JPH07201511A - Microbridge shaped thin film element - Google Patents

Microbridge shaped thin film element

Info

Publication number
JPH07201511A
JPH07201511A JP5350513A JP35051393A JPH07201511A JP H07201511 A JPH07201511 A JP H07201511A JP 5350513 A JP5350513 A JP 5350513A JP 35051393 A JP35051393 A JP 35051393A JP H07201511 A JPH07201511 A JP H07201511A
Authority
JP
Japan
Prior art keywords
thin film
substrate
bridge
etching
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5350513A
Other languages
Japanese (ja)
Inventor
Zenichi Akiyama
善一 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Seiki Co Ltd
Ricoh Elemex Corp
Ricoh Co Ltd
Original Assignee
Ricoh Seiki Co Ltd
Ricoh Elemex Corp
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Seiki Co Ltd, Ricoh Elemex Corp, Ricoh Co Ltd filed Critical Ricoh Seiki Co Ltd
Priority to JP5350513A priority Critical patent/JPH07201511A/en
Publication of JPH07201511A publication Critical patent/JPH07201511A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate restriction on design and bridge area in formation of a bridge by using photosensitive glass, having SiO2 as the main component, as a substrate. CONSTITUTION:After a micropattern 2 has been transferred to a sheet of both side polished photosensitive glass 3, the photo-sensed part is crystallized by heat treatment. Then, after the above-mentioned sheet of glass has been flattend into a thin film manufacturing substrate 3 by conducting precise polishing, a dielectric thin film 5 for bridge formation is deposited. Then, a Pt thin film resistor 6 is formed, it is patterned using a thin film heater as a temperature measuring resistor, and a functional thin film element is formed on the bridge. Then, after a passivation film 7 has been deposited, a pad and an etching hole are provided, and a microbridge 1 is formed by conducting an etching treatment at room temperature. Then, the hole penetrating the substrate 3 connects a thermosetting type epoxy adhesive film or sheet to the back side of the substrate 3, and a chip cutting operation is conducted. As a result, bridge width is increased and high integration is obtained easily.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本発明は、マイクロブリッジ形状を有する
薄膜素子に関する。
TECHNICAL FIELD The present invention relates to a thin film device having a microbridge shape.

【0002】[0002]

【従来技術】梁(マイクロブリッジ)形成のためにSi
基板上に誘電体膜を堆積させ、その後Siの異方性エッ
チングにより梁(マイクロブリッジ)を形成する素子に
おいては、熱式センサの各種特性(消費電力の低電力
化、応答速度の高速化、多機能化)を飛躍的に向上させ
た。マイクロブリッジ上に各種センサ素子を薄膜形態で
作り込むことにより、特に熱を媒体として、物性変化を
検知させるセンサにとっては、熱絶縁を容易に実施でき
るため有効である。これらマイクロセンサの構造を図1
に示す。例えば、特公平3−52028号公報には、S
iウエハ基板上にマイクロブリッジを形成し、熱式気体
質量流量計を作製している。Si基板における異方性エ
ッチングは、アルカリに対する基板Siの腐食速度(エ
ッチング速度)が(100)、(110)面と(11
1)面においてことなる事を利用した加工法である。従
って基板にSi(100)基板を使用すれば、基板表面
は実質的に(100)面と平行であり、(110)軸方
向と平行にならない角度を持ってマイクロブリッジが加
工できる。従来までに開発されたマイクロセンサ(11
0)に対して45°の角度で懸垂された形状を有してい
る。これは加工途中のブリッジ下部のSiを効率良くエ
ッチングするためや、限定された基板面積上に最も大き
なブリッジを形成する要請により、45°が選ばれてい
る。従ってSi基板を利用したマイクロ加工では、ブリ
ッジ形成(設計)に制約を受けているのが現状である。
例えば、この素子を気体の質量流量計に用いた場合、放
熱面積(ブリッジ面積)の増加と感度には比例の関係が
有り、放熱面積を大きくした方が望ましい。またブリッ
ジ上に発熱素子を、その両端に温度測定素子を対称に配
置させた気体の進行方向検知および質量流量計において
は、放熱面積が少ないと高流量時の熱収支飽和現象によ
り、測定範囲の狭幅化が問題となる。
2. Description of the Related Art Si for forming a beam (micro bridge)
In a device in which a dielectric film is deposited on a substrate and then a beam (micro bridge) is formed by anisotropic etching of Si, various characteristics of the thermal sensor (low power consumption, high response speed, (Multifunctionalization) has been dramatically improved. By forming various sensor elements in the form of a thin film on the microbridge, it is effective for a sensor that detects changes in physical properties by using heat as a medium, because thermal insulation can be easily performed. The structure of these microsensors is shown in Fig. 1.
Shown in. For example, in Japanese Examined Patent Publication No. 3-52028, S
A thermal gas mass flow meter is manufactured by forming a micro bridge on an i-wafer substrate. Anisotropic etching on a Si substrate has a corrosion rate (etching rate) of the substrate Si to an alkali of (100), (110) plane and (11) plane.
1) It is a processing method that uses different things in terms of surface. Therefore, if a Si (100) substrate is used as the substrate, the substrate surface is substantially parallel to the (100) plane, and the microbridge can be processed at an angle that is not parallel to the (110) axis direction. Previously developed microsensors (11
0) and has a shape suspended at an angle of 45 °. This is selected at 45 ° in order to efficiently etch Si under the bridge in the process of processing and to form the largest bridge on the limited substrate area. Therefore, in the microfabrication using the Si substrate, the current situation is that the bridge formation (design) is restricted.
For example, when this element is used in a gas mass flowmeter, there is a proportional relationship between the increase in heat radiation area (bridge area) and the sensitivity, and it is desirable to increase the heat radiation area. Also, in the gas flow direction detection and mass flowmeter in which the heating elements are arranged on the bridge and the temperature measurement elements are symmetrically arranged at both ends, if the heat radiation area is small, the heat balance saturation phenomenon at high flow rate causes Narrowing becomes a problem.

