JPH07198449A - Liquid level measuring instrument - Google Patents

Liquid level measuring instrument

Info

Publication number
JPH07198449A
JPH07198449A JP34959493A JP34959493A JPH07198449A JP H07198449 A JPH07198449 A JP H07198449A JP 34959493 A JP34959493 A JP 34959493A JP 34959493 A JP34959493 A JP 34959493A JP H07198449 A JPH07198449 A JP H07198449A
Authority
JP
Japan
Prior art keywords
liquid level
liquid
internal resistance
level
potential difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34959493A
Other languages
Japanese (ja)
Inventor
Yoshiaki Saitou
至昭 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP34959493A priority Critical patent/JPH07198449A/en
Publication of JPH07198449A publication Critical patent/JPH07198449A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PURPOSE:To provide an electrode rod type level measuring instrument with a high resolution for a variety of liquids. CONSTITUTION:When the level of a liquid is raised or lowered and it is detected that the liquid surface level reaches a reference level by a reference level detection means, the potential difference between electrodes at that time is obtained. Then, based on the potential difference and liquid surface, an electrical conduction coefficient is calculated where there is no error between the actually measured value of the liquid surface level by an electrical conduction coefficient calculation part 20 and a theoretical value calculated by a liquid surface level calculation means. Then, the internal resistance of a measuring circuit is modified according to a target liquid quality by an internal resistance adjustment part based on the electrical conduction coefficient and the liquid surface level is calculated based on the internal resistance which is modified by the internal resistance adjustment part, thus accurately measuring the liquid surface level.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複数の電極を液体内に
挿入するとともに、その電極間に電圧を印加し、その時
の電極間の電位差等から液面レベルを算出する液面レベ
ル計測装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid level measuring device for inserting a plurality of electrodes into a liquid, applying a voltage between the electrodes, and calculating the liquid level from the potential difference between the electrodes at that time. It is about.

【0002】[0002]

【従来の技術】従来の液面レベル検出装置としては、例
えば図14に示すようなものがある。すなわち、タンク
1内に3本の長さの異なる第1〜第3の電極棒2a、2
b、2cを配置する。そして、一番長い第1の電極棒
(基準電位となる)2aと第2の電極棒2bの間並びに
第1の電極棒2aと第3の電極棒2cとの間にそれぞれ
sin型の交流電圧が印加されている。そして、この状
態でタンク1内に液体3が流入されて、図示するような
液体3の液面3aが第2の電極棒2bの先端と第3の電
極棒2cとの間(レベルLL〜LU)に位置すると、第
1の電極棒2aと第2の電極棒2bとの間は、液体3を
介して導通状態になるが、第1の電極棒2aと第3の電
極棒2cの間は非導通状態のままである。
2. Description of the Related Art As a conventional liquid level detecting device, there is one shown in FIG. 14, for example. That is, three first to third electrode rods 2a, 2 having different lengths are provided in the tank 1.
Place b and 2c. Then, a sin type AC voltage is applied between the longest first electrode rod (which becomes a reference potential) 2a and the second electrode rod 2b and between the first electrode rod 2a and the third electrode rod 2c. Is being applied. Then, in this state, the liquid 3 is flown into the tank 1, and the liquid surface 3a of the liquid 3 as illustrated is between the tip of the second electrode rod 2b and the third electrode rod 2c (levels LL to LU). ), The first electrode rod 2a and the second electrode rod 2b are in a conductive state via the liquid 3, but the first electrode rod 2a and the third electrode rod 2c are connected to each other. It remains non-conducting.

【0003】また、図示の状態から液体3がさらにタン
ク1内に流入してきてその液面3aがレベルLU以上と
なると、第2の電極棒2bと第3の電極棒2cも導通状
態となる。一方逆に図示の状態から液体3がタンク1よ
り流出してその液面3aがレベルLLよりも低くなる
と、第1、第2の電極棒2a、2b間も非導通状態とな
る。
Further, when the liquid 3 further flows into the tank 1 from the state shown in the figure and the liquid level 3a thereof becomes equal to or higher than the level LU, the second electrode rod 2b and the third electrode rod 2c also become conductive. On the other hand, when the liquid 3 flows out of the tank 1 and the liquid level 3a becomes lower than the level LL from the state shown in the figure, the first and second electrode rods 2a and 2b are also non-conductive.

【0004】そして、係る導通/非導通状態の変化にと
もない、各電極棒間の電圧値が大きく変化するため、係
る変化を検出装置(コンパレータ等)4を介して検出
し、オン/オフの液位情報(LLよりも低い、LLとL
Uの間、LUよりも高いの3種類)を出力するようにな
っている。
Since the voltage value between the electrode rods greatly changes in accordance with the change in the conducting / non-conducting state, such a change is detected by the detecting device (comparator or the like) 4 to turn on / off the liquid. Position information (lower than LL, LL and L
During U, three types (higher than LU) are output.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記し
た従来の装置では、以下に示す種々の問題を有してい
る。すなわち、前記構成のものでは電極棒間の電圧値の
急激な変化をコンパレータで検知するため、液体の液面
レベル(液位)が所定位置(電極棒の下端位置)にある
か否かの計測はできるが、連続した液位の計測はできな
い。
However, the above-mentioned conventional apparatus has the following various problems. That is, in the configuration described above, since a rapid change in the voltage value between the electrode rods is detected by the comparator, it is possible to measure whether or not the liquid level (liquid level) of the liquid is at a predetermined position (lower end position of the electrode rod). It is possible, but continuous liquid level measurement is not possible.

【0006】ところで、複数の電極棒がともに液体3内
に浸水した場合には、前記したごとくその複数の電極棒
は液体3を介して導通状態となるが、その浸水距離が長
くなるにつれて電極棒間の電位差は少なくなる。すなわ
ち、浸水距離(液位)と電位差には所定の相関関係があ
るため、予め液位の変化に伴う電位差の変化を調べると
ともに、係る相関関係を論理式で表現しておき、実際の
液位計測の際には、電極間の電位差を検出し、それを前
記論理式に代入し所定の演算処理を行うことにより液位
を算出することができる。
By the way, when a plurality of electrode rods are both submerged in the liquid 3, the plurality of electrode rods become conductive through the liquid 3 as described above, but the electrode rods become longer as the submersion distance becomes longer. The potential difference between them is reduced. That is, since there is a predetermined correlation between the water immersion distance (liquid level) and the potential difference, the change in the potential difference due to the change in the liquid level is investigated in advance, and the correlation is expressed in a logical formula to determine the actual liquid level At the time of measurement, the liquid level can be calculated by detecting the potential difference between the electrodes, substituting it into the above logical expression, and performing a predetermined calculation process.

【0007】しかし、かかる電位差の変化の状態は、液
体の電気伝導率により変わるため、論理式を求めた際に
使用した液体と同一の電気伝導率のものにしか適用でき
ない。しかも電位差の変動量は温度、測定器の有する誤
差、設置環境の影響等で異なるため、前記論理値と実測
値が一致しないことが多々ある。
However, since the state of such a change in the potential difference changes depending on the electric conductivity of the liquid, it can be applied only to the liquid having the same electric conductivity as the liquid used when the logical expression was obtained. Moreover, since the fluctuation amount of the potential difference varies depending on the temperature, the error of the measuring instrument, the influence of the installation environment, etc., the logical value and the actually measured value often do not match.

【0008】また、仮に論理値と実測値とがほぼ一致す
るような場合であっても、液位(電極棒の浸水距離)の
変異に伴う前記電位差の変動量が一定ではなく、液位が
高くなるにしたがって電位差の変化率が小さくなり、正
確な液位算出ができず精度が悪くなる。すなわち、液位
の高い箇所で測定が困難となる。
Even if the logical value and the actually measured value are substantially the same, the variation in the potential difference due to the variation in the liquid level (distance of the electrode rod) is not constant, and the liquid level is As it increases, the rate of change in the potential difference decreases, and accurate liquid level calculation cannot be performed, resulting in poor accuracy. That is, it becomes difficult to measure at a place where the liquid level is high.

