JPH0720042A - Device for spectroscopic analysis - Google Patents

Device for spectroscopic analysis

Info

Publication number
JPH0720042A
JPH0720042A JP16762593A JP16762593A JPH0720042A JP H0720042 A JPH0720042 A JP H0720042A JP 16762593 A JP16762593 A JP 16762593A JP 16762593 A JP16762593 A JP 16762593A JP H0720042 A JPH0720042 A JP H0720042A
Authority
JP
Japan
Prior art keywords
measurement
section
measuring
luminous flux
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16762593A
Other languages
Japanese (ja)
Inventor
Hitoshi Ishibashi
仁志 石橋
Yasuki Otegi
安己 樗木
Susumu Uenaka
進 上中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP16762593A priority Critical patent/JPH0720042A/en
Publication of JPH0720042A publication Critical patent/JPH0720042A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To obtain a device for spectroscopic analysis which can secure sufficiently high measurement accuracy even when the ambient temperature, etc., fluctuate and can perform accurate analysis even when the device is connected to an automated line. CONSTITUTION:In a device for spectroscopic analysis provided with a light source 1 for irradiating a measuring section 30 in and from which samples to be measured can be freely put and taken out, spectroscopic means which separates a luminous flux for measurement transmitted through the section 30, and array type light receiving elements which receive the separated luminous fluxes, a switching means provided with a wavelength calibrating section 20a and reference section 20b which respectively calibrate the luminous flux into a calibrated luminous flux and reference luminous flux, intercepting means which intercepts the luminous flux for measurement, and transmitting section 20d for the luminous flux for measurement are provided. In addition, a control means which switches the switching means in order of a stage in which the luminous flux for measurement is transmitted through the section 20a at every sample measurement, stage in which the luminous flux is transmitted through the section 20b, stage in which the luminous flux is intercepted by the section 20c, and stage in which the luminous flux is transmitted through the section 20s as it is so that spectroscopic analysis can be performed while wavelength calibration is performed at every sample measurement is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、最近提案されている穀
物等の成分を分光分析手法により分析する分光分析装置
に関するものであり、さらに詳細には、測定対象のサン
プルが出退自在な測定部に測定用光線束を照射する光源
と、測定部を透過もしくは測定部より反射してくる測定
用光線束を分光する分光手段と、分光された前記測定用
光線束を受光するアレイ型受光素子とを備えた分光分析
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a recently proposed spectroscopic analysis device for analyzing components such as grains by a spectroscopic analysis method. More specifically, the present invention relates to a spectroscopic analysis device in which a sample to be measured can freely move. A light source for irradiating a measuring ray bundle to the section, a spectroscopic means for dispersing the measuring ray bundle transmitted through the measuring section or reflected from the measuring section, and an array type light receiving element for receiving the dispersed measuring ray bundle And a spectroscopic analysis device having

【0002】[0002]

【従来の技術】従来、この種の分光分析装置は、通常の
測定状態においては、測定用光線束がサンプルを透過も
しくはこれから反射するサンプル測定状態、測定用光線
束がリファレンスを透過するリファレンス測定状態およ
びアレイ型受光素子への入光がおこなわれない暗状態と
の3状態でデータの取り込みをおこない、光の吸光度を
各波長毎に得るとともに、スペクトル情報を得て、特定
の検量式に従って成分分析結果を得ていた。ここで、ア
レイ型受光素子の各素子に入光する光がどの波長のもの
であるかを確定する波長校正は、製品出荷時もしくは分
光分析装置の現場設置時におこなわれる。さらに、例え
ば各季節ごとに、必要に応じて作業者が校正をおこなう
場合もある。校正にあたっては、波長校正用フィルタを
測定用光線束の光路にセットして各受光素子が受ける波
長を特定することによって波長校正をマニュアルで行っ
ていた。
2. Description of the Related Art Conventionally, in this type of spectroscopic analyzer, in a normal measurement state, a sample measurement state in which a measurement light beam transmits or reflects a sample, a reference measurement state in which a measurement light beam transmits a reference. Also, data is captured in three states, that is, in a dark state in which light does not enter the array type light receiving element, the light absorbance is obtained for each wavelength, and spectral information is obtained to analyze the component according to a specific calibration formula. I was getting results. Here, the wavelength calibration for determining the wavelength of the light entering each element of the array type light receiving element is performed at the time of shipping the product or at the time of installing the spectroscopic analyzer on site. Further, for example, an operator may calibrate each season, if necessary. In the calibration, the wavelength calibration was manually performed by setting a wavelength calibration filter in the optical path of the measuring light beam bundle and specifying the wavelength received by each light receiving element.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記構
成においては、例えば、分析装置が配設される場所が雰
囲気温度が急激に変動するような場所である場合、ある
いはサンプルの供給、排出を自動化したプロセスライン
に分析装置を配置する場合は、環境条件等の変化に伴っ
て作業者によって波長校正を適宜おこなえないために、
測定精度の確保に問題があった。
However, in the above configuration, for example, when the place where the analyzer is installed is a place where the ambient temperature changes abruptly, or the supply and discharge of the sample is automated. When arranging the analyzer in the process line, it is not possible for the operator to perform wavelength calibration appropriately due to changes in environmental conditions, etc.
There was a problem in securing the measurement accuracy.

【0004】従って本発明の目的は、雰囲気温度等の変
化に対しても充分に測定精度を確保できるとともに、自
動化ラインに配設した場合においても精度の良い分析が
できる分光分析装置を得ることにある。
Therefore, an object of the present invention is to obtain a spectroscopic analyzer capable of ensuring sufficient measurement accuracy even with changes in atmospheric temperature and the like, and capable of performing accurate analysis even when installed in an automated line. is there.

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
の本発明による分光分析装置の特徴構成は、測定用光線
束の光路上で光源と分光手段との間に、測定用光線束を
透過させて校正光線束とする校正フィルタを備えた波長
校正部と、測定用光線束を透過させてリファレンス光線
束とするリファレンス部と、測定用光線束を遮断する暗
電流測定用遮蔽部と測定用光線束をそのまま通過させる
切欠き部とを備えた切換手段を設け、切換手段をサンプ
ル測定毎に、測定用光線束が波長校正部を透過する第一
段階から、リファレンス部を透過する第二段階、暗電流
測定用遮蔽部により遮断される第三段階、切欠き部をそ
のまま通過される第四段階の記載順に切り換える制御手
段を設け、第四段階においてサンプルを前記測定部に配
設する出退手段を設け、サンプル測定毎に波長校正をお
こないながら分光分析をおこなうことにある。そして、
その作用・効果は次の通りである。
To achieve this object, the spectral analyzer according to the present invention is characterized in that the measuring light beam is transmitted between the light source and the spectroscopic means on the optical path of the measuring light beam. Wavelength calibration unit with a calibration filter that makes a calibration light beam bundle, a reference unit that transmits the measurement light beam bundle as a reference light beam bundle, a dark current measurement shield unit that blocks the measurement light beam bundle, and a measurement unit The switching means is provided with a cutout portion that allows the light beam to pass through as it is, and the switching means is used for each sample measurement, from the first step in which the measuring light beam passes through the wavelength calibration section to the second step in which it passes through the reference section Control means is provided for switching in the order of the description of the third step of being blocked by the dark current measuring shield and the fourth step of passing through the notch as it is, and the sample is placed in the measuring section at the fourth step. Means Only, in the spectroscopic analysis while wavelength calibration for each sample measurement. And
The action and effect are as follows.

【0006】[0006]

【作用】つまり、本願の分光分析装置は、切換手段と制
御手段とを備えて構成され、制御手段の働きにより切換
手段が第一段階から第四段階まで逐次切換えられる。そ
して、第一段階においては、測定用光線束が校正フィル
ターを透過することにより校正光線束とされアレイ型受
光素子に受光されて波長校正に必要なデータが取り込ま
れる。そして、この第一段階に引き続いて、制御手段と
切換手段との働きにより第二、第三、第四段階におい
て、アレイ型受光素子において夫々リファレンス情報、
暗情報、サンプル情報が取り込まれる。そして、これら
の情報を利用して波長校正された情報に基づいて、分光
分析が行われることとなる。 しかも、この測定手順は
各サンプルの測定毎に守られる。
That is, the spectroscopic analyzer of the present invention is constituted by including switching means and control means, and the switching means is sequentially switched from the first stage to the fourth stage by the action of the control means. Then, in the first stage, the measurement light beam is transmitted through the calibration filter to be a calibration light beam, which is received by the array type light receiving element and the data required for wavelength calibration is captured. Then, following this first step, by the operation of the control means and the switching means, in the second, third and fourth steps, the reference information in the array type light receiving element, respectively,
Dark information and sample information are captured. Then, the spectroscopic analysis is performed based on the information whose wavelength has been calibrated using these pieces of information. Moreover, this measurement procedure is maintained for each measurement of each sample.

【0007】[0007]

【発明の効果】従って、本願の分光分析装置において
は、各サンプルの測定回毎に、分光分析の精度に最も影
響する波長校正を行うこととなるため、従来構成の分光
分析装置より測定精度が格段に向上するとともに、信頼
性も確保される。一般には分光分析をおこなう対象が成
分分析である場合には、複数(3〜4個)の特定波長に
おける透過光もしくは反射光のスペクトルの二次微分値
が、成分分析量を決定する検量式の基礎データとされる
が、この基礎データの精度が上記の構成を採用すること
により確実に確保され、結果的に精度の良い分析が実現
する。従って、雰囲気温度の急激な変動や経年変化、サ
ンプルを収納する容器の汚れ、光源としてのランプの劣
化などの影響を自動的にキャンセルでき、全自動運転を
行っても、測定精度が維持できる分光分析装置が得られ
た。
Therefore, in the spectroscopic analyzer of the present application, the wavelength calibration that most affects the accuracy of the spectroscopic analysis is performed each time the measurement of each sample is performed. Not only is it significantly improved, but reliability is also secured. Generally, when the object to be subjected to the spectroscopic analysis is the component analysis, the second derivative value of the spectrum of the transmitted light or the reflected light at a plurality of (3 to 4) specific wavelengths is a calibration formula for determining the component analysis amount. Although the basic data is used, the accuracy of the basic data is reliably ensured by adopting the above configuration, and as a result, accurate analysis is realized. Therefore, it is possible to automatically cancel the effects of sudden changes in atmospheric temperature and aging, contamination of the container that holds the sample, deterioration of the lamp as the light source, etc., and to maintain measurement accuracy even when fully automatic operation is performed. An analytical device was obtained.

【0008】[0008]

【実施例】以下に本発明における分光分析装置の一実施
例である穀類をサンプルSとする分光分析装置について
説明する。
EXAMPLE A spectroscopic analysis apparatus using cereals as a sample S, which is an example of the spectroscopic analysis apparatus according to the present invention, will be described below.

【0009】分光分析装置は、図1に示すように、光源
1と、光源1からの測定用光線束を成形する第一光学系
2と、第一光学系2からの測定用光線束が照射されるサ
ンプル保持部3と、そのサンプル保持部3で保持された
サンプルSを透過した測定用光線束を集光する第二光学
系4と、その第二光学系4により集光された測定用光線
束を分光分析する受光容器の一例である分光分析部5と
を光軸Pに沿って配置して構成してある。
As shown in FIG. 1, the spectroscopic analysis apparatus irradiates a light source 1, a first optical system 2 for shaping a measurement light beam from the light source 1, and a measurement light beam from the first optical system 2. Sample holding part 3, a second optical system 4 that collects a measurement light beam that has passed through the sample S held by the sample holding part 3, and a measuring light that is collected by the second optical system 4. A spectroscopic analysis section 5, which is an example of a light-receiving container for spectroscopically analyzing a light bundle, is arranged along the optical axis P.

【0010】前記光源1は、タングステン−ハロゲン電
球によって構成してある。前記第一光学系2は、前記サ
ンプル保持部3に向かう光線束を平行光線束に成形する
レンズ2aを備え、さらに測定用光線束の光軸P上で光
源1と分光分析部5との間(実施例においてはサンプル
保持部3の分光分析部5側)に、この光線束を所定の状
態に切換える切換手段200を備えている。この切換手
段200は、軸芯周りに回転する回転円板20を備えて
おり、さらに、図2に示すように、測定用光線束を透過
させて校正光線束とする校正フィルタを備えた波長校正
部20aと、測定用光線束を透過させてリファレンス光
線束とするリファレンス部20bと、測定用光線束を遮
断する暗電流測定用遮蔽部20cと測定用光線束をその
まま通過させる切欠き部20dとを周方向に備えてい
る。そして、回転円板20が回転軸21周りに回転する
ことにより、それぞれの状態に透過光の状態が切換られ
る。ここで、回転円板20の回転数を制御することによ
り、各部を測定用光線束が横切る時間間隔を任意に設定
できる。さて、前述の校正光線束は図3に示すように、
一対の特定波長域(λ1λ2)にピークを備えた光線束で
あり、予め特定されている一対のピーク波長とこれらの
ピーク波長を受光することとなるアレイ型受光素子7の
一対の対応素子の位置関係から、アレイ型受光素子を構
成する各素子と、それぞれの素子が受光する光の波長と
の間で対応を取ることができる。
The light source 1 is composed of a tungsten-halogen bulb. The first optical system 2 includes a lens 2a that forms a bundle of rays of light directed to the sample holder 3 into a bundle of parallel rays of light, and further, between the light source 1 and the spectroscopic analyzer 5 on the optical axis P of the bundle of rays for measurement. A switching means 200 for switching this light flux to a predetermined state is provided on the spectroscopic analysis section 5 side of the sample holding section 3 in the embodiment. The switching means 200 includes a rotating disk 20 that rotates around an axis, and as shown in FIG. 2, further includes a calibration filter that includes a calibration filter that transmits a measurement light beam bundle to form a calibration light beam bundle. A portion 20a, a reference portion 20b that transmits the measurement light beam bundle to form a reference light beam bundle, a dark current measurement shield portion 20c that blocks the measurement light beam bundle, and a notch portion 20d that allows the measurement light beam bundle to pass through. Is provided in the circumferential direction. Then, as the rotary disc 20 rotates around the rotary shaft 21, the state of the transmitted light is switched to each state. Here, by controlling the number of rotations of the rotating disk 20, the time interval at which the measuring light flux crosses each part can be set arbitrarily. Now, as shown in FIG.
A pair of light rays having a peak in a pair of specific wavelength ranges (λ 1 λ 2 ) and a pair of peak wavelengths that are specified in advance and a pair of array type light receiving elements 7 that receive these peak wavelengths. From the positional relationship of the elements, it is possible to establish a correspondence between each element forming the array type light receiving element and the wavelength of the light received by each element.

【0011】前記サンプル保持部3は、石英硝子製の容
器3aによって構成してあり、その容器3a内には、サ
ンプルSとしての穀物を収容してある。この容器3aは
図示するように、測定用光線束の光軸Pが通っている測
定部30に対して、光軸Pを横切る状態と光軸Pから離
間する状態とに出退手段30aを備えて出退自在に構成
されている。前記第二光学系4は、前記サンプルSを透
過した光線束を前記分光分析部5の入射孔5a位置で集
光させる集光レンズ4aと、光路への有害光の進入を防
止する暗箱4bとで構成してある。
The sample holder 3 is composed of a container 3a made of quartz glass, and the container 3a contains grains as a sample S therein. As shown in the figure, the container 3a is provided with a retreating means 30a for the measuring unit 30 through which the optical axis P of the measuring light beam bundle passes, in a state of crossing the optical axis P and in a state of being separated from the optical axis P. It is configured to move in and out freely. The second optical system 4 includes a condenser lens 4a that condenses the light beam that has passed through the sample S at the position of the entrance hole 5a of the spectroscopic analysis unit 5, and a dark box 4b that prevents harmful light from entering the optical path. It is composed of.

【0012】前記分光分析部5は、前記第二光学系4に
隣接するアルミニウム製の暗箱5bを設け、その暗箱5
b内で、入射光線束を分光反射する分光手段としての凹
面回折格子6と、分光反射された各波長毎の光線束強度
を検出するアレイ型受光素子7とを設けて構成してあ
る。また、前記暗箱5b内の測定用光路における前記入
射孔5aと前記凹面回折格子6との間には、前記入射孔
5aからの入射光線束を凹面回折格子6に向けて反射さ
せる反射鏡8を設けてある。即ち、前記分光分析部5は
ポリクロメータ型の分光計である。
The spectroscopic analysis section 5 is provided with an aluminum dark box 5b adjacent to the second optical system 4, and the dark box 5 is provided.
In b, there is provided a concave diffraction grating 6 as a spectroscopic means for spectrally reflecting the incident light flux, and an array type light receiving element 7 for detecting the intensity of the light flux of each wavelength spectrally reflected. Further, between the incident hole 5a and the concave diffraction grating 6 in the measurement optical path in the dark box 5b, a reflecting mirror 8 for reflecting the incident light flux from the incident hole 5a toward the concave diffraction grating 6 is provided. It is provided. That is, the spectroscopic analysis section 5 is a polychromator type spectrometer.

【0013】前記アレイ型受光素子7は、前記凹面回折
格子6による光線束の分散光路上の前記暗箱5bに設け
た受光素子固定部9に固定設置してあり、シリコン(S
i)又は硫化鉛(PbS)又はゲルマニウム(Ge)セ
ンサで構成してある。このアレイ型受光素子7からの検
出信号は、処理手段70に送られ、この処理手段70に
より処理され、その処理済スペクトル、スペクトルの二
次微分値等のスペクトル関連情報が求められる。さら
に、前述の切換手段200と処理手段70との連係が制
御手段10によって採られている。
The array type light receiving element 7 is fixedly installed in the light receiving element fixing portion 9 provided in the dark box 5b on the dispersion optical path of the light flux by the concave diffraction grating 6, and is made of silicon (S
i) or lead sulfide (PbS) or germanium (Ge) sensor. The detection signal from the array type light receiving element 7 is sent to the processing means 70 and processed by the processing means 70 to obtain spectrum-related information such as the processed spectrum and the second derivative value of the spectrum. Further, the control means 10 links the switching means 200 and the processing means 70 described above.

【0014】以下に本願の分光分析装置の動作順序を図
4に従って箇条書き形式で説明する。データの処理は前
述の切換手段200と連動した処理手段70によりおこ
なわれる。 1 測定開始(波長校正データ収拾過程−第一段階) この状態は、図4(イ)に示される状態であり、測定部
30に対して容器3aは引退した状態に保持されてお
り、測定部30には何もない。一方、回転円板20はそ
の原点状態である波長校正部20aが光軸P上に位置さ
れる状態をとる。そして、測定用光線束が照射される
と、この波長校正部20aを透過した光線束は、一対の
特定波長(λ1λ2)にピークを有する校正光線束とさ
れ、この校正光線束がアレイ型受光素子7によって受光
され、各素子と波長との対応が可能となる。これは、サ
ンプル測定毎におこなわれる。 2 リファレンスデータ収拾過程(第二段階) この状態は、図4(ロ)に示される状態であり、前記過
程と同様に、測定部30に対して容器3aは引退した状
態に保持されており、測定部30には何もない。一方、
回転円板20は回転してリファレンス部20bが光軸P
上に位置される状態をとる。そして、測定用光線束が照
射されると、このリファレンス部20bを透過した光線
束は、測定状態(温度)にあるリファレンス(摩りガラ
ス等)を透過することによりリファレンス光とされ、リ
ファレンス情報Rdが得られる。 3 暗情報収拾過程(第三段階) この状態は、図4(ハ)に示される状態であり、回転円
板20は回転して暗電流測定用遮蔽部20cが光軸上に
位置される。従って、この状態においては、アレイ型受
光素子7へ光は入光せず、測定状態における暗情報Dが
得られる。一方、容器3a内へのサンプルの充填がおこ
なわれた容器3aが測定部30に移動される。 4 波長校正処理過程 上記の過程を終了した後、処理手段70内において波長
校正をおこなう。 5 サンプルデータ収拾過程(第四段階) この状態は、図4(ニ)に示される状態であり、測定部
30に容器3aは位置されており、測定光線束はサンプ
ルを透過してくることとなる。一方、回転円板20は回
転して切欠き部20dが光軸P上に位置される状態をと
る。従って、測定用光線束が照射され、サンプルを透過
してきた透過光を受光することによりサンプル情報Sd
を得ることができる。 6 吸光度、その他のスペクトルデータの算出過程 上記の過程で得られている、サンプル情報Sd、リファ
レンス情報Rd、暗情報Dより、以下の式に従って吸光
度dが得られる。 吸光度 d=log((Rd−D)/(Sd−D)) さらに、上記の吸光度よりスペクトル、スペクトルの波
長領域における二次微分値等のスペクトル関連情報が得
られ、出力される。さらに、複数の特定波長におけるス
ペクトルの二次微分値を使用して、サンプル内の各成分
(水分、タンパク等)の成分値が求められる。この演算
において、本願の分光分析装置においては、波長校正、
リファレンス測定、暗出力測定が測定毎におこなわれる
ため、成分量の特定を正確におこなうことができる。従
って、測定の信頼性が向上する。
The operation sequence of the spectroscopic analyzer of the present application will be described below in itemized form with reference to FIG. The processing of the data is performed by the processing means 70 which is interlocked with the switching means 200 described above. 1 Measurement Start (Wavelength Calibration Data Collection Process-First Stage) This state is the state shown in FIG. 4A, in which the container 3a is held in a retracted state with respect to the measurement unit 30, There is nothing in 30. On the other hand, the rotating disc 20 is in a state in which the wavelength calibration unit 20a, which is the origin state, is positioned on the optical axis P. Then, when the measurement light beam is irradiated, the light beam transmitted through the wavelength calibration unit 20a becomes a calibration light beam having a peak at a pair of specific wavelengths (λ 1 λ 2 ). The light is received by the mold light receiving element 7, and each element can be associated with a wavelength. This is done for each sample measurement. 2 Reference Data Collection Process (Second Step) This state is the state shown in FIG. 4B, and the container 3a is held in the retracted state with respect to the measurement unit 30 as in the above process. There is nothing in the measuring unit 30. on the other hand,
The rotating disk 20 rotates so that the reference portion 20b moves to the optical axis P.
Take the state of being located above. Then, when the measurement light beam is emitted, the light beam that has passed through the reference portion 20b is made reference light by passing through a reference (frosted glass or the like) that is in the measurement state (temperature), and the reference information Rd is obtained. can get. 3 Dark Information Collection Process (Third Stage) This state is the state shown in FIG. 4C, in which the rotating disk 20 rotates and the dark current measuring shield 20c is positioned on the optical axis. Therefore, in this state, light does not enter the array type light receiving element 7, and the dark information D in the measurement state is obtained. On the other hand, the container 3 a in which the sample is filled in the container 3 a is moved to the measuring unit 30. 4. Wavelength calibration processing step After the above steps are completed, wavelength calibration is performed in the processing means 70. 5 Sample Data Collection Process (Fourth Stage) This state is the state shown in FIG. 4D, in which the container 3a is positioned in the measurement unit 30, and the measurement light flux passes through the sample. Become. On the other hand, the rotary disc 20 is rotated so that the cutout portion 20d is positioned on the optical axis P. Therefore, the sample information Sd is obtained by receiving the transmitted light that has been transmitted through the sample by being irradiated with the measurement light beam.
Can be obtained. 6 Process of calculating absorbance and other spectral data From the sample information Sd, the reference information Rd, and the dark information D obtained in the above process, the absorbance d is obtained according to the following formula. Absorbance d = log ((Rd-D) / (Sd-D)) Further, from the above-mentioned absorbance, spectrum-related information such as a spectrum and a second derivative in the wavelength region of the spectrum is obtained and output. Further, the component value of each component (water, protein, etc.) in the sample is obtained using the second derivative of the spectrum at a plurality of specific wavelengths. In this calculation, in the spectroscopic analyzer of the present application, wavelength calibration,
Since the reference measurement and the dark output measurement are performed for each measurement, the component amounts can be accurately specified. Therefore, the reliability of measurement is improved.

【0015】〔別実施例〕 (イ) 先の実施例では、光源1にタングステン−ハロ
ゲン電球を用いているが、これに限定するものではな
く、サンプルS及び測定目的に応じて適宜設定可能であ
り、赤外線全域で連続スペクトル放射を持つ光源1とし
ての熱放射体(黒体炉)や、その他水銀灯、Ne放電管
等の光源1や、ラマン散乱を測定するための単色光を発
光するレーザ等を用いることができ、その構成も適宜変
更可能である。 (ロ) さらに、上記の実施例においては、サンプルS
を透過してくる測定用光線束によって分析をおこなった
が、これを反射光としてもよい。
[Other Embodiments] (a) In the above embodiment, the tungsten-halogen bulb is used as the light source 1, but the light source 1 is not limited to this, and can be set appropriately according to the sample S and the measurement purpose. Yes, a thermal radiator (black body furnace) as a light source 1 having continuous spectrum emission in the entire infrared region, other light sources 1 such as a mercury lamp and a Ne discharge tube, a laser emitting a monochromatic light for measuring Raman scattering, etc. Can be used, and its configuration can be appropriately changed. (B) Further, in the above embodiment, the sample S
Although the analysis was carried out using the measuring light flux passing through, the reflected light may be used.

【0016】(ハ) 上記の実施例においては、切換手
段に回転円板を備えて、これを回転させることにより各
段階を経るようにしたが、図5に示すように、単に平板
状の部材22に各部位(波長校正部20a、リファレン
ス部20b、暗電流測定用遮蔽部20c、切欠き部20
d)を備えておき、この部材22を光軸Pに対して移動
させることにより測定用光線束の状態を決定するものと
してもよい。 (ニ) さらに、上記の実施例においては、第三段階に
おいてサンプル容器を測定部に移動させたが、これは単
に第四段階でサンプルSが測定部30にある状態を実現
できていればよい。これを実行する手段を出退手段と呼
ぶ。
(C) In the above embodiment, the switching means is provided with the rotary disk, and each step is performed by rotating the rotary disk. However, as shown in FIG. 5, it is simply a flat member. Reference numerals 22 to 22 (wavelength calibration unit 20a, reference unit 20b, dark current measurement shield unit 20c, cutout unit 20).
d) may be provided, and the state of the measuring light beam bundle may be determined by moving the member 22 with respect to the optical axis P. (D) Further, in the above-mentioned embodiment, the sample container is moved to the measuring section in the third step, but this is merely required to realize the state where the sample S is in the measuring section 30 in the fourth step. . The means for executing this is called the leaving means.

【0017】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。
It should be noted that reference numerals are added to the claims for convenience of comparison with the drawings, but the present invention is not limited to the configurations of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】分光分析装置の構成を示す図FIG. 1 is a diagram showing a configuration of a spectroscopic analyzer.

【図2】回転円板の構成を示す図FIG. 2 is a diagram showing the configuration of a rotating disk.

【図3】校正光線束の状態を示す図FIG. 3 is a diagram showing a state of a calibration ray bundle.

【図4】各測定状態に於ける光源、サンプル容器、回転
円板、分光分析部の位置関係を示す図
FIG. 4 is a diagram showing a positional relationship among a light source, a sample container, a rotating disk, and a spectroscopic analysis unit in each measurement state.

【図5】切換手段の別構成例を示す図FIG. 5 is a diagram showing another configuration example of the switching means.

【符号の説明】[Explanation of symbols]

1 光源 6 分光手段 7 アレイ型受光素子 10 制御手段 20a 波長校正部 20b リファレンス部 20c 暗電流測定用遮蔽部 20d 切欠き部 30a 出退手段 200 切換手段 DESCRIPTION OF SYMBOLS 1 light source 6 spectroscopic means 7 array type light receiving element 10 control means 20a wavelength calibration section 20b reference section 20c dark current measurement shield section 20d cutout section 30a exit / return means 200 switching means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 測定対象のサンプル(S)が出退自在な
測定部(30)に測定用光線束を照射する光源(1)
と、前記測定部(30)を透過もしくは前記測定部(3
0)より反射してくる測定用光線束を分光する分光手段
(6)と、分光された前記測定用光線束を受光するアレ
イ型受光素子(7)とを備えた分光分析装置であって、 前記測定用光線束の光路上で前記光源(1)と前記分光
手段(6)との間に、前記測定用光線束を透過させて校
正光線束とする校正フィルタを備えた波長校正部(20
a)と、前記測定用光線束を透過させてリファレンス光
線束とするリファレンス部(20b)と、前記測定用光
線束を遮断する暗電流測定用遮蔽部(20c)と前記測
定用光線束をそのまま通過させる切欠き部(20d)と
を備えた切換手段(200)を設け、 前記切換手段(200)をサンプル測定毎に、前記測定
用光線束が前記波長校正部(20a)を透過する第一段
階から、前記リファレンス部(20b)を透過する第二
段階、前記暗電流測定用遮蔽部(20c)により遮断さ
れる第三段階、前記切欠き部(20d)をそのまま通過
される第四段階の記載順に切り換える制御手段(10)
を設け、前記第四段階において前記サンプルを前記測定
部に配設する出退手段(30a)を設け、サンプル測定
毎に波長校正をおこないながら分光分析をおこなう分光
分析装置。
1. A light source (1) for irradiating a measuring light beam for measurement onto a measuring section (30) through which a sample (S) to be measured can freely move.
Through the measuring part (30) or the measuring part (3
0) A spectroscopic analysis device comprising a spectroscopic unit (6) for spectroscopically measuring the measuring light flux reflected from the measuring light flux, and an array type light receiving element (7) for receiving the spectroscopically measuring light flux. A wavelength calibrating unit (20) provided with a calibration filter for transmitting the measurement light flux into a calibration light flux between the light source (1) and the spectroscopic means (6) on the optical path of the measurement light flux.
a), a reference unit (20b) that transmits the measurement light beam bundle to form a reference light beam bundle, a dark current measurement shield unit (20c) that blocks the measurement light beam bundle, and the measurement light beam bundle as they are. A switching means (200) having a cutout portion (20d) for passing therethrough is provided, and the measurement light flux is transmitted through the wavelength calibration portion (20a) every time the switching means (200) performs sample measurement. From the step, the second step of passing through the reference part (20b), the third step of being blocked by the dark current measuring shield part (20c), and the fourth step of passing through the cutout part (20d) as they are. Control means for switching in the order of description (10)
A spectroscopic analysis device for performing spectroscopic analysis while calibrating the wavelength for each sample measurement by providing an exiting / retracting means (30a) for disposing the sample in the measuring section in the fourth step.
JP16762593A 1993-07-07 1993-07-07 Device for spectroscopic analysis Pending JPH0720042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16762593A JPH0720042A (en) 1993-07-07 1993-07-07 Device for spectroscopic analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16762593A JPH0720042A (en) 1993-07-07 1993-07-07 Device for spectroscopic analysis

Publications (1)

Publication Number Publication Date
JPH0720042A true JPH0720042A (en) 1995-01-24

Family

ID=15853264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16762593A Pending JPH0720042A (en) 1993-07-07 1993-07-07 Device for spectroscopic analysis

Country Status (1)

Country Link
JP (1) JPH0720042A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327535A (en) * 1995-06-02 1996-12-13 Meidensha Corp Optical concentration measurement device
JP2002245464A (en) * 2001-02-16 2002-08-30 Ricoh Co Ltd Device and method for image evaluation, and program making computer evaluate image
JP2011149833A (en) * 2010-01-22 2011-08-04 Hitachi High-Technologies Corp Spectrophotometer, and light source changeover method of the same
WO2014091571A1 (en) * 2012-12-12 2014-06-19 日立コンシューマエレクトロニクス株式会社 Optical-information recording/playback device and optical-information recording/playback method
KR20180048724A (en) * 2015-08-31 2018-05-10 메틀러 토레도 게엠베하 Apparatus and method for performing light absorption measurements on test samples and compliance measurements on reference samples
CN112461790A (en) * 2020-11-17 2021-03-09 天津国阳科技发展有限公司 Diffuse reflection spectrum detection device and detection method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327535A (en) * 1995-06-02 1996-12-13 Meidensha Corp Optical concentration measurement device
JP2002245464A (en) * 2001-02-16 2002-08-30 Ricoh Co Ltd Device and method for image evaluation, and program making computer evaluate image
JP2011149833A (en) * 2010-01-22 2011-08-04 Hitachi High-Technologies Corp Spectrophotometer, and light source changeover method of the same
WO2014091571A1 (en) * 2012-12-12 2014-06-19 日立コンシューマエレクトロニクス株式会社 Optical-information recording/playback device and optical-information recording/playback method
US9761263B2 (en) 2012-12-12 2017-09-12 Hitachi Consumer Electronics Co., Ltd. Optical information recording and reproducing device, optical information recording and reproducing method
KR20180048724A (en) * 2015-08-31 2018-05-10 메틀러 토레도 게엠베하 Apparatus and method for performing light absorption measurements on test samples and compliance measurements on reference samples
CN112461790A (en) * 2020-11-17 2021-03-09 天津国阳科技发展有限公司 Diffuse reflection spectrum detection device and detection method
CN112461790B (en) * 2020-11-17 2023-04-07 天津国阳科技发展有限公司 Diffuse reflection spectrum detection device and detection method

Similar Documents

Publication Publication Date Title
US4966458A (en) Optical system for a multidetector array spectrograph
JP2003513236A (en) Built-in optical probe for spectroscopic analysis
US4875773A (en) Optical system for a multidetector array spectrograph
US2823577A (en) Multiple slit spectrograph for direct reading spectrographic analysis
EP1880193A1 (en) Spectrophotometer
EP3940357A1 (en) System and method for improving calibration transfer between multiple raman analyzer installations
JPH0720042A (en) Device for spectroscopic analysis
JP2010048640A (en) Absolute spectroradiometer
KR101381618B1 (en) Multi-gas analysis device using non dispersion ultraviolet absorption spectrophotometer
EP0176826A2 (en) Method and apparatus for dual-beam spectral transmission measurements
JP3140297B2 (en) Spectrometer
JP3923011B2 (en) Fruit and vegetable quality evaluation equipment
JP2989459B2 (en) Spectrometer
JPH0712718A (en) Spectral analysis device
JPH0829335A (en) Rice analyzing and evaluating apparatus
JP3012450B2 (en) Spectrometer
JPH06241900A (en) Spectrochemical analyzer
JP4486805B2 (en) Spectroscopic analyzer
JPH07218441A (en) Spectrochemical analyzer
JPH0829336A (en) Taste value measuring apparatus
JPH0720043A (en) Device for spectroscopic analysis
JPH06313754A (en) Constituent quantitative analysis device and taste evaluation device
JPS60117118A (en) Spectrophotometer
JPH06109538A (en) Spectroscopic analyzer
JP3847285B2 (en) Spectroscopic analyzer