JPH07198638A - Combustibility testing device - Google Patents

Combustibility testing device

Info

Publication number
JPH07198638A
JPH07198638A JP33523893A JP33523893A JPH07198638A JP H07198638 A JPH07198638 A JP H07198638A JP 33523893 A JP33523893 A JP 33523893A JP 33523893 A JP33523893 A JP 33523893A JP H07198638 A JPH07198638 A JP H07198638A
Authority
JP
Japan
Prior art keywords
sample
heater
combustion
heat
shield plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP33523893A
Other languages
Japanese (ja)
Inventor
Kazumi Ito
一己 伊藤
Shin Yoshida
伸 吉田
Kenji Kondo
健二 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP33523893A priority Critical patent/JPH07198638A/en
Publication of JPH07198638A publication Critical patent/JPH07198638A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To carry out a combustibility test which can simulate an actual fire condition, by providing supply energy control means for controlling energy fed to heating means. CONSTITUTION:A sample holder 2 on which a sample 1 is set, and a load cell 3 are provided in the lower part of a heater 4, and a heat-shield plate 5 is provided between the sample 1 and the heater 5 which is connected to a power source 7 through a control part 6. Further, an exhaust hood 8 and an exhaust duct 9 or sucking combustion gas generated from the sample and discharging the same outside, are provided in the upper part of the heater 4. Further, a smoke density measuring part 12, an exhauster 13, and the like are provided in the duct 9. Thus combustion gas is sucked into the duct 9 through a circular hole formed in the center part of the shield plate 5, and accordingly, it can be analyzed. Further, radiated energy is applied to the sample 1 set on the holder 2 while it is changed even during combustion, and accordingly, the sample 1 is ignited and burnt so as to measure a heat generating rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は材料の燃焼性の評価に好
適な燃焼性試験装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flammability test apparatus suitable for evaluating flammability of materials.

【0002】[0002]

【従来の技術】従来より、材料の燃焼性や難燃性を評価
するために様々な燃焼性試験装置が使用されている。な
かでも、コーンカロリメータは、試料が燃焼する際の酸
素消費量などから、その材料の発熱速度や発熱量などを
測定するもので、燃焼に伴う重量減少や発煙量等の多く
のデータを同時に測定することが可能で、材料の燃焼特
性の多面的かつ定量的な把握ができることから広く用い
られつつある。
2. Description of the Related Art Conventionally, various flammability test devices have been used to evaluate the flammability and flame retardancy of materials. Among them, the cone calorimeter measures the heat generation rate and heat generation amount of the material from the oxygen consumption amount when the sample burns, and simultaneously measures many data such as weight loss and smoke generation amount due to combustion. It is being widely used because it is possible to measure the combustion characteristics of materials in a multi-faceted and quantitative manner.

【0003】このコーンカロリメータは、一般に、装置
本体と、ガス分析部、およびデータ処理部とから構成さ
れ、装置本体は、試料を載置する試料ホルダと、この試
料ホルダに載置された試料を加熱して着火燃焼させるた
めのコーン型の加熱ヒータからなる加熱手段と、加熱ヒ
ータに電力を供給する手段と、試料の燃焼に伴う発熱量
を測定することのできる発熱量測定手段とから構成され
ている。発熱量測定は、ガスサンプラによりサンプリン
グされた排気ガス等を分析して求められる。すなわち、
排気ガス等をガス分析部で分析して酸素濃度などを測定
し、その測定値を基に発熱速度や発熱量などがデータ処
理部で算出される。なお、ガスサンプラは、試料から発
生する燃焼ガスを吸引し外部へ排出するための排気フー
ド、排気ダクト、排風機を備えた排気機構に組み込まれ
ている。コーンカロリメータには、その他、排気ダクト
内の煙濃度や、燃焼に伴う試料の重量減少などが測定で
きるように、排気ダクトに煙濃度測定装置が、また、試
料ホルダの下部にロードセルが設けられている。
This cone calorimeter is generally composed of an apparatus body, a gas analysis section, and a data processing section. The apparatus body has a sample holder on which a sample is placed and a sample placed on the sample holder. The heating means is composed of a cone type heater for heating and igniting and burning, a means for supplying electric power to the heating heater, and a calorific value measuring means capable of measuring the calorific value associated with the combustion of the sample. ing. The calorific value is determined by analyzing the exhaust gas sampled by the gas sampler. That is,
The gas analysis unit analyzes the exhaust gas and the like to measure the oxygen concentration and the like, and the data processing unit calculates the heat generation rate and the heat generation amount based on the measured values. The gas sampler is incorporated in an exhaust mechanism including an exhaust hood for sucking the combustion gas generated from the sample and discharging it to the outside, an exhaust duct, and an exhaust fan. In addition, the cone calorimeter is equipped with a smoke concentration measuring device in the exhaust duct and a load cell below the sample holder so that the smoke concentration in the exhaust duct and the weight reduction of the sample due to combustion can be measured. There is.

