JPH07201328A - Nickel-zinc storage battery - Google Patents

Nickel-zinc storage battery

Info

Publication number
JPH07201328A
JPH07201328A JP5352522A JP35252293A JPH07201328A JP H07201328 A JPH07201328 A JP H07201328A JP 5352522 A JP5352522 A JP 5352522A JP 35252293 A JP35252293 A JP 35252293A JP H07201328 A JPH07201328 A JP H07201328A
Authority
JP
Japan
Prior art keywords
nickel
electrode
zinc
calcium
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5352522A
Other languages
Japanese (ja)
Inventor
Mitsuzo Nogami
光造 野上
Mutsumi Yano
睦 矢野
Shigekazu Yasuoka
茂和 安岡
Koji Nishio
晃治 西尾
Toshihiko Saito
俊彦 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP5352522A priority Critical patent/JPH07201328A/en
Publication of JPH07201328A publication Critical patent/JPH07201328A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a nickel-zinc storage battery having excellent high discharging efficient and excellent cycle properties and in which the decrease of activity of a positive electrode active material following the proceeding of charge- discharge cycles is moderated. CONSTITUTION:Regarding a nickel-zinc storage battery provided with a zinc electrode as a negative electrode and a nickel electrode having nickel hydroxide as an active material for a positive electrode, the nickel electrode contains calcium hydroxide. Consequently, since the use efficiency of the positive electrode active material is heightened, the battery's capacity is heighened and calcium ion eluted out of the positive electrode scarcely captures zinc complex ion in the inside of the negative electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ニッケル−亜鉛蓄電池
に係わり、詳しくは電池容量が大きく、サイクル特性及
び高率放電特性に優れたニッケル−亜鉛蓄電池を得るこ
とを目的とした、ニッケル極の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nickel-zinc storage battery, and more particularly, to a nickel-zinc storage battery having a large battery capacity and excellent cycle characteristics and high rate discharge characteristics. Regarding improvement.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】水酸化
ニッケルを活物質とする焼結式又は非焼結式ニッケル極
がニッケル−カドミウム蓄電池の正極として実用されて
いるが、ニッケル極の利用率が低いため、電池容量が小
さいという問題がある。
2. Description of the Related Art Sintered or non-sintered nickel electrodes using nickel hydroxide as an active material have been put to practical use as positive electrodes for nickel-cadmium storage batteries. Is low, there is a problem that the battery capacity is small.

【0003】ニッケル−カドミウム蓄電池におけるこの
問題を解決するべく、ニッケル極に水酸化カルシウムを
含有させる試みが提案されている。
In order to solve this problem in a nickel-cadmium storage battery, an attempt to incorporate calcium hydroxide into the nickel electrode has been proposed.

【0004】しかしながら、ニッケル極に水酸化カルシ
ウムを含有させると、電解液中にカルシウムイオン(C
2+)が溶出し、この溶出したカルシウムイオン(Ca
2+)が負極のカドミウム酸化物と反応して不活性なCa
Cd(OH)4 が生成するため、負極活物質の特性が著
しく低下し、水酸化ニッケルの利用率は向上するもの
の、サイクル特性は却って悪くなることが分かった。こ
のようなことから、ニッケル極に水酸化カルシウムを含
有させたニッケル−カドミウム蓄電池は、未だ実用化さ
れるには至っていない。
However, when calcium hydroxide is contained in the nickel electrode, calcium ions (C
a 2+ ) is eluted, and this eluted calcium ion (Ca
2+ ) reacts with the negative electrode cadmium oxide and becomes inactive Ca
It was found that, since Cd (OH) 4 was generated, the characteristics of the negative electrode active material were remarkably deteriorated and the utilization rate of nickel hydroxide was improved, but the cycle characteristics were rather deteriorated. For this reason, the nickel-cadmium storage battery in which the nickel electrode contains calcium hydroxide has not yet been put into practical use.