【0009】本発明は、前記した背景に鑑みてなされた
もので、その目的とするところは、液体の電気伝導率や
設置環境等に影響されることなく正確な液面レベルの計
測を行うことができ、さらに、計測範囲内でできるだけ
高精度(高分解能)で測定可能とし、液位の高い箇所で
も正確に計測することのできる液面レベル計測装置を提
供することにある。
The present invention has been made in view of the above background, and an object of the present invention is to accurately measure the liquid level without being affected by the electrical conductivity of the liquid or the installation environment. In addition, it is possible to provide a liquid level measuring device that can perform measurement with the highest possible accuracy (high resolution) within the measurement range, and that can accurately measure even at a high liquid level.

【0010】[0010]

【課題を解決するための手段】前記した目的を達成する
ために、本発明に係る液面レベル計測装置では、液体に
挿入可能な複数本の電極と、前記電極間に所定の電圧を
印加する電圧印加手段と、前記電極間の電位差に基づい
て前記液体の液面レベルを算出する液面レベル算出手段
とを備えた液面レベル計測装置を基本とし、さらに前記
液体の液面が予め設定された基準レベルになったことを
検知する基準レベル検知手段と、現在の液面レベルが前
記基準レベルの時の前記電極間の電位差を受け、その電
位差と前記基準レベルから液面レベルの実測値と前記液
面レベル算出手段により算出される論理値との誤差をな
くすための電気伝導係数を算出する電気伝導係数算出手
段と、前記電気伝導係数算出手段により得られた電気伝
導係数を基にして計測回路の内部抵抗を対象の液質によ
り変更する内部抵抗変更手段とを備え、前記液面レベル
算出手段は、前記内部抵抗変更手段により変更された内
部抵抗に基づいて液面レベルの算出を行うようにした。
In order to achieve the above-mentioned object, in a liquid level measuring apparatus according to the present invention, a predetermined voltage is applied between a plurality of electrodes that can be inserted into a liquid and the electrodes. Based on a liquid level measuring device including a voltage applying unit and a liquid level calculating unit that calculates a liquid level of the liquid based on a potential difference between the electrodes, the liquid level of the liquid is preset. And a reference level detection means for detecting that the reference level has been reached, and a potential difference between the electrodes when the current liquid level is the reference level, and the potential difference and the measured value of the liquid level from the reference level. Based on an electric conductivity coefficient calculating means for calculating an electric conductivity coefficient for eliminating an error from a logical value calculated by the liquid surface level calculating means, and an electric conductivity coefficient obtained by the electric conductivity coefficient calculating means. An internal resistance changing means for changing the internal resistance of the measuring circuit according to the target liquid quality, and the liquid level calculating means calculates the liquid level based on the internal resistance changed by the internal resistance changing means. I did it.

【0011】また、前記内部抵抗変更手段は、前記電気
伝導係数算出手段により得られた電気伝導係数を基にし
て計測回路の内部抵抗の計測範囲を幾つかの区間に分
け、区間毎に最適の内部抵抗を求めるようにしてもよ
い。
Further, the internal resistance changing means divides the measuring range of the internal resistance of the measuring circuit into several sections based on the electric conductivity coefficient obtained by the electric conductivity coefficient calculating means, and optimizes each section. The internal resistance may be obtained.

【0012】[0012]

【作用】かかる構成により、液体の液面を昇降させ、基
準レベル検知手段により液面レベルが基準レベルになっ
たことを検知すると、その時の電極間の電位差を求め
る。そして、かかる電位差は、液面が基準レベルになっ
た時のものであることがわかっているため、両者に基づ
いて、液面レベルの実測値と前記液面レベル算出手段に
より算出される理論値との誤差がないような電気伝導係
数を算出する。換言すれば、係る電位差を液面レベル算
出手段に入力し、かかる電気伝導係数を用いて演算処理
をすることにより得られる液面レベルが前記基準レベル
となるような係数を求める。そして、このようにして得
られた電気伝導係数を基にして内部抵抗変更手段により
計測回路の内部抵抗を対象の液質により変更し、前記液
面レベル算出手段により、前記内部抵抗変更手段により
変更された内部抵抗に基づいて液面レベルの算出を行う
ことにより、論理値(液面レベル算出手段により得られ
る計算結果)と実測値との差がなくなり、正確な液面レ
ベル計測が行われる。
With this configuration, when the liquid level of the liquid is raised and lowered and the reference level detecting means detects that the liquid level has reached the reference level, the potential difference between the electrodes at that time is obtained. Since the potential difference is known to be when the liquid level reaches the reference level, the measured value of the liquid level and the theoretical value calculated by the liquid level calculation means are based on both of them. Calculate the electrical conductivity coefficient so that there is no error with. In other words, the potential difference is input to the liquid surface level calculation means, and the coefficient that the liquid surface level obtained by performing the arithmetic processing using the electric conductivity coefficient becomes the reference level is obtained. Then, based on the electric conductivity coefficient thus obtained, the internal resistance changing means changes the internal resistance of the measuring circuit according to the target liquid quality, and the liquid level calculating means changes the internal resistance changing means. By calculating the liquid level based on the obtained internal resistance, there is no difference between the logical value (calculation result obtained by the liquid level calculating means) and the actually measured value, and accurate liquid level measurement is performed.

【0013】また、液面レベルの変化に対する電位差の
変化率は、内部抵抗(電極棒間に位置する液体の抵抗以
外の測定回路中の抵抗分)が大き過ぎると液面レベルの
低い箇所では非常に大きく高精度な測定が可能となる
が、すぐに変化量が減少して測定不能(誤差が大きい)
となる。また、逆に抵抗値が小さすぎると、やはり全体
的に電位差の変化分が少なく、高精度の液面レベル計測
ができない。そこで、抵抗値決定手段にて、測定する液
体の液質等に即し、前記液面レベルの計測範囲内での前
記電極間の電位差の変化率の全体に高くなる所定の内部
抵抗値を求める。そして、係る決定した内部抵抗値のと
きの前記電極間の電位差と液位の関係を求め、この液位
の計測範囲について幾つかの区間に分け、この区間毎に
付いての最大の分解能を実現できる内部抵抗を求め、こ
の内部抵抗を基に液位を算出することにより、全体的に
高精度の計測が可能となる。
Further, the rate of change of the potential difference with respect to the change of the liquid level is extremely large at a place where the liquid level is low if the internal resistance (the resistance in the measuring circuit other than the resistance of the liquid located between the electrode rods) is too large. Large and highly accurate measurement is possible, but the amount of change immediately decreases and measurement is impossible (large error).
Becomes On the other hand, if the resistance value is too small, the amount of change in the potential difference is small as a whole and highly accurate liquid level measurement cannot be performed. Therefore, the resistance value determining means obtains a predetermined internal resistance value that is high in the entire rate of change of the potential difference between the electrodes within the measurement range of the liquid level in accordance with the quality of the liquid to be measured. . Then, the relationship between the potential difference between the electrodes and the liquid level at the determined internal resistance value is obtained, the measurement range of this liquid level is divided into several sections, and the maximum resolution for each section is realized. By obtaining the possible internal resistance and calculating the liquid level based on this internal resistance, it is possible to perform highly accurate measurement as a whole.

【0014】[0014]

【実施例】以下、本発明に係る液面レベル計測装置の実
施例を添付図面を参照にして詳述する。まず、本発明に
係る液面レベル計測の原理について説明すると、今、図
1に示すように、同一形状からなる比較的長い2本の第
1、第2の電極棒10、11をタンク12に貯蔵された
液体13内に浸すように配置する。そして、それら電極
棒10、11は電源15に接続され、一定の電圧VOが
印加されるようになっている。
Embodiments of the liquid level measuring apparatus according to the present invention will be described in detail below with reference to the accompanying drawings. First, the principle of liquid level measurement according to the present invention will be described. Now, as shown in FIG. 1, two relatively long first and second electrode rods 10 and 11 having the same shape are provided in a tank 12. It is arranged to be immersed in the stored liquid 13. The electrode rods 10 and 11 are connected to a power source 15 so that a constant voltage VO is applied.