【0004】このコーンカロリメータを用いて材料の燃
焼性は、たとえばつぎのような方法で測定される。試料
を試料ホルダに載せ、事前に設定されたヒータ輻射エネ
ルギーにより試料を自然発火させる。発火燃焼に伴う、
酸素、二酸化炭素、−酸化炭素濃度の変化や、ダクトの
排気温度・差圧および煙濃度、試料の重量変化等を同時
に測定する。これらのデータをデータ処理部で演算処理
して材料の発熱速度や発熱量等の燃焼に関する諸特性を
得ている。
The flammability of a material is measured by the following method using this cone calorimeter. The sample is placed on the sample holder, and the sample is spontaneously ignited by the preset heater radiation energy. Accompanying ignition combustion
Simultaneously measure changes in oxygen, carbon dioxide, and -carbon oxide concentrations, exhaust temperature and differential pressure in ducts, smoke concentrations, and sample weight changes. These data are arithmetically processed by a data processing unit to obtain various characteristics related to combustion such as heat generation rate and heat generation amount of the material.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
燃焼性試験装置では、事前に設定されたヒータ輻射エネ
ルギーにより発火燃焼が始まると、そのヒータ輻射エネ
ルギーを変化させることができなかった。このため、実
際の火災のように経時的に輻射量が変化する状態での燃
焼を模擬することができないという問題があった。
However, in the conventional flammability test device, when ignition combustion starts with the preset heater radiation energy, the heater radiation energy cannot be changed. For this reason, there is a problem in that it is not possible to simulate combustion in a state where the amount of radiation changes with time, such as an actual fire.

【0006】また、材料の燃焼性を特徴づける性質とし
て、着火するの必要な最低量の輻射エネルギー量が重要
となってきている。従来、この特性はヒータ輻射エネル
ギー量を変えて発熱量測定を 3〜5 回繰り返して行い、
得られたデータを外挿することにより求めていた。従来
の測定結果を図3に示す。また、図3において、グラフ
の傾きが大きいと少量のヒータ輻射エネルギーの増加で
より燃焼しやすくなるため、グラフの傾きから燃焼性の
程度も判断することができる。しかし、発熱量測定を 3
〜5 回繰り返して行うことは多数回の測定を行わねばな
らず、燃焼性試験が繁雑になるという問題があった。
Further, as a property that characterizes the combustibility of a material, the minimum amount of radiant energy required for ignition has become important. Conventionally, this characteristic is that the amount of radiant energy of the heater is changed and the calorific value is measured 3 to 5 times.
It was calculated by extrapolating the obtained data. The conventional measurement result is shown in FIG. Further, in FIG. 3, when the slope of the graph is large, the amount of heater radiant energy increases a small amount, so that combustion becomes easier, and therefore the degree of flammability can be determined from the slope of the graph. However, the calorific value measurement
Repeating up to 5 times requires a large number of measurements, and the combustibility test becomes complicated.

【0007】また、材料の燃焼特性の一つに自己燃焼性
(燃焼継続性)がある。この自己燃焼性を求めるための
試験は、材料に所要の輻射熱を加えて着火させた後、直
ちに熱源を取り去り、その後自己発熱のみで燃焼が継続
するか否かを調べるものである。しかし、輻射熱により
材料を着火させる燃焼性試験においては、加熱ヒータの
スイッチをOFFにしても直ちに輻射熱を完全遮断でき
ないため、材料の自己燃焼性を調べることが困難である
という問題があった。
Further, one of the combustion characteristics of materials is self-combustibility (combustion continuity). The test for obtaining the self-combustibility is to examine whether or not the combustion is continued only by self-heating after removing the heat source immediately after the material is ignited by applying required radiant heat. However, in the flammability test in which the material is ignited by the radiant heat, there is a problem that it is difficult to examine the self-combustibility of the material because the radiant heat cannot be completely shut off immediately even when the heater switch is turned off.