【0005】本発明が対象とするニッケル−亜鉛蓄電池
においては、内部短絡を引き起こすデンドライトの問題
があり、このデンドライトの発生を抑制する目的で、負
極たる亜鉛極の内部に水酸化カルシウムを含有させた
り、亜鉛極の表面に水酸化カルシウムの層を形成したり
する試みが提案されている。
The nickel-zinc storage battery targeted by the present invention has a problem of dendrite causing an internal short circuit. For the purpose of suppressing the generation of this dendrite, calcium hydroxide is contained in the zinc electrode as a negative electrode. , An attempt to form a calcium hydroxide layer on the surface of the zinc electrode has been proposed.

【0006】しかしながら、亜鉛極の内部に水酸化カル
シウムを含有させたのでは、デンドライトの生成に関係
する亜鉛極の表面の亜鉛錯イオンのみならず、デンドラ
イトの生成に関係しない亜鉛極の内部の亜鉛錯イオンま
でもCaZn(OH)4 としてカルシウムイオンにより
捕捉されてしまうため、亜鉛極の活性が低くなり、亜鉛
極に水酸化カルシウムを全く含有させない場合に比べて
サイクル特性がさほど改善されないばかりでなく、高率
放電特性については却って悪くなる。また、亜鉛極の表
面に水酸化カルシウム層を形成しても、カルシウムイオ
ンが亜鉛極の内部の亜鉛錯イオンまでも捕捉してしまう
ので、亜鉛極の内部に水酸化カルシウムを含有させた場
合と同様の問題が起こる。
However, if calcium hydroxide is contained inside the zinc electrode, not only zinc complex ions on the surface of the zinc electrode related to dendrite formation, but also zinc inside the zinc electrode not related to dendrite formation. Even complex ions are captured as CaZn (OH) 4 by calcium ions, so the activity of the zinc electrode becomes low, and the cycle characteristics are not so much improved as compared with the case where the zinc electrode does not contain calcium hydroxide at all. However, the high rate discharge characteristics are rather worse. Moreover, even if a calcium hydroxide layer is formed on the surface of the zinc electrode, calcium ions will trap even the zinc complex ions inside the zinc electrode. Similar problems occur.

【0007】ところで、ニッケル−亜鉛蓄電池のニッケ
ル極に水酸化カルシウムを含有させることは、本発明者
らが知る限り、従来実用化はもとより提案すらなされて
いない。これは、上述したニッケル−カドミウム蓄電池
の場合と同様にサイクル寿命の短縮を招くと考えられた
ためと推察される。
By the way, as far as the inventors of the present invention have known, the inclusion of calcium hydroxide in the nickel electrode of a nickel-zinc storage battery has not been put to practical use or even proposed. This is presumed to be because it was considered that the cycle life was shortened as in the case of the nickel-cadmium storage battery described above.

【0008】そこで、鋭意研究した結果、本発明者らは
この系の電池においては、ニッケル−カドミウム蓄電池
の場合とは逆に、ニッケル極に水酸化カルシウムを含有
させることによりサイクル特性が改善される他、高率放
電特性もむしろ向上することを見出した。
As a result of intensive studies, the inventors of the present invention improved the cycle characteristics of the battery of this system by incorporating calcium hydroxide into the nickel electrode, contrary to the case of the nickel-cadmium storage battery. In addition, they have found that the high rate discharge characteristics are also improved.

【0009】本発明はかかる知見に基づきなされたもの
であって、その目的とするところは、サイクル特性及び
高率放電特性に優れたニッケル−亜鉛蓄電池を提供する
にある。
The present invention has been made on the basis of such findings, and an object of the present invention is to provide a nickel-zinc storage battery excellent in cycle characteristics and high rate discharge characteristics.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
の本発明に係るニッケル−亜鉛蓄電池(以下、「本発明
電池」と称する。)は、負極としての亜鉛極と、水酸化
ニッケルを活物質とする正極としてのニッケル極とを備
えるニッケル−亜鉛蓄電池において、前記ニッケル極が
水酸化カルシウムを含有してなる。
A nickel-zinc storage battery according to the present invention (hereinafter, referred to as "the battery of the present invention") for achieving the above object is a zinc electrode as a negative electrode and nickel hydroxide. In a nickel-zinc storage battery including a nickel electrode as a positive electrode as a substance, the nickel electrode contains calcium hydroxide.