【0015】また、第1、第2の電極棒10、11に
は、その両電極棒間の電位差Vを測定する計測部16が
接続され、さらにその計測部16の出力は液位算出部1
7に接続される。この液位算出部17は、与えられた電
位差Vに基づいて液体13の液面13aのレベル(液
位)を算出し、表示部18に表示するもので、具体的に
は、以下に示す演算処理を行うようになっている。
A measuring unit 16 for measuring the potential difference V between the first and second electrode rods 10 and 11 is connected, and the output of the measuring unit 16 is the liquid level calculation unit 1.
Connected to 7. The liquid level calculation unit 17 calculates the level (liquid level) of the liquid surface 13a of the liquid 13 based on the applied potential difference V and displays the level on the display unit 18. Specifically, the calculation shown below is performed. It is supposed to process.

【0016】すなわち、第1、第2の電極棒10、11
の半径をa、第1、第2の電極棒10、11間の距離を
d、液体の電気伝導率をσ、測定装置の内部抵抗r、第
1、第2の電極棒10、11の下端から液面までの距離
をLとすると、第1、第2の電極棒10、11間に作ら
れる抵抗値R(L)は、下記式のようになる。
That is, the first and second electrode rods 10, 11
Is a, the distance between the first and second electrode rods 10 and 11 is d, the electrical conductivity of the liquid is σ, the internal resistance r of the measuring device, and the lower ends of the first and second electrode rods 10 and 11. Assuming that the distance from the liquid surface to the liquid surface is L, the resistance value R (L) created between the first and second electrode rods 10 and 11 is given by the following equation.

【0017】[0017]

【数1】 したがって、計測すべき電極棒間の電位差Vは、下記式
のようになる。
[Equation 1] Therefore, the potential difference V between the electrode rods to be measured is given by the following formula.

【0018】[0018]

【数2】 従って、d、a、σ、VOが定数であるため、前記式に
計測部16で計測した電位差Vを代入すると共にLにつ
いて解くことにより、第1、第2の電極棒10、11の
液体13への浸水距離Lがわかり、しかも、タンク12
の底面から第1、第2の電極棒10、11の下端までの
距離は既知であるため、かかる距離に前記浸水距離Lを
加えることにより液位を算出することになる。そして、
前記各種の計算を前記液位算出部17で行うようになっ
ている。
[Equation 2] Therefore, since d, a, σ, and VO are constants, by substituting the potential difference V measured by the measuring unit 16 into the above equation and solving for L, the liquid 13 of the first and second electrode rods 10 and 11 can be obtained. The water immersion distance L is known, and the tank 12
Since the distance from the bottom surface to the lower ends of the first and second electrode rods 10 and 11 is known, the liquid level can be calculated by adding the water immersion distance L to this distance. And
The liquid level calculator 17 performs the various calculations.

【0019】ところで、前記した式から液位Lと電位差
Vとの関係は、図2中破線で示すように双曲線状になっ
ており、液位Lが増すにつれて電圧値Vが下がるように
なっている。一方、実際に液位Lを変化させながら(液
位の値は別の手段により測定する)、その時の第1、第
2の電極棒10、11間の電位差Vを測定し、その関係
をグラフに表すと、同図中二点鎖線で示すようになり、
前記した従来の問題点のように理論値と実測値に差があ
ることがわかる。ここで、両特性を見ると、確かに差が
あるものの、曲線の形状は近似していることがわかる。
そこで、このように両曲線に差が生じるのは、前記した
算出式(理論式)中の係数の値に誤差があると考えられ
る。したがって、所定の補正を行う必要がある。
From the above equation, the relationship between the liquid level L and the potential difference V is hyperbolic as shown by the broken line in FIG. 2, and the voltage value V decreases as the liquid level L increases. There is. On the other hand, while actually changing the liquid level L (the value of the liquid level is measured by another means), the potential difference V between the first and second electrode rods 10 and 11 at that time is measured, and the relationship is graphed. Is represented by the two-dot chain line in the figure,
It can be seen that there is a difference between the theoretical value and the actually measured value, as in the conventional problems described above. Here, looking at the two characteristics, it can be seen that the shapes of the curves are close to each other, although there are certain differences.
Therefore, it is considered that there is an error in the value of the coefficient in the calculation formula (theoretical formula) that causes the difference between the two curves. Therefore, it is necessary to make a predetermined correction.

【0020】そして、各係数を見ると、a、d、πは既
知である。一方、電気伝導率σは、温度や周囲の環境な
どにより変化しやすく、また液体13の電気伝導率σを
レベル計測の都度測定することは困難である。また、内
部抵抗rも電極棒間電圧Vの変化具合により変化する。
Looking at each coefficient, a, d and π are known. On the other hand, the electric conductivity σ easily changes depending on the temperature and the surrounding environment, and it is difficult to measure the electric conductivity σ of the liquid 13 every time the level is measured. Further, the internal resistance r also changes depending on how the voltage V between the electrode rods changes.

【0021】そこで本発明では、電気伝導率σに更に周
囲環境の状態や回路上の誤差等にともない生じる前記相
違(誤差)分を含めた電気伝導係数σ´なる概念を導入
し、前記理論式中の電気伝導率σの代りに、かかる電気
伝導係数σ´を用い、また、電極棒間電圧Vの変化具合
が、内部抵抗rによって変わることに着目して内部抵抗
rを液質によって変え、さらに計測範囲を幾つかの区間
に分け、区間毎に内部抵抗を変えて液位算出を行うこと
により、実測値に近い学習値を得ることにした。
Therefore, in the present invention, the concept of electric conductivity σ ′ including the above-mentioned difference (error) caused by the condition of the ambient environment, the error in the circuit, etc. is introduced to the electric conductivity σ, and the theoretical formula Such an electric conductivity coefficient σ ′ is used instead of the electric conductivity σ in the inside, and the internal resistance r is changed depending on the liquid quality, focusing on the fact that the change state of the voltage V between the electrode rods changes depending on the internal resistance r, Furthermore, we decided to obtain a learning value close to the actual measurement value by dividing the measurement range into several sections and calculating the liquid level by changing the internal resistance for each section.

【0022】そこで本発明の実施例では、図1に示すよ
うに計測部16の出力を、前記係数σ´を算出する電気
伝導係数算出部20に接続した。さらに、第1、第2の
電極棒10、11よりも短い第3の電極棒21を、それ
ら両電極棒10、11と平行に垂下形成する。そして、
第1の電極棒10の下端からこの第3の電極棒21の下
端間での距離がL1となるように調整している。そし
て、この第1の電極棒10と第3の電極棒21との間に
は、電源22が接続され、電圧VOを印加するように
し、さらに、第1、第3の電極棒10、21には、計測
部23が接続され、両電極棒10、21間の電位差Vt
を計測し、その測定結果を比較器24に送るようになっ
ている。そして、その比較器24の出力(トリガ信号)
は、前記した電気伝導係数算出部20に接続され、処理
開始信号を与えるようになっている。
Therefore, in the embodiment of the present invention, as shown in FIG. 1, the output of the measuring section 16 is connected to the electric conduction coefficient calculating section 20 for calculating the coefficient σ '. Further, a third electrode rod 21, which is shorter than the first and second electrode rods 10 and 11, is formed so as to hang parallel to the both electrode rods 10 and 11. And
The distance from the lower end of the first electrode rod 10 to the lower end of the third electrode rod 21 is adjusted to be L1. A power supply 22 is connected between the first electrode rod 10 and the third electrode rod 21 to apply a voltage VO, and the first and third electrode rods 10 and 21 are connected to each other. Is connected to the measuring unit 23, and the potential difference Vt between the electrode rods 10 and 21 is Vt.
Is measured and the measurement result is sent to the comparator 24. The output of the comparator 24 (trigger signal)
Is connected to the electric conductivity coefficient calculation unit 20 described above, and gives a processing start signal.

