JPH0719750B2 - Glo-discharge type film forming device - Google Patents

Glo-discharge type film forming device

Info

Publication number
JPH0719750B2
JPH0719750B2 JP59129519A JP12951984A JPH0719750B2 JP H0719750 B2 JPH0719750 B2 JP H0719750B2 JP 59129519 A JP59129519 A JP 59129519A JP 12951984 A JP12951984 A JP 12951984A JP H0719750 B2 JPH0719750 B2 JP H0719750B2
Authority
JP
Japan
Prior art keywords
item
film forming
electrode
forming apparatus
adjusting means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59129519A
Other languages
Japanese (ja)
Other versions
JPS618914A (en
Inventor
善久 太和田
威久 中山
雅彦 田井
望 生地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Kaneka Corp
Original Assignee
Shimadzu Corp
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Kaneka Corp filed Critical Shimadzu Corp
Priority to JP59129519A priority Critical patent/JPH0719750B2/en
Priority to CA000484632A priority patent/CA1269950A/en
Priority to US06/746,693 priority patent/US4664890A/en
Priority to IN456/CAL/85A priority patent/IN163964B/en
Priority to KR1019850004437A priority patent/KR900001234B1/en
Priority to AU43940/85A priority patent/AU591063B2/en
Priority to DE8585107698T priority patent/DE3586637T2/en
Priority to EP85107698A priority patent/EP0165618B1/en
Priority to CN 85104968 priority patent/CN1014082B/en
Publication of JPS618914A publication Critical patent/JPS618914A/en
Publication of JPH0719750B2 publication Critical patent/JPH0719750B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/02Extraction using liquids, e.g. washing, leaching, flotation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、半導体膜を成膜するためのグロー放電型成膜
装置に関する。
TECHNICAL FIELD The present invention relates to a glow discharge type film forming apparatus for forming a semiconductor film.

[従来の技術] 従来、太陽電池などの製造に用いるグロー放電型成膜装
置としては、第4図に示すように、グランド電極(3)
上に載置された基板(4)上に、RF電極(1)、グラン
ド電極(3)、ヒーター(5)などにより半導体層が堆
積せしめられる、いわゆる平行平板法による装置が多く
用いられている。平行平板法は大きな面積の成膜には適
しているが、電極対を形成するRF電極(1)の裏側でも
放電がおこるため、この放電を抑制するためのシールド
(7)が必要となる。しかし、このシールドを設けると
放電が不安定になるというような欠点が生ずる。
[Prior Art] Conventionally, as a glow discharge type film forming apparatus used for manufacturing a solar cell, as shown in FIG.
A so-called parallel plate method is widely used in which a semiconductor layer is deposited on a substrate (4) placed on the substrate by an RF electrode (1), a ground electrode (3), a heater (5), and the like. . The parallel plate method is suitable for film formation on a large area, but since a discharge also occurs on the back side of the RF electrode (1) forming the electrode pair, a shield (7) is required to suppress this discharge. However, the provision of this shield has a drawback that the discharge becomes unstable.

シールドをなくした装置として第5図に示す装置が考案
されている。このばあいには、RF電極(1)の両側のグ
ランド電極(3a)、(3b)上に基板(4a)、(4b)を置
き、必要によりヒーター(5a)、(5b)で基板(4a)、
(4b)を加熱しながら半導体膜を形成できるため、シー
ルドを設ける必要がなくなり、シールドを設けることに
よる放電の不安定化がなくなるというメリットがある。
しかし、左右の半導体層形成速度が異なるばあいに、そ
の速度を調節することができないという欠点がある。
The device shown in FIG. 5 has been devised as a device without a shield. In this case, place the substrates (4a) and (4b) on the ground electrodes (3a) and (3b) on both sides of the RF electrode (1) and, if necessary, use the heaters (5a) and (5b) to attach the substrates (4a) and (5b). ),
Since the semiconductor film can be formed while heating (4b), there is no need to provide a shield, and there is an advantage that the instability of discharge due to the provision of the shield is eliminated.
However, if the left and right semiconductor layer formation rates are different, there is a drawback in that the rate cannot be adjusted.