【0011】ニッケル極の好適なカルシウム含有量は、
ニッケル及びカルシウムの総量(100重量%)に対し
て0.5〜3重量%の範囲である。0.5重量%未満の
場合は、正極活物質の利用率及びサイクル特性の向上が
充分に達成されず、一方3重量%を越えた場合は、活物
質(水酸化ニッケル)の量が相対的に少なくなり、ニッ
ケル極の容量低下を招く。
The preferred calcium content of the nickel electrode is
It is in the range of 0.5 to 3% by weight with respect to the total amount of nickel and calcium (100% by weight). When it is less than 0.5% by weight, the utilization factor and cycle characteristics of the positive electrode active material are not sufficiently improved, while when it exceeds 3% by weight, the amount of the active material (nickel hydroxide) is relatively high. And the capacity of the nickel electrode is reduced.

【0012】本発明におけるニッケル極は、焼結式であ
ると、非焼結式であるとを問わないが、水酸化ニッケル
としては、高容量化を図る上で、高密度充填が可能な球
状粉が好ましい。なお、本発明におけるニッケル極は、
活物質粒子(水酸化ニッケル粒子)中に水酸化カルシウ
ムが固溶体として含まれるものであってもよく、また水
酸化ニッケル粒子と水酸化カルシウム粒子とが混合物の
形態で存在するものであってもよい。また、水酸化ニッ
ケル粒子中に水酸化カルシウムが含まれる前者の場合、
全ての水酸化ニッケル粒子が水酸化カルシウムを含むも
のであってもよく、また一部の水酸化ニッケル粒子がそ
れを含むものであってもよい。
The nickel electrode according to the present invention may be either a sintered type or a non-sintered type, but as nickel hydroxide, a spherical shape capable of high density filling in order to increase the capacity. Powder is preferred. The nickel electrode in the present invention is
Calcium hydroxide may be contained in the active material particles (nickel hydroxide particles) as a solid solution, or nickel hydroxide particles and calcium hydroxide particles may be present in the form of a mixture. . In the former case where calcium hydroxide is contained in the nickel hydroxide particles,
All the nickel hydroxide particles may contain calcium hydroxide, or some nickel hydroxide particles may contain it.

【0013】[0013]

【作用】ニッケル極が水酸化カルシウムを含有している
ので、ニッケル極におけるプロトンの拡散速度が大きく
なり、正極活物質の利用率が向上する。
Since the nickel electrode contains calcium hydroxide, the diffusion rate of protons in the nickel electrode is increased and the utilization rate of the positive electrode active material is improved.

【0014】また、高率放電時には正極からカルシウム
イオンが溶出するが、このカルシウムイオンは主に負極
の表面の亜鉛錯イオンを捕捉し負極の内部の亜鉛酸イオ
ンを殆ど捕捉しないので高率放電特性に優れる。
Further, at the time of high rate discharge, calcium ions are eluted from the positive electrode. The calcium ions mainly trap zinc complex ions on the surface of the negative electrode and hardly trap zincate ions inside the negative electrode, so that high rate discharge characteristics are obtained. Excellent in.

【0015】さらに、充放電サイクルの進行に伴う正極
活物質の活性の低下が緩やかになるので、サイクル特性
に優れる。
Furthermore, since the decrease in the activity of the positive electrode active material with the progress of the charging / discharging cycle becomes gradual, the cycle characteristics are excellent.

【0016】[0016]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例により何ら限定され
るものではなく、その要旨を変更しない範囲において適
宜変更して実施することが可能なものである。
EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited by the examples described below, and various modifications may be made without departing from the scope of the invention. Is possible.