【0003】Si基板での放熱面積の大面積化は以下の
制約を受ける。(110)軸に対して45°方向にブリ
ッジを形成する。エッチングホールは1辺の長さlの直
角二等辺三角形2組を、直角二等辺三角形の斜辺が(1
10)軸に置かれ、2つの底辺間距離が√2lにほぼ近
い値を持って配置する。この様なエッチングホールでの
ブリッジ形成は原理的には最大のブリッジ面積を与え
る。エッチングの進行を図3に示す。図中、矢印Aは
(111)面の出現に伴ってエッチングは進行しない
(エッチング速度が2桁程他の面と異なるので、進行し
ないと表現する)。深さ方向B,B′で示す横方向エッ
チングはほぼ等しい速度で進行する。横方向エッチング
はP点に達するまで、(111)面を出現させるように
進行し、両側のエッチングがP点で重なったとき、C方
向のエッチングが進行する。エッチングの終了はエッチ
ングホールの2つの三角形頂点を対角線としたほぼ正方
形が形成される時点で終了する。いま基板の厚さが無限
に厚いと仮定し、l=500μm/sin45°で設計
したブリッジ幅1000μmの形成を考える。横方向進
行でP点まで達した後(500μm)P′まで(500
μm)進み、さらに完了するP″まで(500μm)
に、基板深さ方向に対し、同様な距離1500μmのエ
ッチングがなされる。実際は基板の厚さは有限であり、
4インチSiウェハでは500μmが一般的であり、1
000μmのブリッジ形成途中で基板を貫通する孔がで
きてしまう。貫通孔はその後ダイボンダーによる接合工
程において好ましくない。従って、Si基板を用いた場
合ブリッジ面積にも制約が発生する。
Increasing the heat dissipation area of a Si substrate is subject to the following restrictions. A bridge is formed at 45 ° to the (110) axis. The etching hole consists of two sets of right-angled isosceles triangles each having a side length l, and the hypotenuse of the right-angled isosceles triangle is (1
10) It is placed on the axis, and the distance between the two bases is placed so that it has a value close to √2l. The formation of a bridge in such an etching hole gives the maximum bridge area in principle. The progress of etching is shown in FIG. In the figure, the arrow A indicates that the etching does not proceed with the appearance of the (111) plane (the etching rate is different from that of the other planes by about two orders of magnitude, so it is expressed as not progressing). The lateral etching indicated by the depth directions B and B'progresses at substantially the same rate. The lateral etching proceeds so that the (111) plane appears until the point P is reached, and when the etching on both sides overlaps at the point P, the etching in the C direction proceeds. The end of etching ends when a substantially square shape with two triangular vertices of the etching hole as diagonal lines is formed. Now, assuming that the thickness of the substrate is infinitely large, consider formation of a bridge width of 1000 μm designed at l = 500 μm / sin 45 °. After reaching the point P in the lateral direction (500 μm) until P ′ (500
μm) advance to P ″ (500 μm)
Then, a similar distance of 1500 μm is etched in the depth direction of the substrate. In reality, the thickness of the substrate is finite,
500 μm is generally used for a 4-inch Si wafer.
A hole penetrating the substrate is formed during the formation of the 000 μm bridge. The through holes are not preferable in the subsequent bonding process using a die bonder. Therefore, when the Si substrate is used, the bridge area is also restricted.

