることから、割算器14での出力信号I′は[Expression 7] I x ′ = | E x ′ | 2 = | E o | 2 {1 + sin (Γ + K)} / 2 (7) Since the output signal I ′ at the divider 14 is

【0014】[0014]

【数8】 I′=sin (Γ+K) …(8)式 となる。従って(5)式で求めた出力信号Iに対して
(8)式による出力信号I′は
## EQU8 ## I '= sin (Γ + K) (8) Therefore, the output signal I ′ obtained by the equation (8) is different from the output signal I obtained by the equation (5).

【0015】[0015]

【数9】 で表わされる比誤差変化を生じる。図7に、位相差K′
[deg ]による比誤差変化Δεを示す。図7からわかる
ように、僅かの位相差変化K′で比誤差が大きく変化し
てしまうため従来の光電界センサは測定精度を向上させ
るのが困難であるという問題があった。
[Equation 9] A ratio error change represented by In FIG. 7, the phase difference K '
Shows the ratio error change Δε due to [deg]. As can be seen from FIG. 7, the conventional optical electric field sensor has a problem that it is difficult to improve the measurement accuracy because the ratio error greatly changes with a slight phase difference change K ′.

【0016】[0016]

【発明が解決しようとする課題】上記のように従来の光
電界センサは、振動や温度変化によって光学部品に応力
が生じるとこの応力によってセンサ出力が変化してしま
い、測定精度を向上させるのが困難であるという問題が
あった。そこで本発明の目的は、振動や温度変化を受け
ても測定精度が低下しにくい光電界センサを提供するこ
とにある。
As described above, in the conventional optical electric field sensor, when stress occurs in the optical component due to vibration or temperature change, the sensor output changes due to the stress, and the measurement accuracy is improved. There was a problem that it was difficult. Therefore, an object of the present invention is to provide an optical electric field sensor in which the measurement accuracy is less likely to decrease even when subjected to vibration or temperature change.

【0017】[0017]

【課題を解決するための手段】上記目的を達成するため
に本発明においては、偏光子、1/4波長板、電気光学
結晶及び検光子を、光の進行方向に対してほぼ一直線に
配設し、これらの光学部品を透過する光の電気光学効果
を利用して電界を測定する光電界センサにおいて、前記
1/4波長板と前記光学結晶を、主軸がほぼ一致するよ
うに配置し、前記光学部品が、この光学部品とほぼ等し
い線膨張係数を有する台座に、弾性接着剤で固定されて
いることを特徴とする光電界センサを提供する。なお、
前記台座は、ガラス、チタンもしくはセラミックである
ことが望ましく、前記弾性接着剤はシリコン系の接着剤
であることが望ましい。
In order to achieve the above object, in the present invention, a polarizer, a quarter-wave plate, an electro-optic crystal and an analyzer are arranged in a substantially straight line with respect to the traveling direction of light. Then, in the optical electric field sensor for measuring the electric field by utilizing the electro-optical effect of the light transmitted through these optical components, the quarter wavelength plate and the optical crystal are arranged so that their principal axes substantially coincide with each other, and There is provided an optical electric field sensor characterized in that an optical component is fixed to a pedestal having a linear expansion coefficient substantially equal to that of the optical component with an elastic adhesive. In addition,
The pedestal is preferably made of glass, titanium, or ceramic, and the elastic adhesive is preferably a silicon-based adhesive.

【0018】[0018]

【作用】偏光子、1/4波長板、電気光学結晶及び検光
子といった光学部品は台座に固定されているため、振動
によって光学部品の相対的な位置がずれるのを防止する
ことができる。また、台座は光学部品とほぼ等しい線膨
張係数を有する材料で構成され、光学部品は弾性接着剤
によって台座に固定されている。従って、温度変化に起
因する光学部品と台座の伸縮の程度はほぼ等しく、光学
部品に生じる応力は大幅に低減することができる。さら
に1/4波長板と電気光学結晶は主軸がほぼ一致するよ
うに配置されている。従って、周囲の温度変化のために
弾性接着剤を介して台座に固定された光学部品が光軸を
中心に回転してしまっても、センサ出力への影響はごく
わずかである。
Since the optical components such as the polarizer, the quarter-wave plate, the electro-optic crystal and the analyzer are fixed to the pedestal, it is possible to prevent the relative positions of the optical components from being displaced due to vibration. The pedestal is made of a material having a coefficient of linear expansion almost equal to that of the optical component, and the optical component is fixed to the pedestal by an elastic adhesive. Therefore, the degree of expansion and contraction of the optical component and the pedestal due to the temperature change are substantially equal, and the stress generated in the optical component can be greatly reduced. Further, the quarter-wave plate and the electro-optic crystal are arranged so that their principal axes substantially coincide with each other. Therefore, even if the optical component fixed to the pedestal via the elastic adhesive rotates around the optical axis due to a change in the ambient temperature, the influence on the sensor output is negligible.

【0019】[0019]

【実施例】本発明の一実施例を図1ないし図5を参照し
て説明する。なお、従来と同一の部分には同じ番号を付
与して説明を省略する。図1に示すように、図示してい
ない光源から発せられた光の進行方向に対してほぼ一直
線上に、偏光子4、1/4波長板5、電気光学結晶6及
び検光子7が台座15に配置され、シリコン系の接着剤16
によって台座15に固定されている。1/4波長板5と電
気光学結晶6は光軸が一致するように配設されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. It should be noted that the same parts as the conventional ones are given the same numbers and the description thereof is omitted. As shown in FIG. 1, the polarizer 4, the quarter-wave plate 5, the electro-optic crystal 6, and the analyzer 7 are arranged on a pedestal 15 in a substantially straight line with respect to the traveling direction of light emitted from a light source (not shown). Placed on the silicone adhesive 16
It is fixed to the pedestal 15 by. The quarter-wave plate 5 and the electro-optic crystal 6 are arranged so that their optical axes coincide with each other.

【0020】検光子7を通過した光の進行方向には図5
に示すように、受光レンズ8が配置され、受光レンズ8
は受光ファイバ9によって光電変換器10に接続され、光
電変換器10は増幅器11に接続されている。増幅器11はロ
―パスフィルタ12に接続され、ロ―パスフィルタ11の出
力は減算器13および割算器14にぞれぞれ伝達され、減算
器13の出力は割算器14に伝達されるように構成されてい
る。
In the traveling direction of the light passing through the analyzer 7, FIG.
As shown in FIG.
Is connected to a photoelectric converter 10 by a light receiving fiber 9, and the photoelectric converter 10 is connected to an amplifier 11. The amplifier 11 is connected to the low-pass filter 12, the output of the low-pass filter 11 is transmitted to the subtractor 13 and the divider 14, and the output of the subtractor 13 is transmitted to the divider 14. Is configured.

【0021】接着剤16は弾性接着剤であり、数10μm〜
100μmの厚さに塗布されている。接着剤16を構成する
シリコン系接着剤は耐熱性および長期信頼性に優れる。
一方、台座15は線膨張係数が光学部品とほぼ同じ材料で
構成されている。偏光子4、1/4波長板5及び検光子
7を構成する材料としては一般にBK7ガラスが用いら
れるが、このBK7ガラスの線膨張係数は 7.2×10-6
℃である。また、例えばBi12GeO20のような電気光
学結晶6の線膨張係数は10×10-6/℃である。従って、
台座15の材料としては光学部品と同じBK7ガラスまた
は線膨張係数がBK7ガラスに近い、チタン(線膨張係
数 8.4×10-6/℃)あるいはセラミック(線膨張係数8
〜9×10-6/℃)を使用する。
The adhesive 16 is an elastic adhesive and has a size of several tens of μm.
It is applied to a thickness of 100 μm. The silicon-based adhesive that constitutes the adhesive 16 has excellent heat resistance and long-term reliability.
On the other hand, the pedestal 15 is made of a material whose coefficient of linear expansion is almost the same as that of the optical component. BK7 glass is generally used as a material for the polarizer 4, the quarter-wave plate 5 and the analyzer 7, and the linear expansion coefficient of the BK7 glass is 7.2 × 10 -6 /
℃. The coefficient of linear expansion of the electro-optic crystal 6 such as Bi 12 GeO 20 is 10 × 10 -6 / ° C. Therefore,
As the material of the pedestal 15, titanium (linear expansion coefficient 8.4 × 10 −6 / ° C.) or ceramic (linear expansion coefficient 8) having the same BK7 glass as the optical component or a linear expansion coefficient close to BK7 glass is used.
˜9 × 10 −6 / ° C.) is used.

【0022】次に本実施例の作用について述べる。偏光
子4、1/4波長板5、電気光学結晶6、検光子7とい
った光学部品は接着剤16で、台座15に固定されている。
従って光電界センサが振動を受けても接着剤16がクッシ
ョンの役目をはたし、振動によって光学部品に応力が生
じるのを低減する。
Next, the operation of this embodiment will be described. Optical components such as the polarizer 4, the quarter-wave plate 5, the electro-optic crystal 6, and the analyzer 7 are fixed to the pedestal 15 with an adhesive 16.
Therefore, even if the optical electric field sensor is subjected to vibration, the adhesive 16 acts as a cushion and reduces the occurrence of stress on the optical component due to the vibration.

【0023】また光学部品と台座15の線膨張係数はほぼ
等しいため、光電界センサが温度変化を受けても、光学
部品と台座15の伸縮程度が同様であるため光学部品に生
じる応力は、大幅に低減される。
Further, since the optical components and the pedestal 15 have almost the same linear expansion coefficient, even if the optical electric field sensor receives a temperature change, the expansion and contraction of the optical components and the pedestal 15 are similar, so that the stress generated in the optical components is large. Is reduced to.

【0024】なお実施例において、光学部品と台座15と
の間の接着剤16の厚さを厚くすることによって、光学部
品が回転する可能性があるが、これによって生じる比誤
差変化は十分無視できるレベルである。
In the embodiment, by increasing the thickness of the adhesive 16 between the optical component and the pedestal 15, the optical component may rotate, but the change in the ratio error caused by this may be sufficiently ignored. It is a level.

【0025】例えば、図2に示すように、偏光子4が経
時的にθ度回転したとする。このとき検光子7で検出さ
れた光の電界ベクトルEx ″による電気信号Ix ″は、
For example, as shown in FIG. 2, it is assumed that the polarizer 4 rotates by θ degrees with time. At this time, the electric signal I x ″ by the electric field vector E x ″ of the light detected by the analyzer 7 is

【0026】[0026]

【数10】 Ix ″=|Ex ″|2 =|Eo2 ・(1+ cos2θ・ sinΓ)/2 …(10)式 となることから、割算器14での出力信号I″は[Number 10] I x "= | E x" | 2 = | E o | from 2 · (1+ cos2θ · sinΓ) / 2 ... (10) be a formula, the output signal I at the divider 14 "

【0027】[0027]

【数11】 I″= cos2θ・ sinΓ …(11)式 となる。従って(5)式で求めた出力信号Iに対して
(11)式による出力信号I″は
[Equation 11] I ″ = cos2θ · sin Γ Equation (11) is obtained. Therefore, the output signal I ″ obtained by the equation (11) is obtained from the output signal I obtained by the equation (5).

【0028】[0028]

【数12】 で表わされる比誤差変化を生じる。[Equation 12] A ratio error change represented by

【0029】図3に、回転角θ′[度]による比誤差の
変化を示す。図3が示すように回転角θ′[度]が少々
大きくなっても、比誤差の変化は十分小さく測定精度が
1%乃至3%である光電界センサにとって無視できる範
囲である。
FIG. 3 shows changes in the ratio error depending on the rotation angle θ '[degree]. As shown in FIG. 3, even if the rotation angle θ ′ [degree] is slightly increased, the change in the ratio error is small enough to be negligible for the optical electric field sensor whose measurement accuracy is 1% to 3%.

【0030】以上のように本実施例によれば、光電圧セ
ンサに振動が加えられたり周囲の温度が変化しても、光
学部品が線膨張係数がほぼ等しい台座にシリコン系の接
着剤によって固定されているため、光学部品に生じる応
力を大幅に減少させることができ、振動や温度変化に起
因する光の位相差を生じなくなり比誤差変化を無視でき
る値にまで減少させることができる。したがって、光電
圧センサの測定精度が向上するという効果を奏する。
As described above, according to the present embodiment, even if the optical voltage sensor is vibrated or the ambient temperature changes, the optical component is fixed to the pedestal having substantially the same linear expansion coefficient by the silicon adhesive. Therefore, the stress generated in the optical component can be significantly reduced, and the phase difference of light caused by vibration or temperature change is not generated, and the change in the ratio error can be reduced to a negligible value. Therefore, there is an effect that the measurement accuracy of the optical voltage sensor is improved.

【0031】なお、本実施例は上記の構成に限定するも
のではなく、図4に示すように光学部品の配置順を、偏
光子4、電気光学結晶6、1/4波長板5、検光子7に
変更しても同様の効果を奏する。
The present embodiment is not limited to the above-mentioned configuration, and the arrangement order of the optical components is as shown in FIG. 4, in which the polarizer 4, the electro-optic crystal 6, the quarter-wave plate 5, the analyzer are arranged. Even if changed to 7, the same effect can be obtained.

【0032】[0032]

【発明の効果】以上のように本発明によれば、1/4波
長板と電気光学結晶を、主軸がほぼ一致するように配置
し、光学部品とほぼ等しい線膨張係数を有する台座に弾
性接着剤で光学部品を固定したため、振動や温度変化の
影響を受けにくく測定精度を向上させた光電界センサを
提供することができる。
As described above, according to the present invention, the quarter-wave plate and the electro-optic crystal are arranged so that their principal axes are substantially coincident with each other, and elastically bonded to the pedestal having a linear expansion coefficient substantially equal to that of the optical component. Since the optical component is fixed with the agent, it is possible to provide an optical electric field sensor that is not easily affected by vibration and temperature change and has improved measurement accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す光電界センサの要部構
成図
FIG. 1 is a configuration diagram of a main part of an optical electric field sensor showing an embodiment of the present invention.

【図2】図1に示した光電界センサの縦断面図FIG. 2 is a vertical sectional view of the optical electric field sensor shown in FIG.

【図3】光学部品の回転角と比誤差変化の関係図FIG. 3 is a relationship diagram between a rotation angle of an optical component and a change in ratio error.

【図4】本発明の他の実施例を示す光電界センサの要部
構成図
FIG. 4 is a configuration diagram of a main part of an optical electric field sensor showing another embodiment of the present invention.

【図5】光電界センサの構成図FIG. 5 is a block diagram of an optical electric field sensor.

【図6】従来の光電界センサの要部構成図FIG. 6 is a configuration diagram of a main part of a conventional optical electric field sensor.

【図7】位相差と比誤差変化の関係図FIG. 7 is a diagram showing the relationship between phase difference and change in ratio error.

【符号の説明】[Explanation of symbols]

4…偏光子、5…1/4波長板、6…電気光学結晶、7
…検光子、15…台座、16…接着剤
4 ... Polarizer, 5 ... Quarter wave plate, 6 ... Electro-optic crystal, 7
… Analyzer, 15… Pedestal, 16… Adhesive

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 偏光子、1/4波長板、電気光学結晶及
び検光子を、光の進行方向に対してほぼ一直線に配設
し、これらの光学部品を透過する光の電気光学効果を利
用して電界を測定する光電界センサにおいて、 前記1/4波長板と前記光学結晶を、主軸がほぼ一致す
るように配置し、前記光学部品が、この光学部品とほぼ
等しい線膨張係数を有する台座に、弾性接着剤で固定さ
れていることを特徴とする光電界センサ。
1. A polarizer, a quarter-wave plate, an electro-optic crystal, and an analyzer are arranged substantially in a straight line with respect to the traveling direction of light, and the electro-optic effect of light transmitted through these optical parts is utilized. In the optical electric field sensor for measuring an electric field, the ¼ wavelength plate and the optical crystal are arranged so that their principal axes substantially coincide with each other, and the optical component has a linear expansion coefficient substantially equal to that of the optical component. An optical electric field sensor, wherein the optical electric field sensor is fixed by an elastic adhesive.
【請求項2】 前記台座が、ガラス、チタンもしくはセ
ラミックであることを特徴とする請求項1記載の光電界
センサ。
2. The optical electric field sensor according to claim 1, wherein the pedestal is made of glass, titanium, or ceramics.
【請求項3】 前記弾性接着剤がシリコン系の接着剤で
あることを特徴とする請求項1または請求項2記載の光
電界センサ。
3. The optical electric field sensor according to claim 1, wherein the elastic adhesive is a silicon-based adhesive.
JP5151655A 1993-06-23 1993-06-23 Photoelectric field sensor Pending JPH0720159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5151655A JPH0720159A (en) 1993-06-23 1993-06-23 Photoelectric field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5151655A JPH0720159A (en) 1993-06-23 1993-06-23 Photoelectric field sensor

Publications (1)

Publication Number Publication Date
JPH0720159A true JPH0720159A (en) 1995-01-24

Family

ID=15523327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5151655A Pending JPH0720159A (en) 1993-06-23 1993-06-23 Photoelectric field sensor

Country Status (1)

Country Link
JP (1) JPH0720159A (en)

Similar Documents

Publication Publication Date Title
US8836950B2 (en) SAGNAC interferometer-type fiber-optic current sensor
US6946827B2 (en) Optical electric field or voltage sensing system
JPS5919875A (en) Magnetic field measuring device
US6563589B1 (en) Reduced minimum configuration fiber optic current sensor
JPS62235506A (en) Differential plane-mirror interferometer system
CN105137147B (en) Optical voltage measuring device
WO2004088286A1 (en) Optical rotatory power measuring instrument
RU2448325C2 (en) Fibre-optic gyroscope having temperature-compensated digital output
JPH0720159A (en) Photoelectric field sensor
JPH08262117A (en) Electric signal measuring instrument
JP2000266787A (en) Optical current sensor
JP4836862B2 (en) Photovoltage sensor
CN107132394A (en) Active noise suppression for optical voltage sensor
CN113959683B (en) Deep modulation optical rotation angle detection device and method based on photoelastic modulator
JP2580443B2 (en) Optical voltage sensor
Schroeter et al. Comparison between open-loop and closed-loop fiber optic gyroscopes with polarizing and depolarizing components
JPS61223822A (en) Optical measuring instrument
JP2672414B2 (en) Reference signal generator for lock-in amplifier
JPS6398568A (en) Optical potential device
JPH0476068B2 (en)
JPS5930032A (en) Optical fiber thermometer
JP2664883B2 (en) Ultra-high sensitivity optical rotation measurement device
JPH05119075A (en) Optical voltage sensor
JPH05264607A (en) Photoelectric voltage sensor
Zhu et al. Fiber polarized-light interferometer for precise measurement