【0017】(実施例1)AAサイズ(単3型)のニッ
ケル−亜鉛蓄電池(本発明電池)を作製した。
Example 1 An AA size (AA type) nickel-zinc storage battery (the battery of the present invention) was produced.

【0018】〔正極〕硝酸ニッケルと硝酸カルシウムと
を、水酸化ナトリウム及びアンモニアにてpH11〜1
3に調整した水溶液中に投入して、攪拌混合しつつ5時
間反応させて水酸化ニッケルと水酸化カルシウムとを共
沈させ、この共沈物を水洗、乾燥して平均粒径約6μm
の球状粉を得た。
[Positive electrode] Nickel nitrate and calcium nitrate were mixed with sodium hydroxide and ammonia to pH 11 to 1
It is poured into an aqueous solution adjusted to 3, and mixed for 5 hours with stirring and stirring to coprecipitate nickel hydroxide and calcium hydroxide. The coprecipitate is washed with water and dried to have an average particle size of about 6 μm.
A spherical powder of

【0019】次いで、上記球状粉100重量部と水酸化
コバルト1重量部とを、カルボキシメチルセルロース
0.5重量部の水溶液と混練してスラリーとし、このス
ラリーを発泡メタルに充填して、正極(非焼結式ニッケ
ル極)を作製した(電極寸法:0.6mm×40mm×
60mm)。ニッケル極中のニッケル及びカルシウムの
総量(100重量%)に対するカルシウムの比率をIC
Pにより分析したところ、1重量%であった。なお、後
述する各金属の比率も全てICPにより分析したもので
ある。
Next, 100 parts by weight of the spherical powder and 1 part by weight of cobalt hydroxide are kneaded with an aqueous solution of 0.5 part by weight of carboxymethyl cellulose to prepare a slurry, and the slurry is filled in a foam metal to produce a positive electrode (non A sintered nickel electrode was produced (electrode size: 0.6 mm x 40 mm x
60 mm). The ratio of calcium to the total amount of nickel and calcium (100% by weight) in the nickel electrode is IC
When analyzed by P, it was 1% by weight. In addition, all the ratios of the respective metals described later are also analyzed by ICP.

【0020】〔負極〕負極活物質としての酸化亜鉛90
重量%及び亜鉛8重量%と、導電剤及び水素発生抑制剤
としての酸化インジウム2重量%とを、ポリテトラフル
オロエチレンの2重量%水溶液と混練してスラリーを調
製した。次いで、このスラリーを圧延ロールを用いて圧
延して所定厚さのシートを作製し、このシートをSUS
板にニッケルメッキを施したパンチングメタルの両面に
貼着し、圧延して、負極を作製した。
[Anode] Zinc oxide 90 as an anode active material
% By weight and 8% by weight of zinc, and 2% by weight of indium oxide as a conductive agent and a hydrogen generation inhibitor were kneaded with a 2% by weight aqueous solution of polytetrafluoroethylene to prepare a slurry. Then, this slurry is rolled using a rolling roll to produce a sheet having a predetermined thickness, and the sheet is made of SUS.
The plate was attached to both sides of a nickel-plated punching metal and rolled to prepare a negative electrode.

【0021】〔アルカリ電解液〕水酸化カリウムの30
重量%水溶液に酸化亜鉛を飽和量加えてアルカリ電解液
を調製した。
[Alkaline Electrolyte] 30 parts of potassium hydroxide
A saturated amount of zinc oxide was added to a weight% aqueous solution to prepare an alkaline electrolyte.

【0022】〔電池の作製〕以上の正負両極及びアルカ
リ電解液を用いて本発明電池BA1を作製した。なお、
セパレータとしては、親水処理を施したポリプロピレン
微多孔膜(負極側に配置)とポリアミド不織布(正極側
に配置)とを重ね合わせたものを使用し、これに先のア
ルカリ電解液を含浸させた。
[Production of Battery] A battery BA1 of the present invention was produced using the positive and negative electrodes and the alkaline electrolyte described above. In addition,
As the separator, a superposed polypropylene microporous membrane (disposed on the negative electrode side) and a polyamide non-woven fabric (disposed on the positive electrode side) were used and impregnated with the above alkaline electrolyte.