[発明の解決しようとする問題点] 本発明は上記のごとき実情、すなわち、RF電極の両側で
グロー放電分解し、半導体膜を成膜するばあいに生ず
る、左右の半導体膜の成膜速度が異なるという問題を解
消するためになされたものである。
[Problems to be Solved by the Invention] In the present invention, as described above, the deposition rate of the left and right semiconductor films, which is generated when the semiconductor films are formed by glow discharge decomposition on both sides of the RF electrode, is generated. This was done to solve the problem of being different.

[問題点を解決するための手段] 本発明は、RF電極とRF電極の両面のそれぞれと対面する
ように設けられたグランド電極とからなるグロー放電型
成膜装置において、RF電極が電気的に絶縁され、互に平
行に配置された2枚の金属板からなり、RF電極を形成す
る2枚の金属板の一方には直列にRF調節手段が接続され
ており、のこりの一方には直列にRF調節手段が接続され
ているばあいとRF調節手段が接続されていないばあいと
があり、RF電極を形成する金属板のうちRF調節手段が接
続されている金属板にはいずれもRF調節手段を介して、
一方、RF電極を形成する金属板のうちRF調節手段が接続
されている金属板には金属板に直接に、1つのマッチン
グ回路が2枚の金属板に接続されていることを特徴とす
るグロー放電型成膜装置に関する。
[Means for Solving Problems] The present invention relates to a glow discharge type film forming apparatus including an RF electrode and a ground electrode provided so as to face each of both surfaces of the RF electrode. It consists of two metal plates that are insulated and arranged parallel to each other. One of the two metal plates forming the RF electrode is connected in series with the RF adjusting means, and one of the wood plates is connected in series with the other. There are cases where the RF adjustment means is connected and cases where the RF adjustment means is not connected.RF adjustment is performed on the metal plate to which the RF adjustment means is connected among the metal plates forming the RF electrode. Through means,
On the other hand, among the metal plates forming the RF electrode, one matching circuit is directly connected to the metal plate to which the RF adjusting means is connected, and one matching circuit is connected to the two metal plates. The present invention relates to a discharge type film forming apparatus.

[実施例] 本発明の装置を、その一実施態様を示す第1図に基づき
説明する。
[Example] The apparatus of the present invention will be described based on FIG. 1 showing an embodiment thereof.

RF電極は、平行に配置した2枚の金属板(1a)、(1b)
を絶縁材(2)を介してはさんだもので、それぞれの金
属板にはそれぞれ直列にRF調節手段であるコンデンサ
ー、たとえば固定コンデンサー(6b)および可変コンデ
ンサー(6a)が反応機の外で接続されている。コンデン
サーのかわりにRF調節手段としてコイルを用いてもよ
い。一方、RF電源から供給されたRFはマッチング回路を
へて2分割され、コンデンサーに供給される。
The RF electrode consists of two metal plates (1a) and (1b) arranged in parallel.
A capacitor as an RF adjusting means, such as a fixed capacitor (6b) and a variable capacitor (6a), is connected in series to each metal plate outside the reactor. ing. A coil may be used as the RF adjusting means instead of the condenser. On the other hand, the RF supplied from the RF power supply is divided into two through the matching circuit and supplied to the capacitor.

RF電極の両側にはRF電極面と平行に対向電極となるグラ
ンド電極(3a)、(3b)が配置されており、その上に基
板(4a)、(4b)が載置される。第1図に示すように、
必要に応じてヒーター(5a)、(5b)を配置し、基板
(4a)、(4b)を加熱するようにしてもよい。
On both sides of the RF electrode, ground electrodes (3a) and (3b) serving as counter electrodes are arranged in parallel with the RF electrode surface, and the substrates (4a) and (4b) are placed thereon. As shown in FIG.
If necessary, heaters (5a) and (5b) may be arranged to heat the substrates (4a) and (4b).

