JPH07198306A - Method for measuring deviation of metal pipe thickness - Google Patents

Method for measuring deviation of metal pipe thickness

Info

Publication number
JPH07198306A
JPH07198306A JP33465593A JP33465593A JPH07198306A JP H07198306 A JPH07198306 A JP H07198306A JP 33465593 A JP33465593 A JP 33465593A JP 33465593 A JP33465593 A JP 33465593A JP H07198306 A JPH07198306 A JP H07198306A
Authority
JP
Japan
Prior art keywords
wall thickness
thickness
measuring
metal tube
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33465593A
Other languages
Japanese (ja)
Inventor
Akio Suzuki
紀生 鈴木
Toshiyuki Yanai
敏志 柳井
Hiroyuki Kijima
広行 木島
Katsumi Okubo
克己 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP33465593A priority Critical patent/JPH07198306A/en
Publication of JPH07198306A publication Critical patent/JPH07198306A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PURPOSE:To provide a method for measuring thickness deviation of a metal pipe wherein the thickness deviation of the metal pipe can be measured even under condition in which many condition changes exist in an elongation extraction process. CONSTITUTION:Detection coils 5a, 5b and 6a, 6b opposedly disposed in the direction of a diameter of a metal pipe 4 are differentially connected and detect a difference of thickness in the direction of the diameter, thus a thickness deviation is detected. In addition, since the thickness deviation of the pipe formed by elongation extraction using a die and a plug, the sum of the thickness in the direction of the diameter of the pipe is the same in any direction, so the thickness deviation in the diameter of a plurality of orthogonal directions is detected and a quantity of the thickness deviation can be found by calculating the maximum thickness deviation. Furthermore, since a plurality of pairs of the opposedly disposed detection coils 5a, 5b, 6a, 6b, are arranged on a similar circumference, no influence of temperature change is effected, because the generation of heat of the metal pipe due to plastic deformation of the elongation extraction is constant on the same circumference and furthermore measurement of a thickness difference due to differential output is conducted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,金属管の肉厚分布の偏
り状態を測定する偏肉測定方法に係り,詳しくは,金属
管を製造する抽伸工程中の状態変化,測定制約の多い条
件下でも金属管の肉厚分布の測定を可能にした金属管肉
厚の偏肉測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an uneven thickness measuring method for measuring an uneven state of wall thickness distribution of a metal pipe, and more specifically, a condition change during drawing process for producing a metal pipe and a condition having many measurement restrictions. The present invention also relates to a method for measuring the wall thickness unevenness of a metal tube, which enables measurement of the wall thickness distribution of the metal tube.

【0002】[0002]

【従来の技術】金属管の肉厚の測定方法として,金属管
に近接配置したコイルのインピーダンスが肉厚により変
化することを利用した電磁誘導法が知られている。金属
管に近接配置されたコイルのインピーダンスは,管材
質,励振周波数等の測定条件を一定にすれば,管の肉厚
及びコイルと管との離隔距離に依存して変化するので,
少なくとも一対の検査コイルを管の両側の所定位置に対
称に配置して,そのインピーダンスの変化を検出するこ
とによって,金属管の肉厚を測定することができる。図
14に示すブロック図は,特開平1−209302号公
報に開示された金属管の肉厚測定方法を実施するための
構成を示し,上記電磁誘導法により鋼管の肉厚を測定す
るものである。測定対象とする鋼管31の両側に対向配
置された検査コイル32,33のインピーダンス変化を
検出することにより,鋼管31の肉厚が測定できるよう
に構成されている。上記従来例構成では,鋼管31は回
転装置によって回転され,鋼管31の回転角度に対応し
てパルスジェネレータ34から出力されるタイミング信
号により,各検査コイル32,33のインピーダンスが
各インピーダンスメータ35,36によって測定され
る。鋼管31の回転角度毎に各検査コイル32,33の
インピーダンスをそれぞれ位相解析することによって鋼
管31の肉厚分布が検出できる。
2. Description of the Related Art An electromagnetic induction method is known as a method for measuring the wall thickness of a metal tube, which utilizes the fact that the impedance of a coil arranged close to the metal tube changes depending on the wall thickness. The impedance of the coil placed close to the metal pipe changes depending on the wall thickness of the pipe and the separation distance between the coil and the pipe, if the measurement conditions such as the pipe material and the excitation frequency are constant.
The wall thickness of the metal pipe can be measured by arranging at least a pair of inspection coils symmetrically at predetermined positions on both sides of the pipe and detecting a change in impedance thereof. The block diagram shown in FIG. 14 shows a configuration for carrying out the method for measuring the wall thickness of a metal pipe disclosed in Japanese Patent Laid-Open No. 1-209302, in which the wall thickness of a steel pipe is measured by the electromagnetic induction method. . The wall thickness of the steel pipe 31 can be measured by detecting the impedance changes of the inspection coils 32 and 33 arranged on both sides of the steel pipe 31 to be measured. In the above conventional configuration, the steel pipe 31 is rotated by the rotating device, and the impedance of each inspection coil 32, 33 is measured by the timing signal output from the pulse generator 34 according to the rotation angle of the steel pipe 31. Measured by The wall thickness distribution of the steel pipe 31 can be detected by phase-analyzing the impedance of each inspection coil 32, 33 for each rotation angle of the steel pipe 31.

【0003】[0003]

【発明が解決しようとする課題】しかしながら,上記肉
厚の測定方法により抽伸工程中の金属管の肉厚を測定す
ることはできない。即ち,抽伸工程中の管では,塑性変
形による温度上昇により管温度が急速に変化するため,
金属管の電気抵抗が変化して検査コイルの出力に変化が
生じて正確な測定値が得られない。又,抽伸工程中では
上記温度変化だけでなく,金属管は抽伸速度で移動して
おり,上記従来方法のように回転させて一円周上の肉厚
分布の測定をすることも不可能である。そこで,本発明
の目的とするところは,抽伸工程中の状態変化が多い条
件下で,金属管の肉厚分布,即ち偏肉を測定することが
できる金属管の偏肉測定方法を提供することにある。
However, it is not possible to measure the wall thickness of the metal pipe during the drawing process by the above wall thickness measuring method. That is, in the pipe during the drawing process, the temperature of the pipe changes rapidly due to the temperature rise due to plastic deformation.
The electric resistance of the metal tube changes and the output of the inspection coil changes, so that an accurate measured value cannot be obtained. Also, during the drawing process, not only the temperature change but also the metal tube is moving at the drawing speed, and it is impossible to measure the wall thickness distribution on one circumference by rotating it as in the conventional method. is there. Therefore, an object of the present invention is to provide a method for measuring the uneven thickness of a metal pipe, which is capable of measuring the wall thickness distribution of the metal pipe, that is, the uneven thickness, under the condition that the state changes a lot during the drawing process. It is in.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に本発明が採用する方法は,金属管の表面に検出コイル
を近接配置して所定周波数電力により励振し,上記検出
コイルのインピーダンスが金属管の肉厚の変動により変
化した変化量を検出することにより上記金属管の肉厚を
検出し,管周上の複数位置の肉厚分布から偏肉を測定す
る金属管肉厚の偏肉測定方法において,上記検出コイル
を上記金属管の中心軸から所定距離離れた管周上の両側
に対向させて同一円周上に複数対配置し,対向する上記
検出コイル対を差動接続して,該対向コイル間の差動出
力変化成分から,対向方向に直交する方向成分の大きさ
から対向方向の肉厚差を測定し,複数対の検出コイルに
よる測定値から金属管の偏肉状態を算出する金属管肉厚
の偏肉測定方法である。上記測定方法において,上記検
出コイルは捲線径の長短比が3以上に形成された矩形コ
イルの長辺方向を金属管の軸心方向に一致させて配置さ
れる。上記測定方法において,上記金属管の外径と肉厚
差との関係データにより測定値を補正することができ
る。上記測定方法において,上記金属管の抽伸速度デー
タにより測定値を補正することができる。上記測定方法
において,上記検出コイルを低周波に高周波を重畳した
電力で励振することができる。
In order to achieve the above object, the method adopted by the present invention is such that a detection coil is closely arranged on the surface of a metal tube and excited by a predetermined frequency power, and the impedance of the detection coil is metallic. Uneven thickness measurement of metal pipe wall thickness by detecting the wall thickness of the metal pipe by detecting the amount of change caused by the change in the wall thickness of the pipe, and measuring the uneven thickness from the wall thickness distribution at multiple positions on the circumference of the pipe In the method, a plurality of pairs of the detection coils are arranged on the same circumference so as to be opposed to each other on both sides of the circumference of the pipe separated from the central axis of the metal pipe by a predetermined distance, and the detection coil pairs facing each other are connected differentially From the differential output change component between the facing coils, the difference in wall thickness in the facing direction is measured from the magnitude of the direction component orthogonal to the facing direction, and the uneven thickness state of the metal pipe is calculated from the measured values by the multiple pairs of detection coils. By measuring the uneven thickness of the metal pipe That. In the above measuring method, the detection coil is arranged such that the long side direction of the rectangular coil formed with a winding diameter length ratio of 3 or more is aligned with the axial direction of the metal tube. In the above measuring method, the measured value can be corrected by the relationship data between the outer diameter of the metal tube and the wall thickness difference. In the above measuring method, the measured value can be corrected by the drawing speed data of the metal tube. In the above measuring method, the detection coil can be excited by electric power in which a high frequency is superimposed on a low frequency.

【0005】[0005]

【作用】所定周波数電力により励振された検出コイルを
金属管に近接させて配置すると,金属管に発生する渦電
流による磁界が検出コイルに作用して検出コイルのイン
ピーダンスが変化する。検出コイルのインピーダンス変
化は,検出コイルと金属管との距離(リフトオフ)及び
検出コイルが近接された位置の金属管肉厚に比例して変
化する。上記リフトオフと肉厚とによるインピーダンス
変化の関係は,リフトオフ変動方向のインピーダンス変
化に対し,肉厚変動方向のインピーダンス変化は直交す
る方向に変化するので,リフトオフに直交する方向の成
分の大きさから金属管の肉厚を測定することができる。
本発明では,金属管の直径方向に対向配置された検出コ
イルを差動接続して,測定出力の差を検出することによ
り,直径方向の肉厚の差が検出される。又,ダイスとプ
ラグとを用いた抽伸により成形される管の偏肉は,管の
直径方向の肉厚の和はどの方向でも同一であることか
ら,複数方向の直径における肉厚差を検出し,最大偏肉
を算出することによって偏肉の量が求められる。更に,
対向配置される複数対の検出コイルは,同一円周上に配
置されるので,抽伸の塑性変形による金属管の発熱が同
一円周では一定であることに加え,差動出力による肉厚
差の測定を行うため,温度変化の影響を受けない。
When the detection coil excited by the power of the predetermined frequency is arranged close to the metal tube, the magnetic field due to the eddy current generated in the metal tube acts on the detection coil to change the impedance of the detection coil. The impedance change of the detection coil changes in proportion to the distance (lift-off) between the detection coil and the metal pipe and the wall thickness of the metal pipe at the position where the detection coil is close. The relationship between the change in impedance due to the lift-off and the wall thickness is that the impedance change in the direction of change in wall thickness changes in the direction orthogonal to the change in impedance in the direction of lift-off variation. The wall thickness of the tube can be measured.
In the present invention, the difference in the diametrical wall thickness is detected by differentially connecting the detection coils that are arranged to face each other in the diametrical direction of the metal tube and detecting the difference in the measurement output. The uneven thickness of a pipe formed by drawing using a die and a plug is the same in all directions in terms of the sum of thicknesses in the diameter direction of the pipe. The amount of uneven thickness can be obtained by calculating the maximum uneven thickness. Furthermore,
Since a plurality of pairs of detection coils arranged to face each other are arranged on the same circumference, the heat generation of the metal tube due to the plastic deformation of drawing is constant on the same circumference, and the difference in wall thickness due to the differential output is Since it is measured, it is not affected by temperature changes.

【0006】上記検出コイルは,捲線径の縦横で異なる
矩形コイルの長辺を金属管の軸心方向に一致させて配置
すると,金属管が検出コイルの対向方向から直交する方
向に偏心した場合の測定精度の劣化が防止できる。上記
捲線径の長短比は3以上にしたとき,偏心の影響が効果
的に防止できる。請求項2がこれに該当する。上記測定
方法において,金属管の外径が小さくなると,渦電流の
広がりのために相対的に大きい角度範囲の肉厚の平均値
を測定することになり,測定値が実際の肉厚差より小さ
い値となるが,外径と肉厚差との関係を予め求めてお
き,このデータにより測定値を補正することで解消され
る。請求項3がこれに該当する。又,抽伸工程中に測定
する場合に,抽伸速度が早いとき,磁束が抽伸方向に引
きずられて過電流が静止状態と変るため静止状態の測定
値との変化が生じるが,抽伸速度と肉厚差との関係を予
め求めておき,このデータにより測定値を補正すること
で解消される。請求項4がこれに該当する。更に,金属
管のリフトオフが大きくなるような状態で測定する場合
には,検出コイルを低周波に高周波を重畳させて励振す
ると,大きなリフトオフにより肉厚差の測定結果が非線
形となるために生じる測定誤差を補正することができ
る。低周波による検出値と高周波による検出値との差を
測定値とすることにより,上記非線形が補正される。請
求項5がこれに該当する。
In the above detection coil, when the long sides of rectangular coils differing in length and width of the winding diameter are aligned with the axial direction of the metal tube, the metal coil is eccentric in the direction orthogonal to the facing direction of the detection coil. It is possible to prevent deterioration of measurement accuracy. When the length ratio of the winding diameter is 3 or more, the effect of eccentricity can be effectively prevented. Claim 2 corresponds to this. In the above measuring method, when the outer diameter of the metal tube becomes small, the average value of the wall thickness in a relatively large angle range is measured due to the spread of the eddy current, and the measured value is smaller than the actual wall thickness difference. However, it can be solved by obtaining the relationship between the outer diameter and the wall thickness difference in advance and correcting the measured value with this data. Claim 3 corresponds to this. Also, when measuring during the drawing process, when the drawing speed is fast, the magnetic flux is dragged in the drawing direction and the overcurrent changes from the static state to the static value. This can be solved by obtaining the relationship with the difference in advance and correcting the measured value with this data. Claim 4 corresponds to this. Furthermore, when measuring in a state where the lift-off of a metal tube is large, when the detection coil is excited by superimposing a high frequency on a low frequency, the measurement result of the thickness difference becomes non-linear due to the large lift-off. The error can be corrected. The non-linearity is corrected by using the difference between the detected value of low frequency and the detected value of high frequency as the measured value. Claim 5 corresponds to this.

【0007】[0007]

【実施例】以下,添付図面を参照して本発明を具体化し
た実施例につき説明し,本発明の理解に供する。尚,以
下の実施例は本発明を具体化した一例であって,本発明
の技術的範囲を限定するものではない。ここに,図1は
本発明の測定方法を適用した偏肉測定装置の第1実施例
構成を示す模式図,図2は実施例に係る検出コイルの配
置を示す正面図(a)と側面図(b),図3は肉厚の測
定原理を説明する模式図,図4は差動コイルによるイン
ピーダンス変化検出の原理を説明する説明図,図5は差
動コイルにより検出された金属管の角度毎の出力変化を
示すグラフ,図6は金属管の肉厚分布を実測した例を示
すグラフ,図7は差動コイルにより測定した最大偏肉量
のグラフ,図8は実測した偏肉率と差動コイルにより測
定した偏肉量とを比較したグラフ,図9は検出コイルの
捲線径の長短比による偏心時の変化を測定したグラフ,
図10は金属管の外径変化による測定値の変化を示すグ
ラフ,図11は本発明の測定方法を適用した偏肉測定装
置の第2実施例構成を示す模式図,図12は金属管の抽
伸速度と測定値との関係を示すグラフ,図13は本発明
の測定方法を適用した偏肉測定装置の第3実施例構成を
示す模式図である。
Embodiments of the present invention will be described below with reference to the accompanying drawings for the understanding of the present invention. The following embodiments are examples of embodying the present invention and do not limit the technical scope of the present invention. Here, FIG. 1 is a schematic view showing the configuration of a first embodiment of a thickness deviation measuring device to which the measuring method of the present invention is applied, and FIG. 2 is a front view (a) and a side view showing the arrangement of detection coils according to the embodiment. (B), FIG. 3 is a schematic diagram for explaining the principle of measuring the wall thickness, FIG. 4 is an explanatory diagram for explaining the principle of impedance change detection by the differential coil, and FIG. 5 is the angle of the metal tube detected by the differential coil. FIG. 6 is a graph showing an example of actually measuring the wall thickness distribution of the metal pipe, FIG. 7 is a graph showing the maximum amount of uneven thickness measured by the differential coil, and FIG. 8 is a measured uneven thickness ratio. Fig. 9 is a graph comparing the amount of eccentricity measured with a differential coil. Fig. 9 is a graph showing the change in eccentricity depending on the length ratio of the winding diameter of the detection coil.
FIG. 10 is a graph showing changes in measured values due to changes in the outer diameter of the metal pipe, FIG. 11 is a schematic diagram showing the configuration of the second embodiment of the thickness deviation measuring device to which the measuring method of the present invention is applied, and FIG. FIG. 13 is a graph showing the relationship between the drawing speed and the measured value, and FIG. 13 is a schematic diagram showing the configuration of the third embodiment of the thickness deviation measuring apparatus to which the measuring method of the present invention is applied.

【0008】図1において,偏肉測定装置1は,測定対
象とする金属管4の周囲に配置された2対の検出コイル
5a,5b及び6a,6bと,該検出コイル5a,5b
及び6a,6bの渦流によるインピーダンス変化を測定
する渦流測定器7と,該渦流測定器7の測定出力から偏
肉を測定する信号処理装置8と,該信号処理装置8内に
配備されて測定条件として入力される金属管4の外径デ
ータに基づき上記金属管4の外径変化による測定結果の
変動を補正する外径補正テーブル9とを具備して構成さ
れている。上記検出コイル5a,5b及び6a,6b
は,図2に示すように,金属管4が抽伸工程から引き出
されてくる抽伸方向の中心軸10に直交し,該中心軸1
0から等しい距離に検出コイル5aと5b及び検出コイ
ル6aと6bとを対向させると共に,検出コイル5a,
5bの対(検出コイル対5)と検出コイル6a,6bの
対(検出コイル対6)との対向方向を所定角度隔てて配
置される。本実施例では,検出コイル対5と検出コイル
対6とは,直交する角度で配置されている。又,各検出
コイル5a,5b,6a,6bは,捲線径が縦横方向に
異なる矩形コイルに形成される。本実施例における場
合,矩形コイルの短辺の径は金属管4の直径の25%程
度の3mmに,長辺の径は短辺径の3倍以上の10mmに形
成されている。この長辺の方向を上記金属管4の中心軸
10の方向に平行にして配置される。
In FIG. 1, the thickness deviation measuring device 1 includes two pairs of detection coils 5a, 5b and 6a, 6b arranged around a metal tube 4 to be measured, and the detection coils 5a, 5b.
And 6a, 6b, the eddy current measuring device 7 for measuring the impedance change due to the eddy current, the signal processing device 8 for measuring the uneven thickness from the measurement output of the eddy current measuring device 7, and the measurement condition provided in the signal processing device 8. And an outer diameter correction table 9 for correcting fluctuations in measurement results due to changes in the outer diameter of the metal tube 4 based on the outer diameter data of the metal tube 4 input as The detection coils 5a, 5b and 6a, 6b
As shown in FIG. 2, the metal pipe 4 is orthogonal to the central axis 10 in the drawing direction which is drawn out from the drawing process.
The detection coils 5a and 5b and the detection coils 6a and 6b are opposed to each other at an equal distance from 0, and
The pair of 5b (detection coil pair 5) and the pair of detection coils 6a and 6b (detection coil pair 6) are arranged with a predetermined angle therebetween. In the present embodiment, the detection coil pair 5 and the detection coil pair 6 are arranged at an orthogonal angle. Further, each of the detection coils 5a, 5b, 6a, 6b is formed as a rectangular coil having different winding diameters in the vertical and horizontal directions. In the case of this embodiment, the diameter of the short side of the rectangular coil is 3 mm, which is about 25% of the diameter of the metal tube 4, and the diameter of the long side is 10 mm, which is three times or more the diameter of the short side. The direction of the long side is arranged in parallel with the direction of the central axis 10 of the metal tube 4.

【0009】各検出コイル5a,5b,6a,6bは,
それぞれ2kHzの低周波電力で励振されると共に,検出
コイル5aと5b,検出コイル6aと6bとは,それぞ
れ差動接続される。この差動接続された検出コイル対5
と検出コイル対6との出力はそれぞれ渦流測定器7に入
力される。渦流測定器7は励磁電圧を基準として同期検
波し,励磁電流の同相成分(実数成分)と直交する成分
(虚数成分)とを検出する。上記構成になる偏肉測定装
置1による偏肉測定原理及び方法について,以下に説明
する。図3に示す肉厚の測定原理図のように,金属管1
7の両側に1対の検出コイル15,16をその相互離隔
距離を一定に保って対向させて配置すると共に,両検出
コイル15,16を差動接続して,両検出コイル15,
16の同期検波出力を測定する。いま,図3において金
属管17を検出コイル15,16の対向方向に移動(リ
フトオフ)させると,同期検波出力は変化し,インピー
ダンス面上での変化の方向は,図4に示すように偏心の
方向と量にほぼ比例した直線の軌跡を描く。この軌跡の
方向をX軸,該X軸に直交する方向をY軸として,金属
管17を軸心を一定位置に保って回転させると,偏肉の
ある金属管17のインピーダンス変化は,図4に示すよ
うにY成分をもつリサージュ図形を描く。上記Y成分の
大きさを金属管17の回転角度をステップ状に変えなが
ら測定すると,図5に示すような結果が得られる。これ
を図6に示す予め測定された同一偏肉のある金属管の周
方向の肉厚分布の測定グラフと比較すると,図5に示し
た測定結果が肉厚の差に比例した信号であることがわか
る。このように,本実施例に係る1対の検出コイルを差
動接続した出力は,測定方向の肉厚の差を検出すること
ができる。
The respective detection coils 5a, 5b, 6a, 6b are
Each of them is excited by a low frequency power of 2 kHz, and the detection coils 5a and 5b and the detection coils 6a and 6b are differentially connected. This differentially connected detection coil pair 5
The outputs of the detection coil pair 6 and the detection coil pair 6 are input to the eddy current measuring device 7, respectively. The eddy current measuring device 7 performs synchronous detection with the excitation voltage as a reference, and detects the in-phase component (real number component) and the orthogonal component (imaginary number component) of the excitation current. The principle and method of measuring the thickness deviation by the thickness deviation measuring device 1 having the above-described configuration will be described below. As shown in the principle of measuring the wall thickness shown in Fig. 3, the metal pipe 1
A pair of detection coils 15 and 16 are arranged on both sides of 7 so as to be opposed to each other while maintaining a constant distance between them, and both detection coils 15 and 16 are differentially connected to each other.
16 synchronous detection outputs are measured. Now, when the metal tube 17 is moved (lifted off) in the direction opposite to the detection coils 15 and 16 in FIG. 3, the synchronous detection output changes, and the direction of change on the impedance plane is eccentric as shown in FIG. Draw a linear trajectory that is almost proportional to the direction and amount. When the metal tube 17 is rotated with the axial center kept at a constant position with the direction of this locus as the X axis and the direction orthogonal to the X axis as the Y axis, the impedance change of the metal tube 17 with uneven thickness is shown in FIG. Draw a Lissajous figure with the Y component as shown in. When the magnitude of the Y component is measured while changing the rotation angle of the metal tube 17 in steps, the result shown in FIG. 5 is obtained. Comparing this with the measurement graph of the wall thickness distribution in the circumferential direction of the metal pipe having the same uneven thickness as shown in FIG. 6, the measurement result shown in FIG. 5 is a signal proportional to the difference in wall thickness. I understand. In this way, the output obtained by differentially connecting the pair of detection coils according to this embodiment can detect the difference in wall thickness in the measurement direction.

【0010】上記差動接続された1対の検出コイルによ
る肉厚差検出の効果は,本発明が主たる目的とする金属
管の抽伸工程における偏肉測定に有効に発揮される。金
属管の抽伸工程中での偏肉の測定を困難にする要因の1
つとして,塑性変形による管温度の上昇により電気伝導
度が変化し,検出出力に変化が生じることがある。管の
温度上昇は,塑性変形量(加工度),変形速度,熱伝導
度等の要因で決定されるが,管の周方向では一定の温度
と考えてよい。従って,同一円周上に配置された検出コ
イルの差動出力は管の温度変化に影響されない。又,従
来技術では,各検出コイルそれぞれについて肉厚を測定
する必要があるが,本発明に係る差動出力による測定方
法では,肉厚測定の構成が半減できるコスト低減効果も
発揮される。上記1対の検出コイルによる肉厚差の測定
原理を利用して,本実施例のように2対の検出コイル5
a,5b及び6a,6bを直交させて偏肉を測定するこ
とができる。抽伸工程での偏肉の発生は,ダイスに対す
るプラグの偏心により発生する。管の内形はプラグの形
状で決定され,外形はダイスの形状で決定されるので,
管の直径方向では,どの方向でも肉厚の差は一定であ
る。平均肉厚はダイスとプラグとの形状で決定され,偏
肉の量は2方向の肉厚差から下式で決定することができ
る。最大偏肉=√{(検出コイル5a,5bにより測定
された肉厚差)2 +(検出コイル6a,6bにより測定
された肉厚差)2 }/(ダイス径−プラグ径)図3に示
した肉厚の測定結果から,直交する2方向の測定値を選
択し,上式を用いて3種類の偏肉を有する金属管の最大
偏肉を計算した結果を図7に示す。8方向のどのデータ
を用いても,同じ偏肉量が測定できることがわかる。
又,偏肉量が異なる3種の金属管の偏肉を測定した結果
と,同一管を切断して肉厚を実測した結果との対比を図
8に示す。同図から本実施例構成により偏肉が測定でき
ることがわかる。
The effect of the wall thickness difference detection by the pair of differentially connected detection coils is effectively exerted in the uneven thickness measurement in the drawing process of the metal tube, which is the main object of the present invention. One of the factors that make it difficult to measure uneven thickness during the drawing process of metal tubes
For example, the electrical conductivity may change due to the rise in the temperature of the pipe due to plastic deformation, and the detection output may change. The temperature rise of the pipe is determined by factors such as the amount of plastic deformation (workability), the deformation rate, and the thermal conductivity, but it can be considered that the temperature is constant in the circumferential direction of the pipe. Therefore, the differential output of the detection coils arranged on the same circumference is not affected by the temperature change of the tube. Further, in the conventional technique, it is necessary to measure the wall thickness of each of the detection coils, but the measuring method using the differential output according to the present invention also has the cost reduction effect that the structure of the wall thickness measurement can be halved. Using the principle of measuring the difference in wall thickness by the above-mentioned pair of detecting coils, two pairs of detecting coils 5 as in this embodiment are used.
The uneven thickness can be measured by making a, 5b and 6a, 6b orthogonal. Occurrence of uneven thickness in the drawing process is caused by eccentricity of the plug with respect to the die. Since the inner shape of the pipe is determined by the shape of the plug and the outer shape is determined by the shape of the die,
In the diametrical direction of the pipe, the difference in wall thickness is constant in all directions. The average wall thickness is determined by the shapes of the die and the plug, and the amount of uneven thickness can be determined by the following formula from the wall thickness difference in the two directions. Maximum thickness deviation = √ {(difference in wall thickness measured by the detection coils 5a and 5b) 2 + (difference in wall thickness measured by the detection coils 6a and 6b) 2 } / (die diameter-plug diameter) Fig. 7 shows the results obtained by selecting the measured values in two orthogonal directions from the measured wall thickness and calculating the maximum wall thickness deviation of the metal pipe having three types of wall thickness deviation using the above equation. It can be seen that the same amount of uneven thickness can be measured using any of the data in eight directions.
FIG. 8 shows a comparison between the results of measuring the uneven thickness of three types of metal pipes having different amounts of uneven thickness and the results of measuring the wall thickness by cutting the same pipe. It can be seen from the figure that uneven thickness can be measured by the configuration of this embodiment.

【0011】本実施例構成において,各検出コイル5
a,5b,6a,6bは上記したように,矩形形状に形
成された長辺方向を金属管4の抽伸方向に平行に配置さ
れる。この形状及び配置により,金属管4が1対の対向
軸から直交する方向に偏心(リフトオフと直交する方向
への移動)したときに,出力の変化により測定精度が劣
化することが防止できる。図9は検出コイルが円形であ
る場合と,矩形である場合との上記偏心に対する影響を
測定した結果を示す。同図に示すように,矩形コイルの
長辺と短辺との差が3以上であれば,偏心による影響が
軽減される。上記実施例構成において,測定対象とする
金属管の外径が十分に大きい場合には,検出された差動
出力は測定方向の肉厚差に比例して検出することができ
る。しかし,外径が小さくなると,渦電流の広がりのた
めに相対的に大きい角度範囲の肉厚の平均値を測定する
ことになり,実際の肉厚差より小さい値となり,肉厚差
と差動出力とは完全に比例しなくなる。そこで,外径と
肉厚差との関係を予め測定しておき,この関係データに
より外径変化による誤差を補正する。外径と差動出力と
の関係は,図10に示すようになるので,この関係デー
タをを予め信号処理装置8内に具備した外径補正テーブ
ル9に記憶させておき,信号処理装置8に入力すること
により,外径による測定誤差が補正できる。
In the configuration of this embodiment, each detection coil 5
As described above, a, 5b, 6a and 6b are arranged such that the long side direction formed in the rectangular shape is parallel to the drawing direction of the metal tube 4. With this shape and arrangement, it is possible to prevent the measurement accuracy from deteriorating due to a change in output when the metal tube 4 is eccentric (moves in the direction orthogonal to the lift-off) in a direction orthogonal to the pair of opposed axes. FIG. 9 shows the results of measuring the effect on the eccentricity when the detection coil is circular and when it is rectangular. As shown in the figure, when the difference between the long side and the short side of the rectangular coil is 3 or more, the influence of eccentricity is reduced. In the configuration of the above embodiment, when the outer diameter of the metal tube to be measured is sufficiently large, the detected differential output can be detected in proportion to the thickness difference in the measuring direction. However, when the outer diameter becomes smaller, the average value of the wall thickness in a relatively large angle range is measured due to the spread of the eddy current, which is smaller than the actual wall thickness difference, and the difference between the wall thickness difference and It is no longer in direct proportion to the output. Therefore, the relationship between the outer diameter and the wall thickness difference is measured in advance, and the error due to the outer diameter change is corrected by this relational data. Since the relationship between the outer diameter and the differential output is as shown in FIG. 10, this relational data is stored in advance in the outer diameter correction table 9 provided in the signal processing device 8 and the signal processing device 8 stores it. By inputting, the measurement error due to the outer diameter can be corrected.

【0012】次に,本発明の第2実施例測定方法につい
て説明する。本実施例は抽伸速度で移動する金属管の偏
肉測定が,抽伸速度が早いときに生じる誤差を補正する
処理を加えた測定方法である。図11において,第2実
施例方法を適用した偏肉測定装置2は,抽伸装置11を
制御する抽伸機制御装置12から抽伸速度信号を取り出
し,これを信号処理装置8に入力して測定データが補正
できるよう構成されている。他の構成は上記第1実施例
構成と同様に構成されているので,その説明は省略す
る。抽伸速度で移動する金属管4に検出コイル5a,5
b,6a,6bを配置して偏肉を測定するとき,抽伸速
度が早くなると,渦電流のために磁束が金属管4の搬送
方向に引きずられ,静止状態の測定値とのずれが生じ
る。差動検出により対象物の移動による影響は,単独コ
イルにより個別に測定する方法に比して少ないが,少な
からず抽伸速度の影響を受ける。差動出力の抽伸速度依
存性を測定した結果,図12に示すように,抽伸速度が
早くなると,偏肉が一定であっても出力は小さくなるの
で,速度信号により測定データを補正することにより,
抽伸速度の変化による測定誤差の発生は解消される。次
いで,本発明の第3実施例測定方法について説明する。
本実施例は金属管4のリフトオフが大きくなるような場
合に生じる測定誤差を補正する処理を加えた測定方法で
ある。図11において,第3実施例方法を適用した偏肉
測定装置3は,上記第1実施例の構成と渦流測定器7a
の構成を異にして構成されている。本構成においては,
各検出コイル5a,5b,6a,6bを励振する2kHz
の周波数に100kKzの高周波が重畳される。又,渦流
測定器7aにはリフトオフ補正回路13が組み込まれて
いる。他の構成は上記第1実施例構成と同様に構成され
ているので,その説明は省略する。
Next, the measuring method of the second embodiment of the present invention will be described. The present embodiment is a measuring method in which uneven thickness measurement of a metal pipe moving at a drawing speed is added with a process of correcting an error generated when the drawing speed is high. In FIG. 11, the thickness deviation measuring device 2 to which the method of the second embodiment is applied takes out a drawing speed signal from a drawing machine control device 12 which controls the drawing device 11, and inputs the drawing speed signal to a signal processing device 8 to obtain measurement data. It is configured so that it can be corrected. The rest of the configuration is the same as the configuration of the first embodiment, so description thereof will be omitted. The detection coils 5a, 5 are attached to the metal tube 4 which moves at the drawing speed.
When the uneven thickness is measured by arranging b, 6a, and 6b, when the drawing speed becomes faster, the magnetic flux is dragged in the transport direction of the metal tube 4 due to the eddy current, and a deviation from the measured value in the stationary state occurs. The influence of the movement of the object due to the differential detection is less than the method of individually measuring with a single coil, but it is affected to a large extent by the drawing speed. As a result of measuring the drawing speed dependence of the differential output, as shown in FIG. 12, when the drawing speed becomes faster, the output becomes smaller even if the uneven thickness is constant. Therefore, by correcting the measurement data by the speed signal, ,
The occurrence of measurement error due to changes in the drawing speed is eliminated. Next, the measuring method of the third embodiment of the present invention will be described.
The present embodiment is a measuring method in which a process of correcting a measurement error that occurs when the lift-off of the metal tube 4 becomes large is added. In FIG. 11, the thickness unevenness measuring device 3 to which the method of the third embodiment is applied is the same as the structure of the first embodiment and the eddy current measuring device 7a.
Are configured differently. In this configuration,
2 kHz for exciting each detection coil 5a, 5b, 6a, 6b
The high frequency of 100 kHz is superimposed on the frequency of. A lift-off correction circuit 13 is incorporated in the eddy current measuring device 7a. The rest of the configuration is the same as the configuration of the first embodiment, so description thereof will be omitted.

【0013】金属管4のリフトオフが小さい間は,リフ
トオフによるインピーダンスの変化は直線で変化し,先
に第1実施例において説明したように,Y方向成分から
肉厚差が検出できるが,リフトオフが大きくなるとイン
ピーダンスの変化は非線形(X軸成分)となり,測定誤
差が発生する。この測定誤差を補正するために,各検出
コイル5a,5b,6a,6bを低周波(2kHz)と高
周波(100kHz)とにより励振して,上記変化成分の
非線形を補正する。高周波では金属管4に対する浸透深
さが小さいため,肉厚の影響は現れずにリフトオフの影
響のみが生じて非線形が生じる。このリフトオフによる
非線形は低周波にも生じるが,低周波では金属管4への
浸透深さが大きいので,肉厚によるY方向成分の検出が
なされる。低周波の非線形と高周波の非線形は同じ形状
であるため,この両者の差をリフトオフ補正回路13に
より取り出し,渦流測定器7aの測定データを補正する
ことによって,リフトオフが大きくなるような場合にも
測定結果に影響が生じない。以上説明した各実施例にお
いては,検出コイルを2対で構成した例を示したが,3
対以上に検出コイル対を配置することもできる。この場
合では,個々の検出コイル対の測定値から,偏心方向と
最大偏心量との2つの未知数を最少自乗法で算出する。
While the lift-off of the metal tube 4 is small, the impedance change due to the lift-off changes in a straight line. As described above in the first embodiment, the thickness difference can be detected from the Y-direction component, but the lift-off does not occur. When it becomes large, the change in impedance becomes non-linear (X-axis component) and a measurement error occurs. In order to correct this measurement error, each detection coil 5a, 5b, 6a, 6b is excited by a low frequency (2 kHz) and a high frequency (100 kHz) to correct the non-linearity of the change component. Since the penetration depth into the metal tube 4 is small at a high frequency, the influence of the wall thickness does not appear, but only the effect of lift-off occurs and nonlinearity occurs. The non-linearity due to this lift-off also occurs at low frequencies, but since the penetration depth into the metal tube 4 is large at low frequencies, the Y-direction component due to the wall thickness is detected. Since the low-frequency nonlinearity and the high-frequency nonlinearity have the same shape, the difference between the two is taken out by the lift-off correction circuit 13 and the measurement data of the eddy current measuring device 7a is corrected to measure even when the lift-off becomes large. The result is not affected. In each of the embodiments described above, the example in which the detection coils are configured in two pairs has been described.
It is also possible to arrange the detection coil pairs in more than one pair. In this case, two unknowns of the eccentricity direction and the maximum eccentricity are calculated from the measured values of the individual detection coil pairs by the least square method.

【0014】[0014]

【発明の効果】以上の説明の通り本発明によれば,金属
管の直径方向に対向配置された検出コイルを差動接続し
て,測定出力の差を検出することにより,安価に直径方
向の肉厚の差,即ち偏肉が検出される。又,ダイスとプ
ラグとを用いた抽伸により成形される管の偏肉は,管の
直径方向の肉厚の和はどの方向でも同一であることか
ら,直交する複数方向の直径における肉厚偏肉を検出
し,最大偏肉を算出することによって偏肉の量が求めら
れる。更に,対向配置される複数対の検出コイルは,同
一円周上に配置されるので,抽伸の塑性変形による金属
管の発熱が同一円周では一定であるため,温度変化の影
響を受けない。上記検出コイルは,捲線径の縦横で異な
る矩形コイルの長辺を金属管の軸心方向に一致させて配
置すると,金属管が検出コイルの対向方向から直交する
方向に偏心した場合の測定精度の劣化が防止できる。上
記捲線径の長短比は3以上にしたとき,偏心の影響が効
果的に防止できる。(請求項2)上記測定方法におい
て,金属管の外径が小さくなると,渦電流の広がりのた
めに相対的に大きい角度範囲の肉厚の平均値を測定する
ことになり,測定値が実際の肉厚差より小さい値となる
が,外径と肉厚差との関係を予め求めておき,このデー
タにより測定値を補正することで解消される。(請求項
3)又,抽伸工程中に測定する場合に,抽伸速度が早い
とき,渦電流の磁界が抽伸方向に引きずられて静止状態
の測定値との変化が生じるが,抽伸速度と肉厚差との関
係を予め求めておき,このデータにより測定値を補正す
ることで解消される。(請求項4)更に,金属管のリフ
トオフが大きくなるような状態で測定する場合には,検
出コイルを低周波に高周波を重畳させて励振すると,大
きなリフトオフにより肉厚差の測定結果が非線形となる
ために生じる測定誤差を補正することができる。低周波
による検出値と高周波による検出値との差を測定値とす
ることにより,上記非線形が補正される。(請求項5)
As described above, according to the present invention, the detection coils that are arranged to face each other in the diametrical direction of the metal tube are differentially connected to each other to detect the difference between the measurement outputs, so that the diametrical direction can be inexpensively obtained. The difference in wall thickness, that is, uneven thickness is detected. In addition, the uneven thickness of a pipe formed by drawing using a die and a plug is the same in all directions in terms of the sum of the thicknesses in the diameter direction of the pipe. The amount of uneven thickness can be obtained by detecting and calculating the maximum uneven thickness. Further, since the plurality of pairs of detection coils arranged to face each other are arranged on the same circumference, the heat generation of the metal tube due to the plastic deformation of the drawing is constant on the same circumference, so that it is not affected by the temperature change. In the above detection coil, when the long sides of the rectangular coils which are different in length and width of the winding diameter are arranged so as to coincide with the axial direction of the metal tube, the measurement accuracy of the metal tube is decentered in the direction orthogonal to the facing direction of the detection coil. Deterioration can be prevented. When the length ratio of the winding diameter is 3 or more, the effect of eccentricity can be effectively prevented. (Claim 2) In the above measuring method, when the outer diameter of the metal tube becomes small, the average value of the wall thickness in a relatively large angular range is measured due to the spread of the eddy current. Although the value is smaller than the wall thickness difference, it can be resolved by obtaining the relationship between the outer diameter and the wall thickness difference in advance and correcting the measured value with this data. (Claim 3) Also, when measuring during the drawing process, when the drawing speed is fast, the magnetic field of the eddy current is dragged in the drawing direction, which causes a change from the measured value in the stationary state. This can be solved by obtaining the relationship with the difference in advance and correcting the measured value with this data. (Claim 4) Furthermore, in the case where the measurement is performed in a state where the lift-off of the metal pipe is large, when the detection coil is excited by superimposing a high frequency on a low frequency, the measurement result of the thickness difference becomes non-linear due to the large lift-off. Therefore, it is possible to correct the measurement error that occurs. The non-linearity is corrected by using the difference between the detected value of low frequency and the detected value of high frequency as the measured value. (Claim 5)

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の測定方法を適用した偏肉測定装置の
第1実施例構成を示す模式図。
FIG. 1 is a schematic diagram showing a configuration of a first embodiment of a thickness deviation measuring device to which a measuring method of the present invention is applied.

【図2】 実施例に係る検出コイルの配置を示す正面図
(a)と側面図(b)。
FIG. 2 is a front view (a) and a side view (b) showing an arrangement of detection coils according to an embodiment.

【図3】 肉厚差の測定原理を説明する模式図。FIG. 3 is a schematic diagram illustrating the measurement principle of the thickness difference.

【図4】 差動コイルによるインピーダンス変化検出の
原理を説明する説明図。
FIG. 4 is an explanatory diagram illustrating the principle of impedance change detection using a differential coil.

【図5】 差動コイルにより検出された金属管の角度毎
の出力変化を示すグラフ。
FIG. 5 is a graph showing an output change for each angle of the metal tube detected by the differential coil.

【図6】 金属管の肉厚分布を実測した例を示すグラ
フ。
FIG. 6 is a graph showing an example of actually measuring the wall thickness distribution of a metal tube.

【図7】 差動コイルにより測定した最大偏肉量のグラ
フ。
FIG. 7 is a graph of the maximum thickness deviation measured with a differential coil.

【図8】 実測した偏肉率と差動コイルにより測定した
偏肉量とを比較したグラフ。
FIG. 8 is a graph comparing the measured thickness deviation rate with the thickness deviation measured with a differential coil.

【図9】 検出コイルの捲線径の長短比による偏心時の
変化を測定したグラフ。
FIG. 9 is a graph in which a change in eccentricity according to a length ratio of a winding diameter of a detection coil is measured.

【図10】 金属管の外径変化による測定値の変化を示
すグラフ。
FIG. 10 is a graph showing changes in measured values due to changes in the outer diameter of the metal tube.

【図11】 本発明の測定方法を適用した偏肉測定装置
の第2実施例構成を示す模式図。
FIG. 11 is a schematic diagram showing the configuration of a second embodiment of a thickness deviation measuring device to which the measuring method of the present invention is applied.

【図12】 金属管の抽伸速度と測定値との関係を示す
グラフ。
FIG. 12 is a graph showing the relationship between the drawing speed of a metal tube and the measured value.

【図13】 本発明の測定方法を適用した偏肉測定装置
の第3実施例構成を示す模式図。
FIG. 13 is a schematic diagram showing the configuration of a third embodiment of a thickness deviation measuring device to which the measuring method of the present invention is applied.

【図14】 従来例に係る金属管の肉厚測定方法を適用
した肉厚測定装置の構成を示す模式図。
FIG. 14 is a schematic diagram showing a configuration of a wall thickness measuring device to which a metal tube wall thickness measuring method according to a conventional example is applied.

【符号の説明】[Explanation of symbols]

1,2,3…偏肉測定装置 4…金属管 5a,5b,6a,6b…検出コイル 7…渦流測定器 8…信号処理装置 9…外径補正テーブル 10…中心軸(抽伸方向) 11…抽伸装置 12…リフトオフ補正回路 1, 2, 3 ... Uneven thickness measuring device 4 ... Metal tube 5a, 5b, 6a, 6b ... Detection coil 7 ... Eddy current measuring device 8 ... Signal processing device 9 ... Outer diameter correction table 10 ... Central axis (drawing direction) 11 ... Drawing device 12 ... Lift-off correction circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大久保 克己 神奈川県秦野市平沢65番地 株式会社神戸 製鋼所秦野工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsumi Okubo 65 Hirazawa, Hadano City, Kanagawa Prefecture Kobe Steel Works, Ltd. Hadano Plant

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 金属管の表面に検出コイルを近接配置し
て所定周波数電力により励振し,金属管の肉厚の変動に
より変化した上記検出コイルのインピーダンスを検出す
ることにより上記金属管の肉厚を検出し,管周上の複数
位置の肉厚分布から偏肉を測定する金属管肉厚の偏肉測
定方法において,上記検出コイルを上記金属管の中心軸
から所定距離離れた管周上の両側に対向配備して検出コ
イル対とし,上記検出コイル対を同一円周上に所定角度
離して複数対配備し,上記検出コイル対間を差動接続し
て対向方向の肉厚差を測定し,複数対の検出コイル対に
より測定された上記肉厚差から金属管の偏肉状態を算出
する金属管肉厚の偏肉測定方法。
1. A wall thickness of the metal tube is obtained by arranging a detection coil close to the surface of the metal tube, exciting the coil with a predetermined frequency electric power, and detecting the impedance of the detection coil changed due to a variation in the wall thickness of the metal tube. In the method for measuring the uneven thickness of a metal pipe, in which the unevenness is measured from the wall thickness distribution at a plurality of positions on the circumference of the pipe, the detection coil is arranged on the circumference of the pipe at a predetermined distance from the central axis of the metal pipe. The detection coil pairs are arranged on both sides so as to face each other, and a plurality of the detection coil pairs are arranged on the same circumference at a predetermined angle, and the detection coil pairs are differentially connected to measure the difference in wall thickness in the facing direction. A method for measuring the wall thickness unevenness of a metal pipe, which calculates the uneven thickness state of the metal pipe from the difference in wall thickness measured by a plurality of pairs of detection coils.
【請求項2】 上記検出コイルが捲線径の長短比が3以
上に形成された矩形コイルで,該検出コイルが金属管の
軸心方向に長辺方向を一致させて配置される請求項1記
載の金属管肉厚の偏肉測定方法。
2. The detection coil is a rectangular coil having a winding diameter length ratio of 3 or more, and the detection coil is arranged with its long side direction aligned with the axial direction of the metal tube. Measuring method for uneven wall thickness of metal tubes.
【請求項3】 予め設定された上記金属管の外径と肉厚
差との関係データにより測定値を補正する請求項1記載
の金属管肉厚の偏肉測定方法。
3. The method for measuring the uneven thickness of a metal pipe according to claim 1, wherein the measured value is corrected by preset data of the relationship between the outer diameter of the metal pipe and the thickness difference.
【請求項4】 予め設定された上記金属管の抽伸速度デ
ータにより測定値を補正する請求項1記載の金属管肉厚
の偏肉測定方法。
4. The method for measuring the uneven thickness of a metal tube according to claim 1, wherein the measured value is corrected by preset drawing speed data of the metal tube.
【請求項5】 上記検出コイルを低周波に高周波を重畳
した電力で励振する請求項1記載の金属管肉厚の偏肉測
定方法。
5. The method for measuring the wall thickness deviation of a metal tube according to claim 1, wherein the detection coil is excited by electric power in which a high frequency is superimposed on a low frequency.
JP33465593A 1993-12-28 1993-12-28 Method for measuring deviation of metal pipe thickness Pending JPH07198306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33465593A JPH07198306A (en) 1993-12-28 1993-12-28 Method for measuring deviation of metal pipe thickness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33465593A JPH07198306A (en) 1993-12-28 1993-12-28 Method for measuring deviation of metal pipe thickness

Publications (1)

Publication Number Publication Date
JPH07198306A true JPH07198306A (en) 1995-08-01

Family

ID=18279790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33465593A Pending JPH07198306A (en) 1993-12-28 1993-12-28 Method for measuring deviation of metal pipe thickness

Country Status (1)

Country Link
JP (1) JPH07198306A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012127888A (en) * 2010-12-17 2012-07-05 Sumitomo Light Metal Ind Ltd Method and apparatus for measuring uneven thickness of metal tube
US8326572B2 (en) 2008-09-05 2012-12-04 Lg Electronics Inc. Apparatus and method for measuring length of pipe
JP2014070963A (en) * 2012-09-28 2014-04-21 Nissan Motor Co Ltd Concentricity determination method and concentricity determination device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8326572B2 (en) 2008-09-05 2012-12-04 Lg Electronics Inc. Apparatus and method for measuring length of pipe
KR101250243B1 (en) * 2008-09-05 2013-04-04 엘지전자 주식회사 Apparatus and Method for Measuring the Length of a Pipe
US9389059B2 (en) 2008-09-05 2016-07-12 Lg Electronics Inc. Apparatus and method for measuring length of pipe
JP2012127888A (en) * 2010-12-17 2012-07-05 Sumitomo Light Metal Ind Ltd Method and apparatus for measuring uneven thickness of metal tube
JP2014070963A (en) * 2012-09-28 2014-04-21 Nissan Motor Co Ltd Concentricity determination method and concentricity determination device

Similar Documents

Publication Publication Date Title
US3693075A (en) Eddy current system for testing tubes for defects,eccentricity,and wall thickness
JP2911828B2 (en) Multi-parameter eddy current measurement system with parameter compensation
US4567435A (en) Method and apparatus for continuously measuring distance utilizing eddy current and having temperature difference influence elimination
JP2006090794A (en) Status detection device
JPH07198306A (en) Method for measuring deviation of metal pipe thickness
JP3819029B2 (en) Method and apparatus for inductive measurement of physical parameters of metallic material objects and use of the method and apparatus
US6236198B1 (en) Method and device for non-contact measurement of electrically conductive material
JPH05149927A (en) Method and apparatus for inspecting conductor film
KR101252458B1 (en) Eddy current system and method for selecting a good test body
JP2008102073A (en) Electromagnetic characteristic measuring method and device
CN115552255A (en) Magnetic field sensor device for measuring the circumferential uniform distribution of the magnetic field of a current conductor
US6188217B1 (en) Inductive measurement device for determining dimensions of objects
US4809559A (en) Detector for an electromagnetic flowmeter
WO1988006268A1 (en) Apparatus for measuring or testing dimension or contour through measuring distance
JP3575264B2 (en) Flow velocity measuring method and device
JP3065205B2 (en) Control method of tandem rolling mill
US6850056B2 (en) Flaw detection device for steel bar
JPH0660888B2 (en) Sigma phase inspection method for stainless steel
JPS6166958A (en) Absolute value type eddy current flaw detecting device
JPH06122056A (en) Method for detecting level of molten metal in high frequency electromagnetic field casting die
JPH0372926B2 (en)
JPH02156113A (en) Linear displacement detector
JPS6093325A (en) Temperature detecting apparatus
JPH07198681A (en) Property measuring device for metal material
RU1809294C (en) Method for metal tube transverse thickness variations testing