【0008】本発明は、このような課題に対処するため
になされたもので、実際の火災に模擬した試験ができ、
また短い測定時間で種々の燃焼特性を評価でき、かつ自
己燃焼性を容易に測定することのできる燃焼性試験装置
を提供することを目的とする。
The present invention has been made in order to cope with such a problem, and a test simulating an actual fire can be performed.
It is another object of the present invention to provide a flammability test device capable of evaluating various combustion characteristics in a short measurement time and easily measuring self-combustibility.

【0009】[0009]

【課題を解決するための手段および作用】本発明の燃焼
性試験装置は、試料を着火燃焼させることのできる加熱
手段と、この加熱手段に供給するエネルギー量を制御す
ることのできる供給エネルギー制御手段と、試料の燃焼
に伴う発熱量を測定することのできる発熱量測定手段
と、加熱手段と試料との間に進退機構を備えた熱遮蔽手
段とを有することを特徴とする。
The flammability test apparatus of the present invention comprises heating means capable of igniting and burning a sample, and supply energy control means capable of controlling the amount of energy supplied to the heating means. And a heat generation amount measuring means capable of measuring the heat generation amount due to the combustion of the sample, and a heat shielding means having an advancing and retracting mechanism between the heating means and the sample.

【0010】本発明に係わる加熱手段は、輻射熱によっ
て供試試料を発火させることのできる装置をいい、この
機能を有すれば、とくに制限なく加熱装置を使用するこ
とができる。たとえば電熱ヒータ、シーズ線ヒータ、パ
ネルヒータ、コーン型ヒータや赤外線ヒータ等を挙げる
ことができる。供試試料は試料ホルダーに載置され、加
熱手段に対して下位側にまたは側位側に配置される。供
試試料がヒータにより加熱され、輻射エネルギーが着火
に必要な最低量の輻射エネルギー量をこえると、試料が
着火し燃焼が開始される。
The heating means according to the present invention means an apparatus capable of igniting a sample under test by radiant heat. As long as it has this function, the heating apparatus can be used without particular limitation. For example, an electric heater, a sheath wire heater, a panel heater, a cone type heater, an infrared heater, etc. can be mentioned. The sample to be tested is placed on the sample holder and is arranged on the lower side or the side of the heating means. When the sample under test is heated by the heater and the radiant energy exceeds the minimum amount of radiant energy required for ignition, the sample is ignited and combustion is started.

【0011】本発明に係わる供給エネルギー制御手段
は、上述の加熱手段に輻射熱を発生させるエネルギーを
供給するとともに、そのエネルギーを制御することので
きる装置をいう。たとえば、各種ヒータに電力を供給す
ることのできる装置であり、かつその電力量を経時的に
調節することのできるプログラム制御機構を備えた装置
であればよい。プログラム制御機構としては、たとえば
ヒータのPID制御装置などを挙げることができる。こ
のような制御装置により、電力供給量を一定値だけでな
く、所定の割合で増加させたり、減少させたり任意にプ
ログラムすることができる。プログラム制御は、燃焼開
始時に至る迄だけでなく、燃焼中も輻射エネルギーを所
定の割合で増減または一定値に維持するプログラムを組
むことができる。その結果、燃焼途中で試料に供給され
る輻射エネルギー量を制御することができるので、実際
の火災を模擬した状態での燃焼試験を行うことができ
る。
The supply energy control means according to the present invention means an apparatus capable of supplying energy for generating radiant heat to the above-mentioned heating means and controlling the energy. For example, any device that can supply power to various heaters and that has a program control mechanism that can adjust the amount of power over time may be used. Examples of the program control mechanism include a PID control device for a heater. With such a control device, the power supply amount can be programmed not only at a fixed value but also at a predetermined rate, such as increasing or decreasing. In the program control, not only until the start of combustion, but also during combustion, a program for increasing or decreasing the radiant energy at a predetermined rate or maintaining a constant value can be set up. As a result, the amount of radiant energy supplied to the sample during combustion can be controlled, so that a combustion test can be performed in a state simulating an actual fire.

【0012】また、試料が着火し燃焼が開始される最低
輻射エネルギー量の近傍で微少量づつ電力量を段階的に
上昇させることにより、着火するの必要な最低量の輻射
エネルギー量を1 回の測定で求めることができる。
Further, the minimum amount of radiant energy required to ignite is set by increasing the amount of electric power in small steps in the vicinity of the minimum amount of radiant energy at which the sample ignites and starts combustion. It can be determined by measurement.