【0004】[0004]

【目的】本発明の第1の目的は、マイクロブリッジ形態
を有する薄膜素子に於いて、ブリッジ形成にデザイン、
及びブリッジ面積に制約を与えず、素子特性の向上を実
現するものである。第2の目的は、薄膜素子の作製に伴
って形成される基板の孔をふさぎ、該素子の接合工程の
改良を画るものである。
[Object] A first object of the present invention is to design a thin film device having a microbridge structure for forming a bridge,
Also, the device characteristics are improved without restricting the bridge area. A second object is to cover the holes of the substrate formed in the production of the thin film element and to improve the joining process of the element.

【0005】[0005]

【構成】本発明の第1は、基板上に誘電体膜および該誘
電体膜上に形成された機能性薄膜素子を有し、かつ基板
が部分的に除去され、前記誘電体膜および該誘電体膜上
に形成された機能性薄膜素子が1個または複数個のマイ
クロブリッジを形成した薄膜素子において、基板がSi
2を主成分とした感光性ガラスであることを特徴とす
る薄膜素子にある。本発明で使用する感光性ガラスと
は、紫外線等のエネルギー光の照射により金属コロイド
前駆体が析出し(露光)、熱処理により金属コロイドが
結晶核となり露光部のみ結晶化が生じる(現像)。この
ように露光部のみを結晶化したガラスはエッチング剤、
例えばふっ酸水溶液による溶解が結晶部、非結晶部で速
度が異なり、結果として異方性エッチングが可能となる
特徴を有するものである。この手法によるマイクロ加工
は、半導体製造工程と整合性が良く、またブリッジ設計
に対して何等制約されることなく実行できる。
According to a first aspect of the present invention, a dielectric film and a functional thin film element formed on the dielectric film are provided on a substrate, and the substrate is partially removed. In the thin film device in which the functional thin film device formed on the body film forms one or a plurality of microbridges, the substrate is made of Si.
In a thin film element, which is a photosensitive glass containing O 2 as a main component. The photosensitive glass used in the present invention is such that a metal colloid precursor is deposited (exposure) by irradiation with energetic light such as ultraviolet rays, and the metal colloid becomes a crystal nucleus by heat treatment to cause crystallization only in the exposed portion (development). In this way, the glass that crystallizes only the exposed area is an etching agent,
For example, dissolution with a hydrofluoric acid aqueous solution has different speeds in a crystalline portion and an amorphous portion, and as a result, anisotropic etching is possible. The microfabrication by this method has good compatibility with the semiconductor manufacturing process and can be performed without any restrictions on the bridge design.

【0006】本発明の第2は、梁(マイクロブリッジ)
作成のために基板に形成される基板貫通孔を有する前記
薄膜素子基板底面にフィルムまたはシートを接合し、前
記貫通孔をふさぎ、実装することを特徴とするフィルム
またはシートの接合した前記第1の薄膜素子に関する。
本発明の薄膜センサのマイクロブリッジは、基板上に空
中に浮いた架橋構造あるいは片持ち梁構造、さらには前
記両構造を共に有するものであってもよい。次ぎに本発
明薄膜素子の作製法およびその構成を図面に基づき実施
例として具体的に説明する。
A second aspect of the present invention is a beam (micro bridge).
A film or sheet is joined to the bottom surface of the thin film element substrate having a substrate through hole formed in the substrate for preparation, and the through hole is closed and mounted. Regarding thin film devices.
The microbridge of the thin film sensor of the present invention may have a bridge structure or a cantilever structure floating in the air on a substrate, or both of them. Next, a method for producing the thin film element of the present invention and its configuration will be specifically described as examples based on the drawings.