【0023】すなわち、計測部23で測定される電圧V
tは、液位がL1より低いときは第1、第3の電極棒1
0、21はオープン状態であるので、Vt=VOとな
る。そして、液位が上昇しL1になると、両電極棒1
0、21は導通されて電流回路が作られるため、両電極
棒10、21間のVtは急激に減少する(図3参照)。
That is, the voltage V measured by the measuring unit 23
t is the first and third electrode rods 1 when the liquid level is lower than L1.
Since 0 and 21 are open, Vt = VO. When the liquid level rises to L1, both electrode rods 1
Since 0 and 21 are conducted to form a current circuit, Vt between both electrode rods 10 and 21 is rapidly reduced (see FIG. 3).

【0024】そして、L1の時の電位差がVsとする
と、前記比較器24の他方の入力端子への入力電圧を係
るVsにセットしておくことにより、比較器24の出力
は液位がL1になったときに反転しトリガ信号が変化す
る。
When the potential difference at the time of L1 is Vs, by setting the input voltage to the other input terminal of the comparator 24 to Vs, the output of the comparator 24 has a liquid level of L1. And the trigger signal changes.

【0025】よって、かかるトリガ信号が変化したとき
の液位はL1とわかっており、しかも、その時の第1、
第2の電極棒10、11間の電位差V1は、計測部16
を介して検出できる。したがって、かかる液位L1と電
位差V1を前記した電圧理論式のL、Vに代入すると共
にσについて解くと、その時の解が求める電気伝導係数
σ´である。すなわち、本例では第1の電極棒10、第
3の電極棒21、電源22、計測部23、比較器24で
基準レベル検知手段を構成している。
Therefore, it is known that the liquid level when the trigger signal changes is L1, and at the same time,
The potential difference V1 between the second electrode rods 10 and 11 is measured by the measuring unit 16
Can be detected through. Therefore, by substituting the liquid level L1 and the potential difference V1 into L and V of the voltage theoretical formula described above and solving for σ, the solution at that time is the electrical conductivity coefficient σ ′. That is, in this example, the first electrode rod 10, the third electrode rod 21, the power supply 22, the measuring unit 23, and the comparator 24 constitute the reference level detecting means.

【0026】したがって、電気伝導係数算出部20で
は、比較器24の出力が変化したなら、計測部16から
与えられる電位差Vに基づいて前記所定の演算処理を行
うようになっている。このようにして求めた電気伝導係
数σ´は、液位測定を行う液体13の現在の状態につい
て行った実測の電位差V1と液位L1を使って算出した
ため、周囲環境の状態や回路上の誤差等が反映された係
数となる。そして、前記の電気伝導係数算出部20の機
能は、図4に示すフローチャートのようになっている。
なお、セットされた電気伝導係数σ´に基づいて液位算
出部17に求められる液位Lと電位差Vの関係は、図2
中実線で示すように、実測値に近くなる。
Therefore, in the electric conductivity coefficient calculating section 20, if the output of the comparator 24 changes, the predetermined arithmetic processing is performed based on the potential difference V given from the measuring section 16. The electric conductivity coefficient σ ′ thus obtained is calculated by using the actually measured potential difference V1 and the liquid level L1 performed for the current state of the liquid 13 for which the liquid level is to be measured. It becomes a coefficient that reflects the above. The function of the electric conductivity coefficient calculating unit 20 is as shown in the flowchart of FIG.
The relationship between the liquid level L and the potential difference V obtained by the liquid level calculation unit 17 based on the set electric conductivity coefficient σ ′ is shown in FIG.
As indicated by the solid line, it is close to the measured value.

【0027】さらに本発明の実施例では、電気伝導係数
算出部20の出力を次段の抵抗値決定部25にも送るよ
うになっている。すなわち、図5に示すごとく、内部抵
抗rを変化させると、液位Lと、第1、第2の電極棒1
0、11間の電位さV(L)の相関関係も変化する。こ
れは、前記した電圧理論式からも明らかであり、rを0
にするとグラフは横一直線に近付き、一方、rを大きく
すると、グラフは液位が0より少し大きくなれば電圧は
急激に減少して0になりその後余り変化しなくなる。
Further, in the embodiment of the present invention, the output of the electric conductivity coefficient calculating section 20 is also sent to the resistance value determining section 25 of the next stage. That is, as shown in FIG. 5, when the internal resistance r is changed, the liquid level L and the first and second electrode rods 1
The correlation of the potential V (L) between 0 and 11 also changes. This is also clear from the above voltage theoretical formula, and r is 0
When set to, the graph approaches a horizontal straight line, while when r is increased, the graph shows that when the liquid level is slightly higher than 0, the voltage sharply decreases to 0, and thereafter does not change so much.

【0028】すなわち、rを小さくし過ぎると全体的に
液位の変位量に対する電圧の変化量が少なく(分解能)
検出精度が全体的に低くなる。一方、rを高くし過ぎる
と液位の比較的少ない範囲では非常に高分解能を示す
が、その後すぐに低下し正確な液位の測定ができない。
つまり、内部抵抗が大き過ぎたり逆に小さ過ぎたりする
と、所定の分解能が得られる範囲(計測可能な範囲)が
短くなる。
That is, if r is made too small, the amount of change in voltage with respect to the amount of displacement of the liquid level is small overall (resolution).
The detection accuracy is low overall. On the other hand, if r is set too high, the resolution will be extremely high in the range where the liquid level is relatively small, but it will decrease immediately thereafter and accurate liquid level measurement will not be possible.
That is, if the internal resistance is too large or, conversely, too small, the range (measurable range) where the predetermined resolution can be obtained becomes short.

【0029】そこで、最大の分解能を実現できる内部抵
抗rを前記抵抗値決定部25で求め、この内部抵抗rの
ときの電極棒間電圧V(L)と液位Lの関係を求め、こ
の液位Lについての計測範囲を幾つかの区間に分け、区
間毎に内部抵抗を変えて液位算出を行うことにより、実
測値に近い学習値を得ることにした。そして、具体的な
処理(原理)は以下の通りである。
Therefore, the internal resistance r capable of realizing the maximum resolution is obtained by the resistance value determining unit 25, and the relationship between the electrode rod voltage V (L) and the liquid level L at this internal resistance r is obtained. It was decided to divide the measurement range for the position L into several sections and calculate the liquid level by changing the internal resistance for each section to obtain a learning value close to the actual measurement value. The specific processing (principle) is as follows.

【0030】まず、本発明の実施例でいう最大分解能を
もつ曲線とは、図5に示す曲線群の中で、曲線の変化率
(液位の変化に対する電圧の変化量)の最小値が、測定
範囲内で最大になる曲線をいう。
First, the curve having the maximum resolution referred to in the embodiment of the present invention means that the minimum value of the rate of change of the curve (the amount of change in the voltage with respect to the change in the liquid level) in the group of curves shown in FIG. It is the maximum curve in the measurement range.

【0031】そして、前記したように液位Lに対する電
位差Vは、下記の式のようになり、内部抵抗rと変位L
を変数とした関数で表すことができる。
Then, as described above, the potential difference V with respect to the liquid level L is expressed by the following equation, and the internal resistance r and the displacement L
Can be expressed as a function with a variable.

【0032】[0032]

【数3】 したがって、変位の変化に対する電圧の変化量は前記式
をLについて偏微分することにより得られ、下記式のよ
うになる。
[Equation 3] Therefore, the amount of change in voltage with respect to the change in displacement is obtained by partially differentiating the above expression with respect to L, and is represented by the following expression.

【0033】[0033]

【数4】 前記式から明らかなように、計測範囲の最大液位をLM
とすると、L=LMの時に変位量は最小となり、その時
の分解能h(r)は、下記式のようになる。
[Equation 4] As is clear from the above equation, the maximum liquid level in the measurement range is LM
Then, the displacement amount becomes minimum when L = LM, and the resolution h (r) at that time is expressed by the following equation.