【0013】さらに、燃焼を化学反応の 1種とみなすこ
とができれば、輻射エネルギー量を一定割合で増加させ
た時の発熱量や重量減少量を測定することにより、公知
の COATS-REDFERN法、 TOOP-BROID 法または小沢法等を
用いて燃焼時の活性化エネルギーを測定でき、材料の燃
焼性を評価することができる。
Further, if combustion can be regarded as one kind of chemical reaction, by measuring the calorific value and the weight loss when the amount of radiant energy is increased at a constant rate, the known COATS-REDFERN method, TOOP -The activation energy during combustion can be measured using the BROID method or the Ozawa method, and the combustibility of materials can be evaluated.

【0014】本発明に係わる発熱量測定手段は、燃焼試
料から発生する燃焼ガス中より、酸素濃度、二酸化炭素
濃度、−酸化炭素濃度などを測定することのできる装置
をいう。たとえば、燃焼ガスを吸引し外部へ排出するた
めの排気フード、排気ダクト、排風機を備えた排気機構
および排気ガス等を分析するガス分析部等から構成され
る。
The calorific value measuring means according to the present invention means an apparatus capable of measuring oxygen concentration, carbon dioxide concentration, carbon dioxide concentration and the like from the combustion gas generated from the combustion sample. For example, it is composed of an exhaust hood for sucking the combustion gas and discharging it to the outside, an exhaust duct, an exhaust mechanism including an exhaust fan, a gas analysis unit for analyzing the exhaust gas and the like.

【0015】発熱量は、燃焼ガス中の酸素濃度、二酸化
炭素濃度などから (I)式により求められる発熱速度を燃
焼時間で積分することにより求めることができる。
The calorific value can be obtained by integrating the heat generation rate obtained from the equation (I) from the oxygen concentration and carbon dioxide concentration in the combustion gas with the combustion time.

【0016】[0016]

【数1】 本発明に係わる熱遮蔽手段は、加熱手段よりの輻射熱が
供試試料に到達することを遮断できる装置をいい、無機
材料の断熱材による熱遮蔽板などを挙げることができ
る。この熱遮蔽板により自己燃焼性(燃焼継続性)試験
を容易に行うことができる。この熱遮蔽板は進退機構を
備えており、試料が加熱手段の輻射熱により着火するま
では、加熱手段と試料との間に配置されない。一方、供
試試料が着火した後は、加熱手段と試料との間に配置さ
れヒータ輻射を断つことができる。その結果、自己燃焼
性の有無を測定できる。着火すると発熱速度が急激に上
昇するので、この進退機構を発熱量測定手段と連動させ
自己燃焼性の試験を自動的に行うこともできる。なお、
供試試料が加熱手段に対して下位側に配置されている場
合は、熱遮蔽板の中央に、たとえば円形のくりぬき部分
を設ける。このくりぬき部分を通じて燃焼ガスがダクト
へ吸引され、発熱量などを測定することができる。
[Equation 1] The heat-shielding means according to the present invention is an apparatus capable of blocking the radiant heat from the heating means from reaching the sample under test, and examples thereof include a heat-shielding plate made of an inorganic heat insulating material. With this heat shield plate, a self-combustibility (combustion continuity) test can be easily performed. This heat shield plate is provided with an advancing / retreating mechanism, and is not arranged between the heating means and the sample until the sample is ignited by the radiant heat of the heating means. On the other hand, after the test sample is ignited, the heater radiation can be cut off by being arranged between the heating means and the sample. As a result, the presence or absence of self-combustibility can be measured. When ignited, the heat generation rate rises sharply, so it is possible to automatically perform a self-combustibility test by linking this advance / retreat mechanism with the calorific value measuring means. In addition,
When the sample under test is arranged on the lower side of the heating means, a circular hollow part, for example, is provided at the center of the heat shield plate. Combustion gas is sucked into the duct through the hollow portion, and the amount of heat generation can be measured.

【0017】[0017]