RF電極を形成する金属板(1a)、(1b)の分離方法は、
ガスを電極内部から導入するばあいには、第1図に示す
ように、周囲に絶縁材(2)をはさんむ構造が好ましい
が、このような方法に限定されるものではなく、電気的
に絶縁されていればいかなる方法でもよい。
The method for separating the metal plates (1a) and (1b) forming the RF electrode is
When the gas is introduced from the inside of the electrode, as shown in FIG. 1, it is preferable to have a structure in which an insulating material (2) is sandwiched around, but it is not limited to such a method, and an electrical Any method may be used as long as it is insulated.

このようにRF電極を形成する金属板を電気的に2分割
し、該金属板の少なくとも一方にRF調節手段を直列に接
続することにより、RF電極の両側で成膜することがで
き、かつ左右の成膜速度が異なるばあいでも、RF調節手
段を調節して成膜速度を任意に調節することができる。
By thus electrically dividing the metal plate forming the RF electrode into two parts and connecting the RF adjusting means in series to at least one of the metal plates, it is possible to form a film on both sides of the RF electrode and Even if the film forming rates are different, the film forming rate can be arbitrarily adjusted by adjusting the RF adjusting means.

絶縁材(2)で分離した2枚の金属板間の距離は任意で
あるが、通常は1〜200mmである。RF電極と基板との間
隔は、5〜50mm程度であることが放電の安定性や均一性
の点から好ましく、10〜30mm程度であることがさらに好
ましい。
The distance between the two metal plates separated by the insulating material (2) is arbitrary, but is usually 1 to 200 mm. The distance between the RF electrode and the substrate is preferably about 5 to 50 mm, from the viewpoint of discharge stability and uniformity, and more preferably about 10 to 30 mm.

RF電極の面積は1m2以内が好ましいが、それ以上の面積
が必要なばあいには、1m2以内に分割したRF電極を複数
枚ならべて、第2図に示すような構造にして使用すれば
よい。必要により長手方向に電極を直流的に接続しても
よい。電極対を多数直線状に配置すると、成膜面積を大
きくすることができ、理論的には無限大に大きくするこ
とができる。なお平行平板法では、1つの電極面積は1m
2程度が限度である。
The area of the RF electrode is preferably less than 1 m 2 , but if more area is required, use multiple RF electrodes divided into less than 1 m 2 and use the structure shown in Fig. 2. Good. If necessary, the electrodes may be DC-connected in the longitudinal direction. When a large number of electrode pairs are arranged in a straight line, the film formation area can be increased, and theoretically can be increased to infinity. In the parallel plate method, one electrode area is 1m
The limit is about 2 .

RF電極の両側にはRF電極と平行して基板を移動させるよ
うに、基板移動手段(図示されていない)を設けてもよ
い。該基板移動手段は、基板をRF電極部に運搬し、成膜
後移動させるだけの働きであってもよい。しかし、成膜
中に基板とRF電極との距離をほぼ一定に保持したまま、
基板を一方向へ移動させたり、繰返して振幅移動させて
もよい。このように成膜中に基板を移動させると、形成
される膜の厚さ分布を極めて小さくすることができる。
このような基板移動手段の具体例としては、多室インラ
イン形の装置があげられる。
Substrate moving means (not shown) may be provided on both sides of the RF electrode so as to move the substrate in parallel with the RF electrode. The substrate moving means may have a function of only carrying the substrate to the RF electrode portion and moving it after film formation. However, while keeping the distance between the substrate and the RF electrode almost constant during film formation,
The substrate may be moved in one direction, or may be repeatedly moved in amplitude. By moving the substrate during film formation in this way, the thickness distribution of the formed film can be made extremely small.
A specific example of such a substrate moving means is a multi-chamber in-line type device.

RF電極およびその両側に搬送された基板は、互いにほぼ
平行であれば水平になっていてもよく、垂直になってい
てもよく、その他の角度をもってかたむいて存在してい
てもよいが、これらが垂直に近い状態で配置されている
ばあいには、成膜面上にごみが落下したりすることもな
いので、良好な膜が形成される。
The RF electrode and the substrates transported to both sides thereof may be horizontal as long as they are substantially parallel to each other, may be vertical, and may be present by being bent at other angles. When these are arranged in a nearly vertical state, dust does not drop on the film formation surface, so that a good film is formed.