【0007】[0007]

【実施例】図4に基づき実施例を説明する。感光性ガラ
ス3〔HOYA感光性ガラスPEG3(商品名)〕を使
用した。両面を研磨した感光性ガラス3にマイクロパタ
ーンを転写する(これはフォトマスク2を介して紫外線
Cを照射することにより、ガラス内に潜像4を作る)
(a)。適切な熱処理により感光した部分(潜像4)を
結晶化させる。このことによりふっ酸水溶液に対する溶
解速度を速くさせる。熱現像の温度は600℃とした。
次に熱履歴による変形を取り除くため精密研磨を行い、
薄膜作製用基板3として十分平滑さを確保した後
(b)、ブリッジ形成用の誘電体薄膜5を堆積させる
(c)。誘電体薄膜5はSi半導体装置などのプロセス
で馴染のある窒化シリコン膜をCVD法で堆積させるほ
か、五酸化タンタル膜を反応性スパッタリング法にて堆
積させても良い。ブリッジとして自立体を得るために、
この誘電体薄膜の膜厚は、1.5μm以上とした。五酸
化タンタルの反応性スパッタ製膜に於いてはスパッタ条
件により膜の内部応力が比較的小さい値になること、さ
らに堆積後の500℃熱処理により応力がほとんど残留
しないことを確認している。従って、本実施例ではこの
五酸化タンタル膜を堆積し、熱処理を施した。次にPt
薄膜抵抗体6を形成し、熱式気体質量流量計を作製する
ならば、このPt薄膜抵抗体を薄膜ヒータと測温抵抗体
としてパターニングし、また金属酸化物半導体、該金属
酸化物半導体上に白金(Pt)、パラジウム(Pd)等
の貴金属を触媒として用いたガスセンサではさらに薄膜
機能素子をこのブリッジ上に作製する(d)。基本的に
はこの様に少なくともブリッジ上に薄膜機能素子を作り
込む事を意味しており、このことで各種マイクロセンサ
が作製できる。次にパッシベーション膜7を堆積後、パ
ット、エッチングホールを開口させ(e)、8wt%ふ
っ酸水溶液、室温にてエッチングを行うことでブリッジ
を形成した。この工程から示されるようにSi基板では
その結晶方位、ブリッジ面積などに制約があったが、本
実施例ではその様なことは生じない。次に基板を貫通す
る孔は熱硬化型エポキシ系接着フィルムまたはシート
(厚40μm、熱硬化温度170℃)を基板裏面に接合
(g)、以下チップ切り出し、実装を行った。但し、基
板裏面に接合するフィルムまたはシートは、前記熱硬化
型エポキシ系接着フィルムまたはシートに限られるもの
ではなく、例えば熱または接着剤などにより接合できる
フィルムまたはシートであれば任意のものが使用でき
る。
EXAMPLE An example will be described with reference to FIG. Photosensitive glass 3 [HOYA photosensitive glass PEG3 (trade name)] was used. Transfer the micropattern to the photosensitive glass 3 whose both surfaces have been polished (this creates a latent image 4 in the glass by irradiating it with ultraviolet rays C through the photomask 2).
(A). The exposed portion (latent image 4) is crystallized by an appropriate heat treatment. This accelerates the dissolution rate in the aqueous solution of hydrofluoric acid. The temperature of heat development was 600 ° C.
Next, precision polishing is performed to remove deformation due to heat history,
After ensuring sufficient smoothness as the thin film forming substrate 3 (b), the dielectric thin film 5 for bridge formation is deposited (c). The dielectric thin film 5 may be formed by depositing a silicon nitride film, which is familiar with processes such as Si semiconductor devices, by the CVD method, or by depositing a tantalum pentoxide film by the reactive sputtering method. In order to get a self-solid as a bridge,
The film thickness of this dielectric thin film was 1.5 μm or more. It has been confirmed that in the reactive sputtering film formation of tantalum pentoxide, the internal stress of the film becomes a relatively small value depending on the sputtering conditions, and the stress hardly remains by the heat treatment at 500 ° C. after the deposition. Therefore, in this example, this tantalum pentoxide film was deposited and heat-treated. Then Pt
If the thin film resistor 6 is formed and a thermal gas mass flowmeter is manufactured, this Pt thin film resistor is patterned as a thin film heater and a temperature measuring resistor, and a metal oxide semiconductor and a metal oxide semiconductor are formed on the metal oxide semiconductor. In a gas sensor using a noble metal such as platinum (Pt) or palladium (Pd) as a catalyst, a thin film functional element is further formed on this bridge (d). Basically, this means that at least a thin film functional element is formed on the bridge, and various microsensors can be produced by this. Next, after depositing the passivation film 7, a pad and an etching hole were opened (e), and etching was performed at room temperature with an 8 wt% hydrofluoric acid aqueous solution to form a bridge. As shown in this step, the Si substrate had restrictions on its crystal orientation, bridge area, etc. However, this does not occur in this embodiment. Next, a hole penetrating the substrate was bonded (g) with a thermosetting epoxy-based adhesive film or sheet (thickness 40 μm, thermosetting temperature 170 ° C.) on the back surface of the substrate, and thereafter, chips were cut out and mounted. However, the film or sheet to be bonded to the back surface of the substrate is not limited to the thermosetting epoxy adhesive film or sheet, and any film or sheet can be used as long as it can be bonded by heat or an adhesive. .