【実施例】以下、本発明の燃焼性試験装置を図面により
説明する。図1は本発明の燃焼性試験装置を示す。試料
1を載置する試料ホルダ2およびロードセル3がコーン
型の加熱ヒータ4の下部に設けられている。また試料1
と加熱ヒータ4と間に熱遮蔽板5が設けられている。加
熱ヒータ4はPID制御部6を介して電源部7に接続さ
れている。加熱ヒータ4の上部に、試料1から発生する
燃焼ガスを吸引し外部へ排出するための排気フード8、
排気ダクト9が設けられている。また、燃焼ガス中の酸
素濃度、二酸化炭素濃度などを排気ダクト9の途中で連
続的にサンプリングして分析するガスサンプラ10およ
びガス分析部11が設けられている。また、煙濃度測定
部12および排風機13などが排気ダクト9に設けられ
ている。なお、PID制御部6やガス分析部11などを
総合して制御する装置制御部およびデータ処理部を備え
ている(図示を省略)。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A flammability test apparatus of the present invention will be described below with reference to the drawings. FIG. 1 shows a flammability test apparatus of the present invention. A sample holder 2 on which a sample 1 is placed and a load cell 3 are provided below a cone-shaped heater 4. Sample 1
A heat shield plate 5 is provided between the heater 4 and the heater 4. The heater 4 is connected to the power supply unit 7 via the PID control unit 6. An exhaust hood 8 for sucking the combustion gas generated from the sample 1 and discharging it to the outside above the heater 4.
An exhaust duct 9 is provided. Further, a gas sampler 10 and a gas analysis unit 11 for continuously sampling and analyzing the oxygen concentration, the carbon dioxide concentration, etc. in the combustion gas in the middle of the exhaust duct 9 are provided. Further, the smoke concentration measuring unit 12 and the exhaust fan 13 are provided in the exhaust duct 9. An apparatus control unit and a data processing unit that comprehensively control the PID control unit 6, the gas analysis unit 11, and the like are provided (not shown).

【0018】本発明に係わる加熱ヒータ4、熱遮蔽板
5、試料1の配置の詳細を図2に示す。なお、図2
(a)は試料1が加熱ヒータ4に対して下位側に配置さ
れている場合の例であり、図2(b)は図2(a)に示
す熱遮蔽板5の平面図である。熱遮蔽板5の中央には円
形の孔14が設けられている。この円形の孔14を通過
して燃焼ガスがダクトへ吸引され、そのガス分析をする
ことができる。また図2(c)は試料1が加熱ヒータ4
に対して側位側に配置されている場合の例であり、図2
(d)は図2(c)に示す熱遮蔽板5の平面図である。
図2(c)および図2(d)の場合にあっては、熱遮蔽
板5を用いても燃焼ガスはダクトへ吸引されるので円形
の孔14は必要ない。
The details of the arrangement of the heater 4, the heat shield plate 5, and the sample 1 according to the present invention are shown in FIG. Note that FIG.
2A is an example of the case where the sample 1 is arranged on the lower side of the heater 4, and FIG. 2B is a plan view of the heat shield plate 5 shown in FIG. 2A. A circular hole 14 is provided in the center of the heat shield plate 5. The combustion gas is sucked into the duct through the circular hole 14, and the gas can be analyzed. Further, in FIG. 2C, the sample 1 is the heater 4
2 is an example in the case of being arranged on the lateral side with respect to FIG.
FIG. 2D is a plan view of the heat shield plate 5 shown in FIG.
In the case of FIGS. 2C and 2D, even if the heat shield plate 5 is used, since the combustion gas is sucked into the duct, the circular hole 14 is not necessary.

【0019】この燃焼性試験装置を用いて高分子材料の
燃焼特性を試験する方法について説明する。厚さ 6mmの
プレスシート( 100mm×100mm )状の低密度ポリエチレ
ン試料を試料ホルダに載せ、40kW/m2 から80kW/m2 の範
囲で燃焼中も変化させながら輻射エネルギーを供給し試
料を着火燃焼させ発熱速度を測定した。単一の輻射エネ
ルギーを供給した場合と同様に発熱速度および発熱量を
測定することができた。
A method for testing the combustion characteristics of a polymer material using this flammability test apparatus will be described. A 6 mm thick pressed sheet (100 mm x 100 mm) low density polyethylene sample is placed on the sample holder, and radiant energy is supplied while changing during combustion in the range of 40 kW / m 2 to 80 kW / m 2 to ignite and burn the sample. The exothermic rate was measured. The heat generation rate and the heat generation amount could be measured in the same manner as when a single radiant energy was supplied.

【0020】つぎに同一の低密度ポリエチレン試料を使
用して、20kW/m2 の輻射エネルギーを 1時間供給したが
試料の着火は生じなかった。その後、1.67kW/m2 /min.
の割合で輻射エネルギーを上昇させたところ、22kW/m2
に輻射エネルギーが到達したときに着火が生じた。この
値は従来の発熱量測定を 3〜5 回繰り返して行う従来方
法により求めた図3に示す値と同一であった。したがっ
て、着火するの必要な最低量の輻射エネルギー量を1 回
の測定で求めることができた。
Next, using the same low-density polyethylene sample, radiant energy of 20 kW / m 2 was supplied for 1 hour, but no ignition of the sample occurred. After that, 1.67kW / m 2 / min.
When the radiant energy was increased at a rate of 22 kW / m 2
Ignition occurred when radiant energy reached. This value was the same as the value shown in FIG. 3 obtained by the conventional method in which the conventional calorific value measurement was repeated 3 to 5 times. Therefore, the minimum amount of radiant energy required to ignite could be obtained in one measurement.