基板として長尺連続基板を用い、連続成膜するばあいに
は、基板を一方へ移動させる方法が適しているが、通常
は短尺の基板が用いられる。
When a long continuous substrate is used as the substrate and a method of moving the substrate to one side is suitable for continuous film formation, a short substrate is usually used.

基板を加熱しうるように、必要により設けらているヒー
ターにより基板を加熱してもよい。基板温度は、形成さ
れる膜の種類、使用目的などによっても異なるが、通常
50〜400℃程度が好ましい。
The substrate may be heated by a heater provided if necessary so that the substrate can be heated. The substrate temperature varies depending on the type of film to be formed, purpose of use, etc.
About 50 to 400 ° C is preferable.

第3図に示すように、RF電極対を、直線状に配置したも
のをたとえば1〜100対、好ましくは1〜10対平行に設
置すると、同時に多数の基板上に半導体層を形成するこ
とができ、成膜面積を大きくすることができる。
As shown in FIG. 3, when RF electrode pairs arranged in a straight line are installed in parallel, for example, 1 to 100 pairs, preferably 1 to 10 pairs, semiconductor layers can be simultaneously formed on a large number of substrates. Therefore, the film formation area can be increased.

本発明の装置が設けられている非晶質半導体膜などの成
膜装置にはとくに限定はなく、通常使用されているタイ
プの成膜装置であればすべて使用しうる。たとえば多室
構造の装置であってもよく、このばあいには多室構造を
構成する室のうちの少なくとも一室(たとえばp層、i
層、n層を形成する部屋のうちの一室)に本発明の装置
が用いられていてもよい。前記のような多室構造の装置
を用いるばあいには、各室を基板が通過するため、隔壁
にはスリットやゲートバルブが設けられているが、ゲー
トバルブがなくてスリットが設けられており、通常の差
動換気手段を有する差動排気室が設けられていて基板を
連続的に移動させることができるものであることが、生
産性をあげるという点から好ましい。
There is no particular limitation on a film forming apparatus such as an amorphous semiconductor film provided with the apparatus of the present invention, and any film forming apparatus of a commonly used type can be used. For example, the device may have a multi-chamber structure, in which case at least one of the chambers constituting the multi-chamber structure (for example, p layer, i
The device of the present invention may be used in one of the rooms forming the layer and the n-layer. When using a device with a multi-chamber structure as described above, since the substrate passes through each chamber, slits and gate valves are provided in the partition walls, but there are slits instead of gate valves. In order to improve productivity, it is preferable to provide a differential evacuation chamber having a normal differential ventilation means so that the substrate can be continuously moved.

前記のごとく第1図に示されているような本発明の装置
が、非晶質半導体膜などを製造するグロー放電分解成膜
装置として設けられ、周波数1〜100MHz程度、成膜単位
面積当りのRFパワーが0.003〜0.2w/cm2、微結晶化させ
るときには、0.1〜5w/cm2程度の条件で、反応性ガス、
たとえばケイ素化合物、炭素化合物、チッ素化合物、ド
ーピングガス、不活性ガスなどからなる原料ガスの0.01
〜5Torr程度の存在下でグロー放電を行ない、基板上に
0.005〜100μm程度の厚さに半導体層が成膜される。
As described above, the apparatus of the present invention as shown in FIG. 1 is provided as a glow discharge decomposition film forming apparatus for producing an amorphous semiconductor film, etc., and has a frequency of about 1 to 100 MHz per film forming unit area. RF power is 0.003 to 0.2 w / cm 2 , when microcrystallizing, reactive gas, under the condition of about 0.1 to 5 w / cm 2 .
For example, 0.01% of raw material gas composed of silicon compound, carbon compound, nitrogen compound, doping gas, inert gas, etc.
Glow discharge in the presence of ~ 5 Torr
A semiconductor layer is formed to a thickness of about 0.005 to 100 μm.