【0023】(比較例1)球状粉を調製する際に硝酸カ
ルシウムを用いなかったこと以外は実施例1と同様にし
て、正極を作製した。次いで、この正極を用いたこと以
外は実施例1と同様にして、比較電池BC1を作製し
た。
Comparative Example 1 A positive electrode was prepared in the same manner as in Example 1 except that calcium nitrate was not used when preparing the spherical powder. Then, a comparative battery BC1 was produced in the same manner as in Example 1 except that this positive electrode was used.

【0024】(比較例2)球状粉を調製する際に硝酸カ
ルシウムを用いなかったこと以外は実施例1と同様にし
て、正極を作製した。また、スラリーを調製する際に亜
鉛活物質に対して1重量%の水酸化カルシウムを添加し
たこと以外は実施例1と同様にして、負極を作製した。
次いで、これら正負両極を用いたこと以外は実施例1と
同様にして、比較電池BC2を作製した。
Comparative Example 2 A positive electrode was produced in the same manner as in Example 1 except that calcium nitrate was not used when preparing the spherical powder. Further, a negative electrode was produced in the same manner as in Example 1 except that 1% by weight of calcium hydroxide was added to the zinc active material when preparing the slurry.
Next, a comparative battery BC2 was produced in the same manner as in Example 1 except that these positive and negative electrodes were used.

【0025】〈サイクル特性〉本発明電池BA1及び比
較電池BC1、BC2について、室温(25°C)下、
200mAで4.6時間充電した後、200mAで放電
終止電圧1.0Vまで放電する工程を1サイクルとする
充放電サイクル試験を行い、サイクル特性を調べた。結
果を図1に示す。
<Cycle characteristics> For the battery BA1 of the present invention and the comparative batteries BC1 and BC2, at room temperature (25 ° C),
After charging at 200 mA for 4.6 hours, a charging / discharging cycle test in which one cycle includes a step of discharging at 200 mA to a discharge end voltage of 1.0 V was performed to examine cycle characteristics. The results are shown in Fig. 1.

【0026】図1は、各電池のサイクル特性を、縦軸に
電池容量(mAh)を、また横軸にサイクル数(回)を
とって示したグラフであり、同図に示すように、比較電
池BC2は負極に水酸化カルシウムを含有しておりデン
ドライトの発生が抑制されるので、比較電池BC1に比
べるとサイクル特性に優れるが、比較電池BC2は本発
明電池BA1に比べるとサイクル初期から電池容量が小
さく、サイクル特性も良くない。この理由は、次のとお
りである。
FIG. 1 is a graph showing the cycle characteristics of each battery, in which the vertical axis represents the battery capacity (mAh) and the horizontal axis represents the number of cycles (times). As shown in FIG. The battery BC2 contains calcium hydroxide in the negative electrode and suppresses the generation of dendrites, and therefore has better cycle characteristics than the comparative battery BC1, but the comparative battery BC2 has a higher battery capacity from the initial cycle than the battery BA1 of the present invention. Is small and the cycle characteristics are not good. The reason for this is as follows.