【0034】[0034]

【数5】 そして、前記式で特定される分解能hは変数rの関数で
あり、係る式をrで偏微分すると、
[Equation 5] The resolution h specified by the above equation is a function of the variable r, and when this equation is partially differentiated by r,

【0035】[0035]

【数6】 となる。よってr1=α/(β・LM)の時、h(r
1)=V0/(4・LM)となり最大値となる。したが
って最大分解能hを得るための最適内部抵抗r1は、下
記式の通りである。
[Equation 6] Becomes Therefore, when r1 = α / (β · LM), h (r
1) = V0 / (4 · LM), which is the maximum value. Therefore, the optimum internal resistance r1 for obtaining the maximum resolution h is as follows.

【0036】[0036]

【数7】 次に、この内部抵抗r1のときの電極棒間電圧V(L)
と液位Lの関係を求め、この液位Lについて図6に示す
ように等分割する。ここで区間LM(0)〜LM(1)
について最大の分解能を実現できる内部抵抗rk(1)
は、
[Equation 7] Next, the voltage V (L) between the electrode rods when the internal resistance is r1.
And the liquid level L are obtained, and the liquid level L is equally divided as shown in FIG. Here, sections LM (0) to LM (1)
Resistance rk (1) that can realize the maximum resolution for
Is

【0037】[0037]

【数8】 となる。以下、同様に考えてrk(2)〜rk(n)に
ついての抵抗を求める。次に、内部抵抗r1で電圧V
(L)を計測し、これがどの区間LM(0)〜LM
(1)にあるか否かを判断する。電圧V(L)の入って
いる区間i(i=1〜n)が決まれば、抵抗をrk
(i)にする。そして、内部抵抗rk(i)で電圧V
(L)を計測し、液位Lを算出する。
[Equation 8] Becomes Hereinafter, similarly, the resistances for rk (2) to rk (n) are obtained. Next, the internal resistance r1 causes the voltage V
(L) is measured, and which section is LM (0) to LM
It is determined whether or not it is in (1). If the section i (i = 1 to n) in which the voltage V (L) is included is determined, the resistance is changed to rk.
Set to (i). The internal resistance rk (i) causes the voltage V
(L) is measured and the liquid level L is calculated.

【0038】以上のようにすれば、区間LM(0)〜L
M(1)毎で最適な抵抗値を使って計測するために、計
測精度を向上させることができるし、算出される液位L
は、各パラメータσ´、rk(n)がすでに求められ修
正されているため、係る修正後のパラメータに基づいて
液位Lが算出されるので、表示部18に表示される液位
は、実測値を正確に表すことになる。
As described above, the sections LM (0) to L
Since the measurement is performed using the optimum resistance value for each M (1), the measurement accuracy can be improved and the calculated liquid level L
Since the parameters σ ′ and rk (n) have already been obtained and corrected, the liquid level L is calculated based on the corrected parameters. Therefore, the liquid level displayed on the display unit 18 is actually measured. It will represent the value exactly.

【0039】ここで、本発明の液面レベル計測装置を用
いての液面レベル計測のアルゴリズムについて説明す
る。まず、理論式をまとめると、以下のようになる。
Here, an algorithm for measuring the liquid level using the liquid level measuring apparatus of the present invention will be described. First, the theoretical formulas are summarized as follows.

【0040】[0040]

【数9】 [電気伝導係数σ´の計算]液位L1のときの電極棒1
0、11間の電圧がV1であるので、理論式に代入する
と、
[Equation 9] [Calculation of electrical conductivity coefficient σ '] Electrode rod 1 at liquid level L1
Since the voltage between 0 and 11 is V1, substituting into the theoretical formula,

【0041】[0041]

【数10】 ここで、未知数となっているのはσのみであるので、
[数9]の式よりσが計算できる。この値をσ´とす
る。σ´は液体の電気伝導率ではない。実測の電圧V1
と液位LIを使って求めているので、σ´には周辺の環
境の状態、回路上の誤差などが反映された係数となって
いる。これを電気伝導係数と呼ぶ。
[Equation 10] Here, since only σ is the unknown,
Σ can be calculated from the formula of [Equation 9]. Let this value be σ ′. σ'is not the electrical conductivity of the liquid. Measured voltage V1
Since it is obtained by using the liquid level LI and LI, σ'is a coefficient that reflects the state of the surrounding environment, the error on the circuit, and the like. This is called the electric conductivity coefficient.

【0042】[内部抵抗の計算]電気伝導係数σ´を求
めた後、
[Calculation of Internal Resistance] After obtaining the electric conductivity coefficient σ ′,

【0043】[0043]

【数11】 を計算して、内部抵抗値を電子ボリュームなどで調整し
て、r1にする。同様に考えて
[Equation 11] Is calculated and the internal resistance value is adjusted with an electronic volume or the like to be r1. Think the same way

【0044】[0044]

【数12】 を計算する。[Equation 12] To calculate.

【0045】[液位の計算]電極棒10、11の間の電
圧がVのときの液位Lは、以下のようになる。電圧Vが
どの区間にあるかによって、iの値が決定される。
[Calculation of Liquid Level] The liquid level L when the voltage between the electrode rods 10 and 11 is V is as follows. The value of i is determined depending on which section the voltage V is in.

【0046】[0046]

【数13】 未知数は、液位Lのみであるので、[数13]の式より
液位Lが計算できる。なお、係る内部抵抗の調整を行う
ことにより、図2に示す実測値並びに学習値は、最適な
高分解能を得るための曲線になるべくその特性が変動す
るが、両者は同じように変動するため、学習値に基づく
液位算出をした結果と実測値とは略一致したままであ
る。
[Equation 13] Since the unknown number is only the liquid level L, the liquid level L can be calculated from the formula of [Equation 13]. By adjusting the internal resistance, the characteristics of the actually measured value and the learned value shown in FIG. 2 fluctuate as much as a curve for obtaining an optimum high resolution, but both characteristics fluctuate in the same manner. The result of liquid level calculation based on the learned value and the measured value remain substantially in agreement.

【0047】次に、前記した実施例の作用について図8
に示すフローチャートを用いて説明する。すなわち、ま
ず液位計測を行うために装置の電源を投入すると、各種
パラメータの設定などの処理を行う(ステップS10
1、102)。そして、その時の液体13の液位が第3
の電極棒21の下端位置L1よりも高い(第3の電極棒
21が液体内に浸水している)場合には、液体13を排
出させて液位をさげ、逆に液体13の液位がL1より低
い場合には、液体13の流入させて液位を上昇させる。
Next, the operation of the above-described embodiment will be described with reference to FIG.
This will be described with reference to the flowchart shown in. That is, first, when the apparatus is turned on to measure the liquid level, various parameters are set (step S10).
1, 102). The liquid level of the liquid 13 at that time is the third
Is higher than the lower end position L1 of the electrode rod 21 (the third electrode rod 21 is submerged in the liquid), the liquid 13 is discharged to lower the liquid level, and conversely the liquid level of the liquid 13 is decreased. When it is lower than L1, the liquid 13 is caused to flow in to raise the liquid level.

【0048】次に、トリガ信号のレベルの取り込みを行
う(ステップS103)。そして、トリガ信号が変化、
すなわち、液位がL1となるか否かを判断し(ステップ
S104)、トリガ信号が状態変化(L=L1)したな
ら、内部抵抗を任意の値rにする(ステップS10
5)。
Next, the level of the trigger signal is fetched (step S103). And the trigger signal changes,
That is, it is determined whether or not the liquid level becomes L1 (step S104), and if the trigger signal changes in state (L = L1), the internal resistance is set to an arbitrary value r (step S10).
5).

【0049】次に、第1、第2の電極棒10、11間の
電位差V(L)を取り込む(ステップS106)ととも
に、電気伝導係数算出部20を用いて計測対象となる液
体13の電気伝導度や周囲環境並びに測定装置(回路)
の誤差等に基づいて決定される電気伝導係数σ´を算出
する(ステップS107)。
Next, the electric potential difference V (L) between the first and second electrode rods 10 and 11 is taken in (step S106), and the electrical conductivity of the liquid 13 to be measured is measured using the electrical conductivity coefficient calculating section 20. Degree and surrounding environment and measuring device (circuit)
The electric conductivity coefficient σ ′ determined based on the error of (1) is calculated (step S107).

【0050】次に、その求めた電気伝導係数σ´に基づ
いて全測定範囲の内部抵抗r1を決定する(ステップS
108)。そして、この内部抵抗r1のときの電極棒間
電圧V(L)と液位Lの関係を求め、この液位Lについ
て図6に示すように等分割する。ここで区間LM(0)
〜LM(1)について最大の分解能を実現できる内部抵
抗rk(1)〜rk(n)についての内部抵抗を図9に
示すフローチャートにしたがって算出する(ステップS
109)。
Next, the internal resistance r1 of the entire measurement range is determined based on the obtained electric conductivity coefficient σ '(step S
108). Then, the relationship between the electrode rod voltage V (L) and the liquid level L at this internal resistance r1 is obtained, and this liquid level L is equally divided as shown in FIG. Here, the section LM (0)
˜LM (1) is calculated according to the flowchart shown in FIG. 9 for the internal resistances rk (1) to rk (n) that can realize the maximum resolution (step S).
109).

【0051】次に、第1、第2の電極棒10、11間の
電圧V(L)を取り込み(ステップS110)、電圧V
(L)が存在する範囲pを図10に示すフローチャート
にしたがって求め(ステップS111)、内部抵抗をr
k(p)にする(ステップS112)。
Next, the voltage V (L) between the first and second electrode rods 10 and 11 is fetched (step S110), and the voltage V
The range p in which (L) exists is obtained according to the flowchart shown in FIG. 10 (step S111), and the internal resistance is set to r.
It is set to k (p) (step S112).

【0052】次に、第1、第2の電極棒10、11間の
電圧V(L)を取り込み(ステップS113)、液位算
出部17にて理論式を計算して図11に示すフローチャ
ートにしたがって液位Lを算出し(ステップS11
4)、それを表示部18に出力し(ステップS11
5)、ステップS102に戻る。この時、算出される液
位Lは、各パラメータσ´、rk(n)がすでに求めら
れ修正されているため、係る修正後のパラメータに基づ
いて液位が算出されるので、表示部18に表示される液
位は、実測値を正確に表すことになる。
Next, the voltage V (L) between the first and second electrode rods 10 and 11 is taken in (step S113), the theoretical formula is calculated by the liquid level calculation unit 17, and the flow chart shown in FIG. 11 is obtained. Therefore, the liquid level L is calculated (step S11
4) and outputs it to the display unit 18 (step S11).
5) and returns to step S102. At this time, since the calculated liquid level L has been corrected by already obtaining the respective parameters σ ′ and rk (n), the liquid level is calculated based on the corrected parameters, and therefore the display unit 18 displays the liquid level. The displayed liquid level will accurately represent the measured value.

【0053】ステップS104で液位がL1となるか否
かを判断し、トリガ信号の状態が変化しない場合には、
ステップS110、ステップS111、ステップS11
2、ステップS113、ステップS114、ステップS
115を経てステップ102に戻る。
In step S104, it is determined whether or not the liquid level becomes L1, and if the state of the trigger signal does not change,
Step S110, Step S111, Step S11
2, step S113, step S114, step S
After 115, the process returns to step 102.

【0054】なお本例では、液位が変動しL1を通過す
る都度、前記の電気伝導係数σ´、内部抵抗rk(n)
の算出(補正)が行われるため、液位Lを求める算出式
が常にその時の各種条件に即した最適な数値となり(学
習・補正が継続して行われる)、実測値のずれない正確
で、かつ高分解能を維持しつつ広範囲の液位計測を行う
ことができる。
In this example, each time the liquid level fluctuates and passes through L1, the electrical conductivity coefficient σ'and the internal resistance rk (n) are calculated.
Since the calculation (correction) is performed, the calculation formula for obtaining the liquid level L is always the optimum numerical value according to various conditions at that time (learning / correction is continuously performed), and the measured value is not displaced accurately. In addition, it is possible to measure the liquid level over a wide range while maintaining high resolution.

【0055】図12は、前記したレベル計測装置を実施
するための具体的な回路形成を示している。同図に示す
ように、電源15と第2の電極棒11との間には、内部
抵抗調整部30が配置されている。この内部抵抗調整部
30が図1に示す可変抵抗rに相当する。また、第1、
第2の電極棒10、11間の電位差V並びに第1、第3
の電極棒10、21間の電位差Vtは図示省略の計測部
により計測され、それがA/D変換部31に送られ、そ
こにおいてデジタルに変換された後と、マイコン32に
送られる。このマイコン32は、前記した液位算出部1
7、電気伝導係数算出部20、比較器24並びに抵抗値
決定部25等を構成し、決定された高分解能を得るため
の抵抗値となるように内部抵抗調整部30に対して所定
の制御信号を送るようになっている。
FIG. 12 shows a specific circuit formation for implementing the level measuring apparatus described above. As shown in the figure, an internal resistance adjusting unit 30 is arranged between the power supply 15 and the second electrode rod 11. The internal resistance adjusting unit 30 corresponds to the variable resistance r shown in FIG. Also, the first
The potential difference V between the second electrode rods 10 and 11 as well as the first and third
The potential difference Vt between the electrode rods 10 and 21 is measured by a measuring unit (not shown), is sent to the A / D conversion unit 31, is converted into a digital signal there, and is then sent to the microcomputer 32. This microcomputer 32 is equivalent to the liquid level calculation unit 1 described above.
7, an electric conduction coefficient calculation unit 20, a comparator 24, a resistance value determination unit 25, etc. are configured, and a predetermined control signal is supplied to the internal resistance adjustment unit 30 so as to obtain a resistance value for obtaining the determined high resolution. Is sent.

【0056】また、前記した内部抵抗調整部30は、図
13に示すように、電気伝導係数σ´を算出する際に用
いられる既知の基準抵抗r0と、実際のレベル計測の際
に使用される可変抵抗r1あるいはrk(i)とが両端
子1、2間に並列に接続され、マイコン32からの制御
信号によりスイッチが切り替わり、いずれか一方の抵抗
が回路に接続されるようになっている。そして、前記の
可変抵抗r1としては、例えば電子ボリュームがある。
Further, as shown in FIG. 13, the internal resistance adjusting section 30 is used for the known reference resistance r0 used for calculating the electric conductivity coefficient σ'and for the actual level measurement. The variable resistor r1 or rk (i) is connected in parallel between both terminals 1 and 2, and the switch is switched by a control signal from the microcomputer 32 so that either one of the resistors is connected to the circuit. The variable resistor r1 is, for example, an electronic volume.

【0057】さらに、基準抵抗r0が内部抵抗調整部3
0の両端子に接続される場合には、可変抵抗r1は、抵
抗r2と基準電源35(電圧Vs)とが直列接続された
閉回路が構成され、両抵抗r1、r2で電圧降下する端
子間電圧Vrが前記A/D変換部31を介してマイコン
32に送られるようになっている。
Further, the reference resistance r0 is the internal resistance adjusting section 3
When connected to both terminals of 0, the variable resistor r1 constitutes a closed circuit in which a resistor r2 and a reference power source 35 (voltage Vs) are connected in series, and a voltage drop occurs between the terminals of the resistors r1 and r2. The voltage Vr is sent to the microcomputer 32 via the A / D converter 31.

【0058】ここでこの実施例の動作について説明する
と、まず、内部抵抗調整部30の端子1、2に基準抵抗
r0を接続し、液位Lを変化させる。そして電位差Vt
があるしきい値を横切ってトリガがかかったならば、そ
の時の電位差Vmを取り込み、電気伝導係数σ´を算出
する。
To explain the operation of this embodiment, first, the reference resistance r0 is connected to the terminals 1 and 2 of the internal resistance adjusting section 30 to change the liquid level L. And the potential difference Vt
When a trigger is applied across a certain threshold value, the potential difference Vm at that time is taken in and the electric conduction coefficient σ ′ is calculated.

【0059】トリガがかかると、計算された電気伝導係
数σ´に適した抵抗値r1が算出される。そして、計測
範囲を区間分けして、それぞれVL(i)、rk(i)
を算出する。抵抗値r1を調整するには、基準電源35
(電圧Vs)、抵抗r2、可変抵抗r1で閉回路を作
り、端子間電圧Vrの値を確認しながら、最適値になる
ように可変抵抗r1を調整する。
When a trigger is applied, a resistance value r1 suitable for the calculated electric conductivity coefficient σ'is calculated. Then, the measurement range is divided into sections, VL (i) and rk (i), respectively.
To calculate. To adjust the resistance value r1, the reference power source 35
(Voltage Vs), resistor r2, variable resistor r1 form a closed circuit, and while checking the value of the voltage Vr between terminals, the variable resistor r1 is adjusted to the optimum value.

【0060】可変抵抗r1の調整が終了すると、端子
1、2には抵抗r1が接続され、この状態で電位差Vm
を計測する。そして、この電位差Vmがどの区間内に入
るかを計算して、抵抗r1と同様な手法で、その区間内
における最適な内部抵抗rk(i)になるように、抵抗
値を調整する。この内部抵抗rk(i)の調整が終了す
ると、端子1、2には抵抗rk(i)接続され、この状
態で電位差Vmを計測して液位情報Lを算出する。
When the adjustment of the variable resistance r1 is completed, the resistance r1 is connected to the terminals 1 and 2, and in this state, the potential difference Vm.
To measure. Then, the section in which the potential difference Vm falls is calculated, and the resistance value is adjusted by the same method as the resistance r1 so that the optimum internal resistance rk (i) in the section is obtained. When the adjustment of the internal resistance rk (i) is completed, the terminals 1 and 2 are connected to the resistance rk (i), and the potential difference Vm is measured in this state to calculate the liquid level information L.

【0061】なお、上記した各例では、いずれも電源に
直流電圧を用いた例について説明したが、交流電源でも
よいのはもちろんであり、かかる場合には、整流回路等
を設け、直流に変換した後で各種の処理(レベル測定、
補正処理等)を行うようになる。
In each of the above examples, a DC voltage was used as the power source, but it is needless to say that an AC power source may be used. After doing various processing (level measurement,
Correction processing, etc.).

【0062】さらにまた、上記した実施例では基準レベ
ル検知手段の一部として実際の液面レベル計測をするた
めの第1の電極棒10を用いる(兼用する)ようにした
が、独立して形成しても良いのはもちろんである。
Furthermore, in the above-described embodiment, the first electrode rod 10 for actually measuring the liquid level is used (also used) as a part of the reference level detecting means, but it is formed independently. Of course, you can do that.

【0063】[0063]

【発明の効果】以上のように、本発明に係る液面レベル
計測装置では、液体の液面を昇降させ、基準レベル検知
手段により液面レベルが基準レベルになったことを検知
すると、その時の電極間の電位差を求める。そして、か
かる電位差は、液面が基準レベルになった時のものであ
ることがわかっているため、両者に基づいて、液面レベ
ルの実測値と前記液面レベル算出手段により算出される
理論値との誤差がないような電気伝導係数を算出する。
換言すれば、係る電位差を液面レベル算出手段に入力
し、かかる電気伝導係数を用いて演算処理をすることに
より得られる液面レベルが前記基準レベルとなるような
係数を求める。そして、このようにして得られた電気伝
導係数を基にして内部抵抗変更手段により計測回路の内
部抵抗を対象の液質により変更し、前記液面レベル算出
手段により、前記内部抵抗変更手段により変更された内
部抵抗に基づいて液面レベルの算出を行うことにより、
論理値(液面レベル算出手段により得られる計算結果)
と実測値との差がなくなり、正確な液面レベル計測が行
われる。
As described above, in the liquid level measuring apparatus according to the present invention, when the liquid level of the liquid is raised and lowered and the reference level detecting means detects that the liquid level becomes the reference level, Determine the potential difference between the electrodes. Since the potential difference is known to be when the liquid level reaches the reference level, the measured value of the liquid level and the theoretical value calculated by the liquid level calculation means are based on both of them. Calculate the electrical conductivity coefficient so that there is no error with.
In other words, the potential difference is input to the liquid surface level calculation means, and the coefficient that the liquid surface level obtained by performing the arithmetic processing using the electric conductivity coefficient becomes the reference level is obtained. Then, based on the electric conductivity coefficient thus obtained, the internal resistance changing means changes the internal resistance of the measuring circuit according to the target liquid quality, and the liquid level calculating means changes the internal resistance changing means. By calculating the liquid level based on the internal resistance
Logical value (calculation result obtained by liquid level calculation means)
There is no difference between the measured value and the measured value, and accurate liquid level measurement is performed.

【0064】したがって、多様な液体に対して電極棒型
のレベル計測機器が実現できるし、液質が変化してもそ
れに対応した学習が得られるので、液質の変化にも対応
できる電極棒型のレベル計測機器が実現できるし、更に
は、多様な液体に対して分解能の高い電極棒型のレベル
計測機器が実現できるという効果が得られる。
Therefore, an electrode rod type level measuring instrument can be realized for various liquids, and even if the liquid quality changes, learning corresponding to it can be obtained. It is possible to realize the above level measuring device, and further, it is possible to obtain the effect that an electrode rod type level measuring device having a high resolution for various liquids can be realized.

【0065】また、液面レベルの変化に対する電位差の
変化率は、内部抵抗(電極棒間に位置する液体の抵抗以
外の測定回路中の抵抗分)が大き過ぎると液面レベルの
低い箇所では非常に大きく高精度な測定が可能となる
が、すぐに変化量が減少して測定不能(誤差が大きい)
となる。また、逆に抵抗値が小さすぎると、やはり全体
的に電位差の変化分が少なく、高精度の液面レベル計測
ができない。そこで、抵抗値決定手段にて、測定する液
体の液質等に即し、前記液面レベルの計測範囲内での前
記電極間の電位差の変化率の全体に高くなる所定の内部
抵抗値を求める。そして、係る決定した内部抵抗値のと
きの前記電極間の電位差と液位の関係を求め、この液位
の計測範囲について幾つかの区間に分け、この区間毎に
付いての最大の分解能を実現できる内部抵抗を求め、こ
の内部抵抗を基に液位を算出することにより、全体的に
高精度の計測が可能となる。
Further, the rate of change of the potential difference with respect to the change of the liquid surface level is extremely large at a place where the liquid surface level is low if the internal resistance (the resistance component in the measuring circuit other than the resistance of the liquid located between the electrode rods) is too large. Large and highly accurate measurement is possible, but the amount of change immediately decreases and measurement is impossible (large error).
Becomes On the other hand, if the resistance value is too small, the amount of change in the potential difference is small as a whole and highly accurate liquid level measurement cannot be performed. Therefore, the resistance value determining means obtains a predetermined internal resistance value that is high in the entire rate of change of the potential difference between the electrodes within the measurement range of the liquid level in accordance with the quality of the liquid to be measured. . Then, the relationship between the potential difference between the electrodes and the liquid level at the determined internal resistance value is obtained, the measurement range of this liquid level is divided into several sections, and the maximum resolution for each section is realized. By obtaining the possible internal resistance and calculating the liquid level based on this internal resistance, it is possible to perform highly accurate measurement as a whole.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る液面レベル計測装置の一実施例を
示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing an embodiment of a liquid level measuring device according to the present invention.

【図2】液面レベル(液位)に対する第1、第2の電極
棒間の電位差の関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the liquid level (liquid level) and the potential difference between the first and second electrode rods.

【図3】液面レベル(液位)に対する第1、第3の電極
棒間の電位差の関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the liquid level (liquid level) and the potential difference between the first and third electrode rods.