本発明の装置のごとき装置を用いて成膜すると、均一な
品質の膜がえられ、かつ寄生放電が少ないので粉が出に
くく、ピンホールの少ない膜がえられ、大面積化が容易
であり、またグロー放電が極めて安定でRFの利用効率も
高いというような特徴を有している。その上シリコンを
含むpin、pn、ヘテロまたはホモ接合太陽電池、セン
サ、TFT(thin film transistor)、CCD(charge coupl
ed device)などのデバイス、とくに非晶質シリコンを
含む太陽電池のばあいにはプラズマ安定性が効率の再現
性に大きく影響するので、本発明の装置を用いると、10
%以上の高変換率が大面積で再現性よくえられる。また
電子写真用感光材料、LSIのパッシベーション膜、プリ
ント基板用絶縁膜などの用途にも好適に用いられる。
When a film is formed using a device such as the device of the present invention, a film of uniform quality is obtained, and since parasitic discharge is small, it is difficult to generate powder, a film with few pinholes is obtained, and it is easy to increase the area. In addition, the glow discharge is extremely stable and the RF utilization efficiency is high. In addition, silicon-containing pin, pn, hetero or homojunction solar cell, sensor, TFT (thin film transistor), CCD (charge coupl)
ed device), especially in the case of a solar cell containing amorphous silicon, plasma stability greatly affects the reproducibility of efficiency.
High conversion rate of over 100% can be obtained with good reproducibility in a large area. It is also suitably used for electrophotographic photosensitive materials, LSI passivation films, printed circuit board insulating films, and the like.

つぎに本発明を実施例にもとづき説明する。Next, the present invention will be described based on examples.

実施例1 第1図と同様のグロー放電型成膜装置を用いた実施例に
ついて説明する。
Example 1 An example using a glow discharge type film forming apparatus similar to that shown in FIG. 1 will be described.

コンデンサーを接続し、4mmの絶縁材をはさんだRF電極
(560×560mm)に、13.56MHzのRF発振機とマッチング回
路を通して2分割したRFをコンデンサーを経て導入し
た。使用したコンデンサーは固定の250pFとMax500pFの
可変コンデンサーであった。基板として40cm角のITO/Sn
O2ガラス基板を用いて、基板温度200℃でSiH4/CH4=50/
50、B2H6/(SiH4+CH4)=0.05%(モル%、以下同様)
からなるp層を100Å、SiH4からなるi層を6000Å、PH3
/SiH4=0.2%からなるn層を500Å成膜した。コンデン
サーは250pFと350pFで用いた。ついでAlを約1000Å蒸着
しAM−1、100mW/cm2のトーラーシミュレーターを用い
て太陽電池の変換効率の分布を求めたところ、最少10.4
%最大11.7%、平均11%と極めて均一で高効率がえられ
ることが判った。また成膜速度を10Å/secで成膜しても
効率ほとんど変化しなかった。また半導体層の厚さは左
右ほとんど同じで均一であった。
A capacitor was connected, and an RF electrode (560 x 560 mm) sandwiching a 4 mm insulating material was used to introduce RF divided into two parts through a 13.56 MHz RF oscillator and matching circuit through the capacitor. The capacitors used were fixed 250 pF and Max 500 pF variable capacitors. 40cm square ITO / Sn as substrate
SiH 4 / CH 4 = 50 / at a substrate temperature of 200 ℃ using an O 2 glass substrate
50, B 2 H 6 / (SiH 4 + CH 4 ) = 0.05% (mol%, the same below)
P layer consisting of 100Å, i layer consisting of SiH 4 is 6000Å, PH 3
An n-layer composed of / SiH 4 = 0.2% was formed into a 500 Å film. The condenser was used at 250 pF and 350 pF. Then, Al was deposited at about 1000Å and the conversion efficiency distribution of the solar cells was calculated using a Toler simulator with AM-1 and 100 mW / cm 2 and the minimum was 10.4.
It was found that the maximum efficiency was 11.7% and the average was 11%. Moreover, even if the film formation rate was 10 Å / sec, the efficiency was hardly changed. The thickness of the semiconductor layer was almost the same on both sides and was uniform.

実施例2 実施例1の右側のコンデンサーを250pFに固定し、左側
のコンデンサーを10〜500pFに変えたほかは実施例1と
同様にしてi層の成膜速度を求めた。その結果を第1表
に示す。
Example 2 The film formation rate of the i layer was obtained in the same manner as in Example 1 except that the right capacitor of Example 1 was fixed at 250 pF and the left capacitor was changed to 10 to 500 pF. The results are shown in Table 1.

[発明の効果] 以上のように、RF電極を形成する分離した2枚の金属板
に直列に接続したコンデンサーの容量を変えることによ
り、左右の半導体層の成膜速度を大巾に変えることがで
きるので、左右の半導体層の成膜速度が異なるばあいに
は、コンデンサーの容量を変えることで成膜速度を簡単
に同一にすることができる。
[Effects of the Invention] As described above, by changing the capacitance of the capacitor connected in series to the two separated metal plates forming the RF electrode, it is possible to drastically change the film forming rate of the left and right semiconductor layers. Therefore, if the film forming rates of the left and right semiconductor layers are different, the film forming rate can be easily made the same by changing the capacitance of the capacitor.

【図面の簡単な説明】 第1図は本発明の装置の一実施態様に関する説明図、第
2〜3図はそれぞれ本発明の装置の異なった実施態様の
電極対配置に関する説明図、第4〜5図はいずれも従来
から使用されている成膜装置に関する説明図である。 (図面の主要符号) (1)、(1a)、(1b):RF電極を形成する金属板 (2):絶縁剤 (3)、(3a)、(3b):グランド電極 (6a):可変コンデンサー (6b):固定コンデンサー
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram relating to an embodiment of the device of the present invention, FIGS. 2 to 3 are explanatory diagrams relating to the electrode pair arrangement of different embodiments of the device of the present invention, and FIG. FIG. 5 is an illustration of a film forming apparatus that has been conventionally used. (Main symbols in the drawing) (1), (1a), (1b): Metal plate forming RF electrode (2): Insulating agent (3), (3a), (3b): Ground electrode (6a): Variable Condenser (6b): Fixed condenser

───────────────────────────────────────────────────── フロントページの続き (72)発明者 生地 望 京都府京都市右京区西院追分町25 株式会 社島津製作所五条工場内 (56)参考文献 特開 昭58−48416(JP,A) 特開 昭59−14633(JP,A) 特開 昭58−163436(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor's fabric Nozomu 25, Saiin Oiwake-cho, Ukyo-ku, Kyoto Prefecture Shimazu Corporation Gojo factory (56) Reference JP-A-58-48416 (JP, A) JP Sho 59-14633 (JP, A) JP-A 58-163436 (JP, A)

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】RF電極とRF電極の両面のそれぞれと対面す
るように設けられたグランド電極とからなるグロー放電
型成膜装置において、RF電極が電気的に絶縁され、互に
平行に配置された2枚の金属板からなり、RF電極を形成
する2枚の金属板の一方には直列にはRF調節手段が接続
されており、のこりの一方には直列にRF調整手段が接続
されているばあいとRF調節手段が接続されていないばあ
いとがあり、RF電極を形成する金属板のうちRF調節手段
が接続されている金属板にはいずれもRF調節手段を介し
て、一方、RF電極を形成する金属板のうちRF調節手段が
接続されていない金属板には金属板に直接に、1つのマ
ッチング回路が接続されていることを特徴とするグロー
放電型成膜装置。
1. A glow discharge type film forming apparatus comprising an RF electrode and a ground electrode provided so as to face each surface of the RF electrode, wherein the RF electrodes are electrically insulated and arranged in parallel with each other. RF adjusting means is connected in series to one of the two metal plates forming the RF electrode, and RF adjusting means is connected in series to one of the two metal plates. There is a case where the RF adjusting means is not connected, and among the metal plates forming the RF electrode, the metal plate to which the RF adjusting means is connected is through the RF adjusting means, while the RF A glow discharge type film forming apparatus, wherein one matching circuit is directly connected to the metal plate which is not connected to the RF adjusting means among the metal plates forming the electrodes.
【請求項2】2枚の金属板のいずれにもRF調節手段が接
続されているばあいには、それらのRF調節手段が固定お
よび可変のコンデンサーであり、2枚の金属板の一方に
のみRF調節手段が接続されているばあいには、そのRF調
節手段が可変のコンデンサーである特許請求の範囲第1
項記載の成膜装置。
2. When the RF adjusting means is connected to both of the two metal plates, the RF adjusting means are fixed and variable capacitors, and only one of the two metal plates is provided. When the RF adjusting means is connected, the RF adjusting means is a variable capacitor.
The film forming apparatus according to the item.
【請求項3】前記互に平行に配置されたRF電極およびグ
ランド電極からなる電極対を1〜100対平行に配置した
特許請求の範囲第1項記載の成膜装置。
3. The film forming apparatus according to claim 1, wherein the electrode pair composed of the RF electrode and the ground electrode arranged in parallel with each other is arranged in parallel with 1 to 100 pairs.
【請求項4】前記基板を前記RF電極との距離を保持した
まま移動させる手段を有する特許請求の範囲第1項記載
の成膜装置。
4. The film forming apparatus according to claim 1, further comprising means for moving the substrate while maintaining a distance from the RF electrode.
【請求項5】前記移動手段が繰返しの振幅移動手段であ
る特許請求の範囲第4項記載の成膜装置。
5. The film forming apparatus according to claim 4, wherein the moving means is a repetitive amplitude moving means.
【請求項6】前記移動手段が一方向への移動手段である
特許請求の範囲第4項記載の成膜装置。
6. The film forming apparatus according to claim 4, wherein the moving means is one-way moving means.
【請求項7】前記グロー放電を行なうばあいの周波数が
1〜100MHzとなる電極対を有する特許請求の範囲第1
項、第2項、第3項、第4項、第5項または第6項記載
の成膜装置。
7. The invention according to claim 1, further comprising an electrode pair having a frequency of 1 to 100 MHz when performing the glow discharge.
The film forming apparatus according to item (2), item (3), item (3), item (4), item (5), or item (6).
【請求項8】前記基板を加熱しうるようにヒーターが設
けられている特許請求の範囲第1項、第2項、第3項、
第4項、第5項、第6項または第7項記載の成膜装置。
8. A heater according to claim 1, wherein a heater is provided to heat the substrate.
The film forming apparatus according to item 4, item 5, item 6, or item 7.
【請求項9】前記グロー放電型成膜装置が多室構造を有
する特許請求の範囲第1項、第2項、第3項、第4項、
第5項、第6項、第7項または第8項記載の成膜装置。
9. The glow discharge type film forming apparatus has a multi-chamber structure, claim 1, claim 2, claim 3, claim 4,
The film forming apparatus according to item 5, 6, 7, or 8.
【請求項10】前記多室構造が、スリットを有する隔壁
で仕切られ、仕切られた室が差動排気される手段を有す
る特許請求の範囲第1項、第2項、第3項、第4項、第
5項、第6項、第7項、第8項または第9項記載の成膜
装置。
10. The multi-chamber structure is divided by a partition having a slit, and means for differentially exhausting the divided chambers is claimed. The film forming apparatus according to item 5, item 5, item 6, item 7, item 8, or item 9.
JP59129519A 1984-06-22 1984-06-22 Glo-discharge type film forming device Expired - Lifetime JPH0719750B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP59129519A JPH0719750B2 (en) 1984-06-22 1984-06-22 Glo-discharge type film forming device
CA000484632A CA1269950A (en) 1984-06-22 1985-06-20 Glow-discharge decomposition apparatus
US06/746,693 US4664890A (en) 1984-06-22 1985-06-20 Glow-discharge decomposition apparatus
IN456/CAL/85A IN163964B (en) 1984-06-22 1985-06-21
KR1019850004437A KR900001234B1 (en) 1984-06-22 1985-06-21 Apparatus for depositing a film on a substrate by glow-discharge decomposition and a process thereof
AU43940/85A AU591063B2 (en) 1984-06-22 1985-06-21 Glow discharge decomposition apparatus
DE8585107698T DE3586637T2 (en) 1984-06-22 1985-06-21 DEVICE FOR DEGRADING BY GLIMMENT DISCHARGE.
EP85107698A EP0165618B1 (en) 1984-06-22 1985-06-21 Glow-discharge decomposition apparatus
CN 85104968 CN1014082B (en) 1984-06-22 1985-06-29 Glow discharge decomposing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59129519A JPH0719750B2 (en) 1984-06-22 1984-06-22 Glo-discharge type film forming device