【0027】すなわち、本発明電池BA1では、ニッケ
ル正極が水酸化カルシウムを含有しているので正極活物
質の利用率が向上し充放電サイクルの初期から電池容量
が大きく、しかも正極から溶出したカルシウムイオンは
主に負極の表面の亜鉛錯イオンを捕捉し負極の内部の亜
鉛錯イオンを殆ど捕捉しないので、充放電サイクルを繰
り返しても活物質の活性がさほど低下せずサイクル特性
に優れるのに対して、比較電池BC2では、負極が水酸
化カルシウムを含有しているので正極活物質たる水酸化
ニッケルの利用率が向上せず、しかも負極から溶出した
カルシウムイオンが負極の表面の亜鉛錯イオンのみなら
ず負極の内部の亜鉛錯イオンまでも捕捉するので、サイ
クル特性が良くないのである。
That is, in the battery BA1 of the present invention, since the nickel positive electrode contains calcium hydroxide, the utilization rate of the positive electrode active material is improved, the battery capacity is large from the beginning of the charge / discharge cycle, and the calcium ion eluted from the positive electrode is used. Mainly captures zinc complex ions on the surface of the negative electrode and hardly captures zinc complex ions on the inside of the negative electrode, so the activity of the active material does not decrease so much even after repeated charge and discharge cycles, and the cycle characteristics are excellent. In Comparative Battery BC2, since the negative electrode contains calcium hydroxide, the utilization rate of nickel hydroxide as the positive electrode active material is not improved, and the calcium ions eluted from the negative electrode are not limited to zinc complex ions on the surface of the negative electrode. Even the zinc complex ions inside the negative electrode are captured, so the cycle characteristics are not good.

【0028】〈高率放電特性〉本発明電池BA1及び比
較電池BC1、BC2について、室温(25°C)下、
200mAで4.6時間充電した後、800mAで放電
終止電圧1.0Vまで放電して、高率放電特性を調べ
た。結果を図2に示す。
<High Rate Discharge Characteristic> For the battery BA1 of the present invention and the comparative batteries BC1 and BC2, at room temperature (25 ° C.),
After charging at 200 mA for 4.6 hours, the battery was discharged at 800 mA to a discharge end voltage of 1.0 V, and the high rate discharge characteristics were examined. The results are shown in Figure 2.

【0029】図2は、各電池の高率放電特性を、縦軸に
電池電圧(V)を、また横軸に放電容量(mAh)をと
って示したグラフであり、同図に示すように本発明電池
BA1は、比較電池BC1に比べて放電容量が大きく、
また比較電池BC2に比べて放電初期から電池電圧が高
く、また放電容量が大きい。この理由は、次のとおりで
ある。
FIG. 2 is a graph showing the high rate discharge characteristics of each battery, in which the vertical axis represents the battery voltage (V) and the horizontal axis represents the discharge capacity (mAh). As shown in FIG. The battery BA1 of the present invention has a larger discharge capacity than the comparative battery BC1,
In addition, the battery voltage is high and the discharge capacity is large from the initial stage of discharge as compared with the comparative battery BC2. The reason for this is as follows.

【0030】本発明電池BA1は、水酸化カルシウムを
含有するニッケル極の利用率が高いため、ニッケル極に
水酸化カルシウムを含有していない比較電池BC1に比
べて放電容量が大きく、また正極から溶出したカルシウ
ムイオンが主に負極の表面の亜鉛錯イオンを捕捉し負極
の内部の亜鉛錯イオンを捕捉しないので、負極の表面の
亜鉛錯イオンのみならず負極の内部の亜鉛錯イオンまで
がカルシウムイオンによって捕捉される比較電池BC2
に比べて放電初期から電池電圧が高く、また放電容量が
大きい。
The battery BA1 of the present invention has a high utilization rate of the nickel electrode containing calcium hydroxide, and therefore has a larger discharge capacity than the comparative battery BC1 in which the nickel electrode does not contain calcium hydroxide, and is eluted from the positive electrode. Since the calcium ions mainly capture the zinc complex ions on the surface of the negative electrode and not the zinc complex ions on the inside of the negative electrode, not only the zinc complex ions on the surface of the negative electrode but also the zinc complex ions on the inside of the negative electrode are affected by the calcium ions. Comparative battery BC2 captured
Compared with, the battery voltage is high from the beginning of discharge and the discharge capacity is large.