【0021】また、厚さ 6mmのプレスシート( 100mm×
100mm )状の低密度ポリエチレンおよびノンハロゲン難
燃ポリエチレン試料を用いて、それぞれ30kW/m2 、40kW
/m2、50kW/m2 の輻射エネルギーを供給して着火した直
後に熱遮蔽板を用いて輻射熱を遮断した場合と、熱遮蔽
板を用いなかった場合についての燃焼状況を調べた。そ
の結果を表1に示す。
A press sheet having a thickness of 6 mm (100 mm ×
30 kW / m 2 and 40 kW using low density polyethylene and halogen-free flame-retardant polyethylene samples of 100 mm)
Combustion conditions were investigated when the radiant heat was blocked by using the heat shield plate immediately after ignition by supplying radiant energy of / m 2 and 50 kW / m 2 and when the heat shield plate was not used. The results are shown in Table 1.

【0022】[0022]

【表1】 表1の結果より、低密度ポリエチレンは熱遮蔽板を用い
て輻射熱を遮断した後においても燃焼を続けており、自
己燃焼性を有することが認められた。一方、ノンハロゲ
ン難燃ポリエチレンは輻射熱を遮断することにより燃焼
を停止し、自己燃焼性を有さない、すなわち難燃性に優
れていることが認められた。
[Table 1] From the results shown in Table 1, it was confirmed that the low-density polyethylene continued to burn even after the radiant heat was blocked by using the heat shield plate, and had a self-burning property. On the other hand, it was confirmed that non-halogen flame-retardant polyethylene stops combustion by blocking radiant heat and has no self-combustibility, that is, it has excellent flame retardancy.

【0023】[0023]

【発明の効果】本発明の燃焼性試験装置は、加熱手段に
供給するエネルギー量を制御することのできる供給エネ
ルギー制御手段を有するので、実際の火災状況に模擬し
た燃焼性試験を行うことができる。
Since the flammability test apparatus of the present invention has a supply energy control means capable of controlling the amount of energy supplied to the heating means, it is possible to perform a flammability test simulating an actual fire situation. .

【0024】また、供給エネルギーを制御することによ
り、着火するの必要な最低量の輻射エネルギー量を容易
に測定することができる。
Also, by controlling the supplied energy, the minimum amount of radiant energy required for ignition can be easily measured.

【0025】さらに、加熱手段と試料との間に進退機構
を備えた熱遮蔽手段を有するので、自己燃焼性(燃焼継
続性)試験を精度よく測定することができる。
Further, since the heat shield means having the advancing / retreating mechanism is provided between the heating means and the sample, the self-combustibility (combustion continuity) test can be accurately measured.

【0026】以上の結果、本発明の燃焼性試験装置は材
料の燃焼性に関する種々の特性を精度よく短時間で容易
に測定できる。
As a result of the above, the flammability test apparatus of the present invention can easily and accurately measure various characteristics relating to the flammability of a material in a short time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の燃焼性試験装置を示す図である。FIG. 1 is a diagram showing a flammability test apparatus of the present invention.

【図2】加熱ヒータ、熱遮蔽板、試料および試料ホルダ
を示す図である。
FIG. 2 is a diagram showing a heater, a heat shield plate, a sample, and a sample holder.

【図3】着火するの必要な最低輻射エネルギー量を測定
するための従来の方法を示す図である。
FIG. 3 shows a conventional method for measuring the minimum amount of radiant energy required to ignite.

【符号の説明】[Explanation of symbols]

1……試料、2……試料ホルダ、3……ロードセル、4
……加熱ヒータ、5……熱遮蔽板、6……PID制御
部、7……電源部、8……排気フード、9……排気ダク
ト、10……ガスサンプラ、11……ガス分析部、12
……煙濃度測定部、13……排風機、14……円形の
孔。
1 ... Sample, 2 ... Sample holder, 3 ... Load cell, 4
...... Heater, 5 ...... Heat shield plate, 6 ...... PID control part, 7 ...... Power supply part, 8 ...... Exhaust hood, 9 ...... Exhaust duct, 10 ...... Gas sampler, 11 ...... Gas analysis part, 12
...... Smoke density measuring unit, 13 ...... Exhaust fan, 14 ...... Circular hole.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年6月10日[Submission date] June 10, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0016】[0016]

【数1】 ここで、 PHR;材料の単位燃焼面積から単位時間当り発生する
熱量(KW/m) A;試料の表面積(m) X0;酸素濃度の初期値 Y0;二酸化炭素濃度の初期値 X1;排ガス中の酸素濃度 Y1;排ガス中の二酸化炭素濃度 Z;排ガス中の一酸化炭素濃度 C;キャリブレーション定数 ΔP;排気ダクト内の差圧 T;排ガスの温度 本発明に係わる熱遮蔽手段は、加熱手段よりの輻射熱が
供試試料に到達することを遮断できる装置をいい、無機
材料の断熱材による熱遮蔽板などを挙げることができ
る。この熱遮蔽板により自己燃焼性(燃焼継続性)試験
を容易に行うことができる。この熱遮蔽板は進退機構を
備えており、試料が加熱手段の輻射熱により着火するま
では、加熱手段と試料との間に配置されない。一方、供
試試料が着火した後は、加熱手段と試料との間に配置さ
れヒータ輻射を断つことができる。その結果、自己燃焼
性の有無を測定できる。着火すると発熱速度が急激に上
昇するので、この進退機構を発熱量測定手段と連動させ
自己燃焼性の試験を自動的に行うこともできる。なお、
供試試料が加熱手段に対して下位側に配置されている場
合は、熱遮蔽板の中央に、たとえば円形のくりぬき部分
を設ける。このくりぬき部分を通じて燃焼ガスがダクト
へ吸引され、発熱量などを測定することができる。
[Equation 1] Here, PHR; calorific value (KW / m 2 ) generated from unit combustion area of material per unit time A; surface area of sample (m 2 ) X0; initial value of oxygen concentration Y0; initial value of carbon dioxide concentration X1; exhaust gas Oxygen concentration in Y1; carbon dioxide concentration in exhaust gas Z; carbon monoxide concentration in exhaust gas C; calibration constant ΔP; differential pressure in exhaust duct T; exhaust gas temperature The heat shield means according to the present invention is a heating means. A device capable of blocking radiant heat from reaching the sample under test, and examples thereof include a heat shield plate made of an inorganic heat insulating material. With this heat shield plate, a self-combustibility (combustion continuity) test can be easily performed. This heat shield plate is provided with an advancing / retreating mechanism, and is not arranged between the heating means and the sample until the sample is ignited by the radiant heat of the heating means. On the other hand, after the test sample is ignited, the heater radiation can be cut off by being arranged between the heating means and the sample. As a result, the presence or absence of self-combustibility can be measured. When ignited, the heat generation rate rises sharply, so it is possible to automatically perform a self-combustibility test by linking this advance / retreat mechanism with the calorific value measuring means. In addition,
When the sample under test is arranged on the lower side of the heating means, a circular hollow part, for example, is provided at the center of the heat shield plate. Combustion gas is sucked into the duct through the hollow portion, and the amount of heat generation can be measured.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 試料を着火燃焼させることのできる加熱
手段と、 前記加熱手段に供給するエネルギー量を制御することの
できる供給エネルギー制御手段と、 前記試料の燃焼に伴う発熱量を測定することのできる発
熱量測定手段と、 前記加熱手段と前記試料との間に進退機構を備えた熱遮
蔽手段とを有することを特徴とする燃焼性試験装置。
1. A heating unit capable of igniting and burning a sample, a supply energy control unit capable of controlling an amount of energy supplied to the heating unit, and a calorific value associated with combustion of the sample. A flammability test apparatus comprising: a calorific value measuring means capable of performing heat generation; and a heat shielding means having an advancing / retreating mechanism between the heating means and the sample.
JP33523893A 1993-12-28 1993-12-28 Combustibility testing device Withdrawn JPH07198638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33523893A JPH07198638A (en) 1993-12-28 1993-12-28 Combustibility testing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33523893A JPH07198638A (en) 1993-12-28 1993-12-28 Combustibility testing device

Publications (1)

Publication Number Publication Date
JPH07198638A true JPH07198638A (en) 1995-08-01

Family

ID=18286297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33523893A Withdrawn JPH07198638A (en) 1993-12-28 1993-12-28 Combustibility testing device

Country Status (1)

Country Link
JP (1) JPH07198638A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6283850B1 (en) 1998-09-29 2001-09-04 Fujitsu Limited Circuit board cabinet
JP2007187598A (en) * 2006-01-16 2007-07-26 Toyo Seiki Seisakusho:Kk Combustion tester
WO2011048980A1 (en) * 2009-10-22 2011-04-28 株式会社東京システムバック Combustion calorimetry system and combustion calorimetry method
CN102262000A (en) * 2010-05-28 2011-11-30 中国市政工程华北设计研究总院 Test experimental system for determining combustion characteristics of gas appliance
CN102323392A (en) * 2011-08-31 2012-01-18 中国科学技术大学 Simulation test device for melting flow combustion behavior of thermoplastic material
CN104764769A (en) * 2015-04-23 2015-07-08 天津商业大学 Multichannel parallel heat release rate test system and test method
JP2015169481A (en) * 2014-03-05 2015-09-28 三菱電機株式会社 combustion calorimetry system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6283850B1 (en) 1998-09-29 2001-09-04 Fujitsu Limited Circuit board cabinet
JP2007187598A (en) * 2006-01-16 2007-07-26 Toyo Seiki Seisakusho:Kk Combustion tester
WO2011048980A1 (en) * 2009-10-22 2011-04-28 株式会社東京システムバック Combustion calorimetry system and combustion calorimetry method
JP2011089881A (en) * 2009-10-22 2011-05-06 Tokyo System Vac:Kk Combustion calorimetry system and combustion calorimetry method
GB2486862A (en) * 2009-10-22 2012-06-27 Tokyo System Vac Inc Combustion calorimetry system and combustion calorimetry method
GB2486862B (en) * 2009-10-22 2013-08-21 Tokyo System Vac Inc Combustion calorimetry system and combustion calorimetry method
CN102262000A (en) * 2010-05-28 2011-11-30 中国市政工程华北设计研究总院 Test experimental system for determining combustion characteristics of gas appliance
CN102323392A (en) * 2011-08-31 2012-01-18 中国科学技术大学 Simulation test device for melting flow combustion behavior of thermoplastic material
JP2015169481A (en) * 2014-03-05 2015-09-28 三菱電機株式会社 combustion calorimetry system
CN104764769A (en) * 2015-04-23 2015-07-08 天津商业大学 Multichannel parallel heat release rate test system and test method

Similar Documents

Publication Publication Date Title
Kashiwagi Experimental observation of radiative ignition mechanisms
Babrauskas et al. Ignitability measurements with the cone calorimeter
Cuevas et al. Flame extinction and burning behaviour of timber under varied oxygen concentrations
EP0965832B1 (en) Method and apparatus for analyzing asphalt content
Witkowski et al. Development of an anaerobic pyrolysis model for fire retardant cable sheathing materials
JPH07198638A (en) Combustibility testing device
Beyer et al. Ignition of explosive atmospheres by small hot particles: Comparison of experiments and simulations
KR101988252B1 (en) System for automatically detecting flame ignition of test sample by infrared ray (ir) heating apparatus, and method for the same
Dreyer et al. Review of heat exposure equipment and in-situ characterisation techniques for intumescent coatings
Zhang et al. Characterization of thermal decomposition and combustion for commercial flame-retardant rubber floor cloth in TG–FTIR and FPA
JP3069114B2 (en) Microwave type incineration analyzer and method, container used therefor, and method for producing the same
US6190917B1 (en) Microwave apparatus and method for analysis of asphalt-aggregate compositions
US3729979A (en) Combustion products generating and metering device
Parker¹ et al. Development of a heat release rate calorimeter at NBS
US5155047A (en) Method and apparatus for measuring and controlling efficiency of a combustion
KR200483769Y1 (en) Apparatus for measuring flame resistance
JP4598977B2 (en) Burning rate measuring device, limit combustion-supporting gas concentration measuring method, and method for handling powdery or granular substances
CN105424748A (en) Cone calorimeter
US3811839A (en) Apparatus for the determination of flammability and smoke density of polymers
Paul Cone calorimeter: Initial experiences of calibration and use
Jaskolkowski et al. The study of time to ignition of woods external heat flux by piloted ignition and autoignition
CN109709144B (en) Improved solid combustion rate testing device and testing method
Brehob et al. Time‐dependent mass loss rate behavior of wall materials under external radiation
Bundy et al. Full-scale flammability measures for electronic equipment
Gong et al. Glowing and piloted flaming ignition of vertical wood exposed to power-law thermal radiation

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010306