【0008】[0008]

【効果】本発明によれば、ブリッジ幅を拡大させる事に
より、例えば熱式気体質量流量計に於いては感度のダイ
ナミックレンジの拡大ができ、さらに他のガスセンサ、
湿度センサ等のマイクロセンサに於いても、複数の機能
性薄膜素子を容易に集積化することが可能となり、素子
の高機能化がはかれる。また、基板の貫通孔をシートの
接合によりふさぐことで、実装工程に不備を与えること
なく、作製できる。
According to the present invention, by expanding the bridge width, it is possible to expand the dynamic range of sensitivity in, for example, a thermal gas mass flowmeter, and further, another gas sensor,
Also in a microsensor such as a humidity sensor, it is possible to easily integrate a plurality of functional thin film elements, and the function of the element can be improved. In addition, by closing the through holes of the substrate by joining the sheets, it is possible to manufacture without causing any defect in the mounting process.

【図面の簡単な説明】[Brief description of drawings]

【図1】マイクロブリッジ型気体質量流量計の一例の平
面を模式的に示す図である。
FIG. 1 is a diagram schematically showing a plane of an example of a microbridge type gas mass flowmeter.

【図2】Si異方性エッチングによる加工の一例を説明
した図である。
FIG. 2 is a diagram illustrating an example of processing by Si anisotropic etching.

【図3】Si異方性エッチングによるブリッジ形成の進
行を説明した図である。 (a)Si基板に直角二等辺三角形のエッチングホール
2組を配置した図である。 (b)前記(a)の横方向エッチングがP点進行するこ
とを説明した図である。 (c)前記(b)の横方向進行エッチングがP点に到達
後、P′点までエッチングが進行することを説明した図
である。 (d)エッチングの終了時点を説明した図である。
FIG. 3 is a diagram illustrating the progress of bridge formation by Si anisotropic etching. (A) is a diagram in which two sets of isosceles right triangle etching holes are arranged on a Si substrate. (B) It is a figure explaining that the horizontal etching of said (a) progresses to P point. (C) It is a diagram explaining that after the laterally traveling etching of (b) reaches point P, etching proceeds to point P ′. (D) It is a figure explaining the end time of etching.

【図4】実施例で作製した薄膜素子の構成およびその製
造工程を説明した図である。 (a)感光性ガラスにマスクパターンを通して紫外線照
射する工程を示す。 (b)熱処理した感光潜像部分を有する基板を精密研磨
を行う工程を示す。 (c)誘電体薄膜を堆積する工程を示す。 (d)Pt薄膜を堆積パターニングする工程を示す。 (e)パッシベーション膜を堆積及びエッチングホール
を開口させる工程を示す。 (f)基板をエッチングにより除去し、ブリッジを形成
する工程を示す。 (g)熱硬化型エポキシ系接着フィルムを接合、実装す
る工程を示す。
FIG. 4 is a diagram illustrating a configuration of a thin film element manufactured in an example and a manufacturing process thereof. (A) A step of irradiating the photosensitive glass with ultraviolet rays through a mask pattern is shown. (B) A step of performing precision polishing on a substrate having a heat-sensitive photosensitive latent image portion is shown. (C) A step of depositing a dielectric thin film is shown. (D) A step of depositing and patterning a Pt thin film is shown. (E) A step of depositing a passivation film and opening an etching hole is shown. (F) A step of removing the substrate by etching to form a bridge is shown. (G) A step of joining and mounting a thermosetting epoxy adhesive film is shown.

【符号の説明】[Explanation of symbols]

1 マイクロブリッジ 2 マスクパターン 3 感光性ガラス 4 感光潜像部分 5 誘電体膜 6 Pt薄膜抵抗体 7 パッシベーション膜 8 熱硬化型エポキシ系接着フィルム A (110)軸方向(エッチングが進行しない方向) B 深さ方向エッチング進行方向 B′ 深さ方向エッチング進行方向 C 紫外線照射(露光) 1 Micro Bridge 2 Mask Pattern 3 Photosensitive Glass 4 Photosensitive Latent Image Part 5 Dielectric Film 6 Pt Thin Film Resistor 7 Passivation Film 8 Thermosetting Epoxy Adhesive Film A (110) Axial Direction (Direction of Etching) B Depth Direction Etching direction B'Depth direction Etching direction C UV irradiation (exposure)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基板上に誘電体膜および該誘電体膜上に
形成された機能性薄膜素子を有し、かつ基板が部分的に
除去され、前記誘電体膜および該誘電体膜上に形成され
た機能性薄膜が1個または複数個のマイクロブリッジを
形成した薄膜素子において、基板がSiO2を主成分と
した感光性ガラスであることを特徴とする薄膜素子。
1. A dielectric film and a functional thin film element formed on the dielectric film on a substrate, wherein the substrate is partially removed, and the dielectric film and the dielectric film are formed on the dielectric film. A thin film element in which the functional thin film formed one or a plurality of microbridges, wherein the substrate is photosensitive glass containing SiO 2 as a main component.
【請求項2】 機能性薄膜がPt薄膜抵抗体を薄膜ヒー
タと測温抵抗体としてパターンニングされたものである
請求項1記載の薄膜素子。
2. The thin film element according to claim 1, wherein the functional thin film is patterned by using a Pt thin film resistor as a thin film heater and a resistance temperature detector.
【請求項3】 基板貫通孔を基板裏面にフィルムまたは
シートを接合した請求項1記載の薄膜素子。
3. The thin film element according to claim 1, wherein a film or sheet is bonded to the back surface of the substrate through the substrate through hole.
JP5350513A 1993-12-28 1993-12-28 Microbridge shaped thin film element Pending JPH07201511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5350513A JPH07201511A (en) 1993-12-28 1993-12-28 Microbridge shaped thin film element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5350513A JPH07201511A (en) 1993-12-28 1993-12-28 Microbridge shaped thin film element

Publications (1)

Publication Number Publication Date
JPH07201511A true JPH07201511A (en) 1995-08-04

Family

ID=18411007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5350513A Pending JPH07201511A (en) 1993-12-28 1993-12-28 Microbridge shaped thin film element

Country Status (1)

Country Link
JP (1) JPH07201511A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7674038B2 (en) * 2000-12-29 2010-03-09 Tesat-Spacecom Gmbh & Co. Kg Arrangement for temperature monitoring and regulation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7674038B2 (en) * 2000-12-29 2010-03-09 Tesat-Spacecom Gmbh & Co. Kg Arrangement for temperature monitoring and regulation

Similar Documents

Publication Publication Date Title
JPH01309384A (en) Rear etching for integrated thin film diafragm
JP2002283297A5 (en)
CN101344413A (en) Flat diaphragm type gas flow sensor and method of producing the same
CN103052866A (en) Thermal flow rate sensor
US7838951B2 (en) Semiconductor sensor and manufacturing method of the same
US5406109A (en) Micro electronic element and method of making same
CN107917750A (en) A kind of MEMS hot types sound particle sensor
JP2002301697A (en) Micro-mechanical and micro-optomechanical structure manufacturing method provided with mono crystal silicon exposing process
JP2021535356A (en) How to make a silicon balance spring
US6709948B2 (en) Process for manufacturing a two-axis mirror
CN112730520A (en) Penetration type multi-channel gas sensor of MEMS (micro-electromechanical systems) process
JPH07201511A (en) Microbridge shaped thin film element
JPH11230707A (en) Manufacture of microsensor device
CN105067471B (en) A kind of micro-cantilever resonance structure sensor and its manufacture method
JP3433227B2 (en) Flow rate sensor element, flow rate sensor, method of manufacturing flow rate sensor element, method of manufacturing flow rate sensor, and method of measuring flow rate
CN112429699A (en) Preparation method of silicon micro-cantilever resonator
JPH07103996A (en) Gas flow sensor and method for forming the same
JPH10206205A (en) Manufacture for micro bridge sensor
CN102831999B (en) A kind of processing method of unsettled thermosensitive film resistor
CN218646885U (en) Novel penetration type multi-channel gas sensor of MEMS (micro-electromechanical systems) process
JP3617248B2 (en) Manufacturing method of silicon wafer
JPH05129636A (en) Element with diaphragm, and manufacture thereof
JP2003149025A (en) Flow sensor and its manufacturing method
TW554440B (en) Method for forming conductor connect on SOI microstructure
JPH11233794A (en) Manufacture of micro-sensor device