【0031】(実施例2〜5)硝酸ニッケルに対する硝
酸カルシウムの使用割合のみを変えたこと以外は実施例
1と同様にして、ニッケル極中のニッケル及びカルシウ
ムの総量(100重量%)に対するカルシウムの比率が
0.25重量%、0.5重量%、1.5重量%又は2.
0重量%の4種の球状粉を作製した。次いで、これらの
各球状粉を用いてニッケル極を作製し、順に本発明電池
BA2〜BA5を組み立てた。
Examples 2 to 5 In the same manner as in Example 1 except that only the use ratio of calcium nitrate to nickel nitrate was changed, the amount of calcium relative to the total amount of nickel and calcium (100% by weight) in the nickel electrode was changed. The ratio is 0.25% by weight, 0.5% by weight, 1.5% by weight or 2.
Four kinds of spherical powder of 0% by weight were prepared. Next, a nickel electrode was produced using each of these spherical powders, and the batteries BA2 to BA5 of the present invention were assembled in order.

【0032】〈ニッケル極中のカルシウムの割合とサイ
クル寿命との関係〉本発明電池BA1〜BA5につい
て、前記〈サイクル特性〉の項で述べた条件と同じ条件
で充放電サイクル試験を行い、ニッケル極中のカルシウ
ムの割合とサイクル寿命との関係を調べた。サイクル寿
命は、電池容量が400mAh以下に低下した時点のサ
イクル数(回)で評価した。結果を図3に示す。
<Relationship between Calcium Ratio in Nickel Electrode and Cycle Life> With respect to the batteries BA1 to BA5 of the present invention, a charge / discharge cycle test was conducted under the same conditions as those described in the above <Cycle characteristics>. The relationship between the percentage of calcium and the cycle life was investigated. The cycle life was evaluated by the number of cycles (times) when the battery capacity dropped to 400 mAh or less. The results are shown in Fig. 3.

【0033】図3は、カルシウムの比率とサイクル寿命
との関係を、縦軸に各電池のサイクル寿命(回)を、ま
た横軸にニッケル及びカルシウムの総量に対するカルシ
ウムの比率(重量%)をとって示したグラフであり、同
図より、カルシウムの比率を0.5重量%以上とするこ
とがサイクル寿命の長くする上で好ましいことが分か
る。もっとも、先に述べたように過剰のカルシウムの含
有は水酸化ニッケルの含有量の相対的減少をもたらして
容量低下を招くので、カルシウムの比率は3重量%以下
に抑えることが好ましい。
FIG. 3 shows the relationship between the ratio of calcium and cycle life, the vertical axis represents the cycle life of each battery (times), and the horizontal axis represents the ratio of calcium to the total amount of nickel and calcium (% by weight). It can be seen from the graph that the ratio of calcium is preferably 0.5% by weight or more in order to prolong the cycle life. However, as described above, the excessive calcium content causes a relative decrease in the nickel hydroxide content, leading to a decrease in the capacity. Therefore, the proportion of calcium is preferably suppressed to 3% by weight or less.

【0034】[0034]

【発明の効果】正極活物質の利用率が高いので電池容量
が大きく、正極から溶出したカルシウムイオンが負極の
内部の亜鉛錯イオンを殆ど捕捉しないので高率放電特性
に優れ、また充放電サイクルの進行に伴う正極活物質の
活性の低下が緩やかであるのでサイクル特性に優れる。
EFFECT OF THE INVENTION Since the utilization rate of the positive electrode active material is high, the battery capacity is large, and the calcium ions eluted from the positive electrode hardly capture the zinc complex ions inside the negative electrode, so that the high rate discharge characteristic is excellent and the charge / discharge cycle is excellent. Since the decrease in the activity of the positive electrode active material with the progress is slow, the cycle characteristics are excellent.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明電池及び比較電池の各サイクル特性を示
したグラフである。
FIG. 1 is a graph showing cycle characteristics of a battery of the present invention and a comparative battery.

【図2】本発明電池及び比較電池の各高率放電特性を示
したグラフである。
FIG. 2 is a graph showing high rate discharge characteristics of the battery of the present invention and the comparative battery.