【図4】電気伝導係数算出部の機能の一部を示すフロー
チャートである。
FIG. 4 is a flowchart showing a part of the function of the electric conductivity coefficient calculation unit.

【図5】内部抵抗を変えた場合の液面レベル(液位)に
対する第1、第2の電極棒間の電位差の関係を示すグラ
フである。
FIG. 5 is a graph showing the relationship between the liquid level (liquid level) and the potential difference between the first and second electrode rods when the internal resistance is changed.

【図6】内部抵抗r1のときの液位Lについて等分割
し、その液位Lに対する第1、第2の電極棒間の電位差
の関係を示すグラフである。
FIG. 6 is a graph showing a relationship between the liquid level L when the internal resistance is r1 and the potential difference between the first and second electrode rods with respect to the liquid level L.

【図7】内部抵抗決定部の機能の一部を示すフローチャ
ートである。
FIG. 7 is a flowchart showing a part of the function of an internal resistance determination unit.

【図8】本実施例の作用を説明するフローチャートであ
る。
FIG. 8 is a flowchart illustrating the operation of this embodiment.

【図9】LM(i)、VL(i)、rk(i)の算出フ
ローチャートである。
FIG. 9 is a calculation flowchart of LM (i), VL (i), and rk (i).

【図10】電圧V(L)の存在範囲を求めるフローチャ
ートである。
FIG. 10 is a flowchart for obtaining the existence range of the voltage V (L).

【図11】液位計算フローチャートである。FIG. 11 is a liquid level calculation flowchart.

【図12】本発明に係る液面レベル計測装置の具体的な
回路構成の一例を示す図である。
FIG. 12 is a diagram showing an example of a specific circuit configuration of the liquid level measuring device according to the present invention.

【図13】内部抵抗調整部の内部構成を示す図である。FIG. 13 is a diagram showing an internal configuration of an internal resistance adjusting unit.

【図14】従来の液面レベル計測装置を示す概略構成図
である。
FIG. 14 is a schematic configuration diagram showing a conventional liquid level measuring device.

【符号の説明】[Explanation of symbols]

10 第1の電極棒 11 第2の電極棒 13 液体 15 電源 16 計測部 17 液位算出部 20 電気伝導係数算出部(電気伝導係数算出手段) 21 第3の電極棒(基準レベル検知手段) 22 電源(基準レベル検知手段) 23 計測部(基準レベル検知手段) 24 比較器(基準レベル検知手段) 25 抵抗値決定部(抵抗値決定手段) 31 内部抵抗調整部 r、r1 可変抵抗 10 First Electrode Rod 11 Second Electrode Rod 13 Liquid 15 Power Supply 16 Measuring Unit 17 Liquid Level Calculating Unit 20 Electric Conduction Coefficient Calculating Unit (Electric Conduction Coefficient Calculating Means) 21 Third Electrode Rod (Reference Level Detecting Means) 22 Power supply (reference level detection means) 23 Measuring section (reference level detection means) 24 Comparator (reference level detection means) 25 Resistance value determination section (resistance value determination means) 31 Internal resistance adjustment section r, r1 Variable resistance

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 液体に挿入可能な複数本の電極と、 前記電極間に所定の電圧を印加する電圧印加手段と、 前記電極間の電位差に基づいて前記液体の液面レベルを
算出する液面レベル算出手段とを備えた液面レベル計測
装置において、 前記液体の液面が予め設定された基準レベルになったこ
とを検知する基準レベル検知手段と、 現在の液面レベルが前記基準レベルの時の前記電極間の
電位差を受け、その電位差と前記基準レベルから液面レ
ベルの実測値と前記液面レベル算出手段により算出され
る理論値との誤差をなくすための電気伝導係数を算出す
る電気伝導係数算出手段と、 前記電気伝導係数算出手段により得られた電気伝導係数
を基にして計測回路の内部抵抗を対象の液質により変更
する内部抵抗変更手段とを備え、 前記液面レベル算出手段は、前記内部抵抗変更手段によ
り変更された内部抵抗に基づいて液面レベルの算出を行
うようにしたことを特徴とする液面レベル計測装置。
1. A plurality of electrodes that can be inserted into a liquid, a voltage applying unit that applies a predetermined voltage between the electrodes, and a liquid surface that calculates a liquid surface level of the liquid based on a potential difference between the electrodes. A liquid level measuring device comprising level calculation means, wherein a reference level detection means for detecting that the liquid level of the liquid has reached a preset reference level, and a current liquid level is the reference level The electric conduction for receiving an electric potential difference between the electrodes and calculating an electric conduction coefficient for eliminating an error between the measured value of the liquid level and the theoretical value calculated by the liquid level calculating means from the potential difference and the reference level. And a coefficient calculating unit, and an internal resistance changing unit that changes the internal resistance of the measuring circuit according to the target liquid quality based on the electric conductivity obtained by the electric conductivity calculating unit. The liquid level measuring device is characterized in that the output means calculates the liquid level based on the internal resistance changed by the internal resistance changing means.
【請求項2】 前記内部抵抗変更手段は、前記電気伝導
係数算出手段により得られた電気伝導係数を基にして計
測回路の内部抵抗の計測範囲を幾つかの区間に分け、区
間毎に最適の内部抵抗を求めるようにした請求項1記載
の液面レベル計測装置。
2. The internal resistance changing means divides the measuring range of the internal resistance of the measuring circuit into several sections on the basis of the electric conductivity coefficient obtained by the electric conductivity coefficient calculating means, and makes an optimum value for each section. The liquid level measuring device according to claim 1, wherein the internal resistance is obtained.
JP34959493A 1993-12-28 1993-12-28 Liquid level measuring instrument Pending JPH07198449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34959493A JPH07198449A (en) 1993-12-28 1993-12-28 Liquid level measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34959493A JPH07198449A (en) 1993-12-28 1993-12-28 Liquid level measuring instrument

Publications (1)

Publication Number Publication Date
JPH07198449A true JPH07198449A (en) 1995-08-01

Family

ID=18404788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34959493A Pending JPH07198449A (en) 1993-12-28 1993-12-28 Liquid level measuring instrument

Country Status (1)

Country Link
JP (1) JPH07198449A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101428294B1 (en) * 2012-12-18 2014-08-07 현대자동차주식회사 Integrated sensor for vehicles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101428294B1 (en) * 2012-12-18 2014-08-07 현대자동차주식회사 Integrated sensor for vehicles

Similar Documents

Publication Publication Date Title
US4425795A (en) Device for the electric monitoring of the level of a liquid contained in a container
US7550979B2 (en) System and method for measuring conductivity of fluid
CA1266299A (en) Technique for the measurement of high purity water
US7772854B2 (en) High-conductivity contacting-type conductivity measurement
JPH0684949B2 (en) How to measure ion concentration
GB2213271A (en) Measuring the water vapour dew point in gases
CN111542760B (en) System and method for correcting current value of shunt resistor
WO2008021546A2 (en) Impedance measurement of a ph electrode
US5872454A (en) Calibration procedure that improves accuracy of electrolytic conductivity measurement systems
JPH07198449A (en) Liquid level measuring instrument
KR100268531B1 (en) Quality discrimination method for screening insoection of capacitor manufactured
JPS58122465A (en) Conductivity detector and its method
JPH06317449A (en) Liquid level measuring equipment
CN114720770A (en) Conductance characteristic detection circuit, detection method and detection device
JP2007315981A (en) Measuring device and inspection device
CN208569063U (en) A kind of wall measuring device
JPH06307915A (en) Liquid sensor
JPH07198452A (en) Liquid level measuring instrument
JPH07198450A (en) Liquid level measuring instrument
JPH07243891A (en) Liquid surface level controller
CN108732631A (en) A kind of wall measuring apparatus and measurement method
JPH07181070A (en) Electrode and liquid level measuring apparatus
JP3999380B2 (en) Concrete level sensor
CN220271221U (en) Device for measuring concentration of solution
JPH07198451A (en) Liquid level measuring instrument