Publications (2)

Publication Number Publication Date
JPS618914A JPS618914A (en) 1986-01-16
JPH0719750B2 true JPH0719750B2 (en) 1995-03-06

Family

ID=15011505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59129519A Expired - Lifetime JPH0719750B2 (en) 1984-06-22 1984-06-22 Glo-discharge type film forming device

Country Status (2)

Country Link
JP (1) JPH0719750B2 (en)
CN (1) CN1014082B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002051707A1 (en) * 2000-12-25 2002-07-04 Mitsubishi Shoji Plastics Corporation Production device for dlc film-coated plastic container and production method therefor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329927U (en) * 1986-08-09 1988-02-27
JP5135720B2 (en) * 2006-06-09 2013-02-06 富士電機株式会社 Plasma processing equipment
CN101609858B (en) * 2008-06-20 2011-06-22 福建钧石能源有限公司 Film deposition method
EP2145701A1 (en) * 2008-07-16 2010-01-20 AGC Flat Glass Europe SA Method and installation for surface preparation by dielectric barrier discharge
JPWO2010055669A1 (en) * 2008-11-12 2012-04-12 株式会社アルバック Electrode circuit, film forming apparatus, electrode unit, and film forming method
CN112080728B (en) * 2020-08-12 2022-05-10 北京航空航天大学 HiPIMS system and method for reducing HiPIMS discharge current delay

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5848416A (en) * 1981-09-16 1983-03-22 Fuji Electric Corp Res & Dev Ltd Mass production type thin film forming device
JPS6044970B2 (en) * 1982-03-25 1985-10-07 株式会社 半導体エネルギ−研究所 Plasma reaction equipment
JPS5914633A (en) * 1982-07-16 1984-01-25 Anelva Corp Plasma cvd apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002051707A1 (en) * 2000-12-25 2002-07-04 Mitsubishi Shoji Plastics Corporation Production device for dlc film-coated plastic container and production method therefor
US6924001B2 (en) 2000-12-25 2005-08-02 Mitsubishi Shoji Plastics Corporation Production device for DLC film-coated plastic container and production method therefor

Also Published As

Publication number Publication date
CN85104968A (en) 1987-01-07
JPS618914A (en) 1986-01-16
CN1014082B (en) 1991-09-25

Similar Documents

Publication Publication Date Title
US4634601A (en) Method for production of semiconductor by glow discharge decomposition of silane
EP0165618B1 (en) Glow-discharge decomposition apparatus
EP0002383A1 (en) Method and apparatus for depositing semiconductor and other films
JP3164956B2 (en) Method for depositing amorphous silicon thin film at high deposition rate on large area glass substrate by CVD
JP2588388B2 (en) Coating method
US4825806A (en) Film forming apparatus
JPH0719750B2 (en) Glo-discharge type film forming device
US4461239A (en) Reduced capacitance electrode assembly
JPS5914633A (en) Plasma cvd apparatus
JPS6115321A (en) Formation of film
US4869976A (en) Process for preparing semiconductor layer
EP0674335A1 (en) Plasma processing method and plasma processing apparatus
JPH0719748B2 (en) Film forming equipment
JP2000004036A (en) Forming method of fine crystal semiconductor layer and photovoltaic element
JP2540684B2 (en) Method for manufacturing semiconductor film containing silicon as main component
JPH07297404A (en) Manufacture of thin film transistor
JPS63940B2 (en)
JPS61115354A (en) Amorphous semiconductor solar cell
JP2890032B2 (en) Silicon thin film deposition method
JPH0763057B2 (en) Multi-electrode thin film forming method
JPS61252624A (en) Method of forming deposited film
JPS6150380A (en) Manufacture of photoelectric conversion element
CA1251163A (en) Process for forming semiconductor film and device used therefor
JP2002075883A (en) Plasma cvd device
JPS5835988A (en) Amorphous silicon solar cell