【図3】ニッケル極中のカルシウムの割合とサイクル寿
命との関係を示したグラフである。
FIG. 3 is a graph showing the relationship between the proportion of calcium in the nickel electrode and the cycle life.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 斎藤 俊彦 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ─────────────────────────────────────────────────── --- Continuation of front page (72) Inventor Koji Nishio 2-5-5 Keihan Hondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Toshihiko Saito 2-5 Keihan-hondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】負極としての亜鉛極と、水酸化ニッケル粉
末を活物質とする正極としてのニッケル極とを備えるニ
ッケル−亜鉛蓄電池において、前記ニッケル極が水酸化
カルシウムを含有していることを特徴とするニッケル−
亜鉛蓄電池。
1. A nickel-zinc storage battery comprising a zinc electrode as a negative electrode and a nickel electrode as a positive electrode using nickel hydroxide powder as an active material, wherein the nickel electrode contains calcium hydroxide. And nickel
Zinc storage battery.
【請求項2】前記水酸化カルシウムが前記水酸化ニッケ
ル粉末中の全て又は一部の水酸化ニッケル粒子中に固溶
体として含まれる請求項1記載のニッケル−亜鉛蓄電
池。
2. The nickel-zinc storage battery according to claim 1, wherein the calcium hydroxide is contained as a solid solution in all or part of the nickel hydroxide particles in the nickel hydroxide powder.
【請求項3】前記ニッケル極が、カルシウムを当該ニッ
ケル極に含まれるニッケル及びカルシウムの総量に対し
て0.5〜3重量%含有している請求項1記載のニッケ
ル−亜鉛蓄電池。
3. The nickel-zinc storage battery according to claim 1, wherein the nickel electrode contains calcium in an amount of 0.5 to 3% by weight based on the total amount of nickel and calcium contained in the nickel electrode.
JP5352522A 1993-12-29 1993-12-29 Nickel-zinc storage battery Pending JPH07201328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5352522A JPH07201328A (en) 1993-12-29 1993-12-29 Nickel-zinc storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5352522A JPH07201328A (en) 1993-12-29 1993-12-29 Nickel-zinc storage battery

Publications (1)

Publication Number Publication Date
JPH07201328A true JPH07201328A (en) 1995-08-04

Family

ID=18424644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5352522A Pending JPH07201328A (en) 1993-12-29 1993-12-29 Nickel-zinc storage battery

Country Status (1)

Country Link
JP (1) JPH07201328A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111261953A (en) * 2019-12-04 2020-06-09 超威电源集团有限公司 Electrolyte of high-specific-energy zinc-nickel battery and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111261953A (en) * 2019-12-04 2020-06-09 超威电源集团有限公司 Electrolyte of high-specific-energy zinc-nickel battery and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3097347B2 (en) Nickel-metal hydride battery
JP3042043B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JP3079303B2 (en) Activation method of alkaline secondary battery
JP4747233B2 (en) Alkaline storage battery
JPH07201328A (en) Nickel-zinc storage battery
JP3200822B2 (en) Nickel-metal hydride storage battery
JP3005423B2 (en) Alkaline secondary battery
JP3263603B2 (en) Alkaline storage battery
JP3794176B2 (en) Non-sintered positive electrode for alkaline storage battery and alkaline storage battery using the same
JPH09115543A (en) Alkaline storage battery
JP2001155724A (en) Akaline storage battery
JP2001043855A (en) Non-sintered nickel electrode for alkali storage battery
JP3204275B2 (en) Nickel electrode for alkaline storage battery
JP3550838B2 (en) Alkaline storage battery
JP2926732B2 (en) Alkaline secondary battery
JP3249398B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3393978B2 (en) Alkaline secondary battery
JP3268938B2 (en) Nickel-hydrogen storage battery
JP2530281B2 (en) Alkaline storage battery
JPH11250908A (en) Electrode for alkaline secondary battery and alkaline secondary battery
JP3101622B2 (en) Nickel-hydrogen alkaline storage battery
JP2000182611A (en) Alkaline storage battery and its manufacture
JP3225608B2 (en) Nickel hydroxide positive electrode plate for alkaline battery and method for producing the same
JP2577964B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2600825B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate