JPH07197167A - Sintered aluminum alloy having excellent strength and wear resistance - Google Patents

Sintered aluminum alloy having excellent strength and wear resistance

Info

Publication number
JPH07197167A
JPH07197167A JP35441593A JP35441593A JPH07197167A JP H07197167 A JPH07197167 A JP H07197167A JP 35441593 A JP35441593 A JP 35441593A JP 35441593 A JP35441593 A JP 35441593A JP H07197167 A JPH07197167 A JP H07197167A
Authority
JP
Japan
Prior art keywords
alloy
powder
sintered
wear resistance
hard phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35441593A
Other languages
Japanese (ja)
Other versions
JP3329046B2 (en
Inventor
Koji Kobayashi
孝司 小林
Kazuyuki Hoshino
和之 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP35441593A priority Critical patent/JP3329046B2/en
Publication of JPH07197167A publication Critical patent/JPH07197167A/en
Application granted granted Critical
Publication of JP3329046B2 publication Critical patent/JP3329046B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To develop a sintered Al alloy having excellent strength and wear resistance by dispersing group hard layers as assemblies of fine Si crystal grains in an Al alloy base in such a manner that these layers exist therein in the structure of the sintered Al alloy. CONSTITUTION:The Al powder, Al-Zn alloy powder, Al-Mg alloy powder, Al-Cu alloy powder, Al-Fe alloy powder and Al-high-Si alloy powder in the fine powder form produced by an atomization method are mixed at specific ratios and, thereafter, the mixture is pressurized and molded to a desired shape. This powder mixture molding is sintered at a high temp. and is then subjected to shape correction by recompression. The molding is further subjected to a soln. heat treatment and aging treatment, by which the sintered member of the Al alloy is produced. Such sintered alloy has the structure in which the group hard layers 2 of 20 to 150mum sizes densely assembled with the fine Si crystal grains of an average grain size of 1.5 to 15mum in the base 3 consisting of the Al alloy at a ratio of 10 to 70 area % disperse and exist in the base Al alloy 3 at a ratio of 3 to 50 area % of this alloy. The sintered Al alloy member which is light in weight and has the excellent wear resistance and strength is thus obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えば、乗用車用オ
イルポンプのギヤ、並びに乗用車エンジンのカムスプロ
ケットなど軽量で強度および耐摩耗性を必要とする各種
機械部品を製造するための焼結アルミニウム合金に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sintered aluminum alloy for manufacturing various machine parts such as gears for oil pumps for passenger cars, cam sprockets for passenger car engines, which are lightweight and require strength and wear resistance. It is about.

【0002】[0002]

【従来の技術】一般に、軽量で、強度及び耐摩耗性が要
求される機械部品の製造には、特公平1−20215号
公報で示される様なSi:8〜30wt%含有のアルミニ
ウム合金が用いられている。しかしながらこの合金は、
公報に記載されている通り、通常の粉末冶金法では製造
が困難なため、300℃〜液相生成温度以下に加熱、も
しくは焼結した後、前記温度範囲で鍛造、あるいは押し
出しの強加工を施し、Siを粗大化させずに密度比95
%以上に緻密化することで目的とする合金を得ている
が、上記、熱間での鍛造あるいは押し出しなどの工程が
必要なため、コストが高くなる等の欠点があった。
2. Description of the Related Art Generally, an aluminum alloy containing Si: 8 to 30 wt% as shown in Japanese Patent Publication No. 1-20215 is used for manufacturing a mechanical part which is lightweight and requires strength and wear resistance. Has been. However, this alloy
As described in the official gazette, since it is difficult to manufacture by an ordinary powder metallurgy method, after heating at 300 ° C. to a liquid phase formation temperature or lower or sintering, forging in the above temperature range or strong working of extrusion is performed. , Si with a density ratio of 95 without coarsening
Although the target alloy is obtained by densifying the alloy to more than 10%, there is a drawback that the cost is increased because the above-mentioned steps such as hot forging or extrusion are required.

【0003】そこで、焼結工程だけで強度の優れた焼結
アルミニウム合金を得る方法も提案されている(特開平
4−365832号公報参照)。
Therefore, a method of obtaining a sintered aluminum alloy having excellent strength only by a sintering process has been proposed (see Japanese Patent Laid-Open No. 4-365832).

【0004】この方法により焼結アルミニウム合金を製
造するには、原料粉末として、Si:16〜30重量%
未満を含有し、残りが実質的にAlからなる初晶Si晶
出のAl−Si系合金粉末を用意し、さらに純Al粉
末、Cu粉末およびMg粉末を用意し、これら原料粉末
を添加混合し、得られた混合粉末を成形圧力:2.5to
n /cm2 以上にて圧粉体に成形し、この圧粉体を520
〜570℃にて焼結することにより得られる。
To produce a sintered aluminum alloy by this method, the raw material powder is Si: 16-30% by weight.
Of Al-Si alloy powder containing less than 1% of primary crystal Si crystallized with the remainder substantially consisting of Al, and further pure Al powder, Cu powder and Mg powder are prepared, and these raw material powders are added and mixed. , Molding pressure of the obtained mixed powder: 2.5 to
Molded into a green compact with n / cm 2 or more,
Obtained by sintering at ˜570 ° C.

【0005】このようにして得られた焼結アルミニウム
合金は、Si:2〜16重量%、Cu:2.0〜4.5
重量%、Mg:0.2〜1.5重量%を含有し、残りが
実質的にAlからなる成分組成を有し、初晶Siが均一
分散している組織を有し、少ないSi含有量であっても
初晶Siの均一分散により耐摩耗性を良好に維持するこ
とができるものである。
The sintered aluminum alloy thus obtained has Si: 2 to 16% by weight and Cu: 2.0 to 4.5.
%, Mg: 0.2 to 1.5% by weight, the rest has a composition essentially consisting of Al, has a structure in which primary Si is uniformly dispersed, and has a low Si content. However, even if the primary crystal Si is uniformly dispersed, the wear resistance can be favorably maintained.

【0006】[0006]

【発明が解決しようとする課題】しかし、近年、回転駆
動装置の性能の向上に伴って、そこに使用される部品も
苛酷な条件下で使用されるようになり、かかる苛酷な条
件下での使用に耐え得ることが要求されているが、上記
従来の初晶Siが均一分散した組織を有する焼結アルミ
ニウム合金では十分に満足できる機械的特性(特に、強
度および耐摩耗性)を持った部品を製造することはでき
なかった。
However, in recent years, as the performance of the rotary drive device has been improved, the parts used therefor have come to be used under severe conditions, and under such severe conditions, Parts that are required to withstand use, but have sufficiently satisfactory mechanical properties (particularly strength and wear resistance) in the above-mentioned conventional sintered aluminum alloy having a structure in which primary Si is uniformly dispersed. Could not be manufactured.

【0007】[0007]

【課題を解決するための手段】そこで、本発明者等は、
従来よりも一層強度および耐摩耗性に優れたSi含有焼
結アルミニウム合金を得るべく研究を行った結果、
(a) Si結晶粒の分布が焼結アルミニウム合金の強
度および耐摩耗性に大きく影響を及ぼし、Si結晶粒が
集合してグループ硬質相を形成し、このグループ硬質相
が素地中に分散した組織を有する焼結アルミニウム合金
は、従来のSi結晶粒が均一分散している組織を有する
焼結アルミニウム合金に比べて強度および耐摩耗性が向
上する。
Therefore, the present inventors have
As a result of conducting research to obtain a Si-containing sintered aluminum alloy that is more excellent in strength and wear resistance than before,
(A) A structure in which the distribution of Si crystal grains greatly affects the strength and wear resistance of the sintered aluminum alloy, the Si crystal grains aggregate to form a group hard phase, and the group hard phase is dispersed in the matrix. The sintered aluminum alloy having No. 1 has improved strength and wear resistance as compared with the conventional sintered aluminum alloy having a structure in which Si crystal grains are uniformly dispersed.

【0008】(b) 上記Si結晶粒が集合してグルー
プ硬質相を形成し、このグループ硬質相が素地中に分散
している組織を有し、強度および耐摩耗性に優れた合金
を得るには、グループ硬質相形成用の原料粉末としてS
i:13〜60重量%含有する、冷却速度:102 ℃/
秒以上で製造されたAl合金粉末、好ましくはアモルフ
ァスAl合金粉末を用いることにより得られる、などの
研究結果を得たのである。
(B) In order to obtain an alloy having a structure in which the above Si crystal grains are aggregated to form a group hard phase, and the group hard phase is dispersed in the matrix, and which is excellent in strength and wear resistance. Is S as a raw material powder for forming a group hard phase.
i: 13 to 60% by weight, cooling rate: 10 2 ° C /
Research results such as that obtained by using an Al alloy powder manufactured in a second or more, preferably an amorphous Al alloy powder, were obtained.

【0009】この発明は、かかる研究結果に基づいてな
されたものであって、Si結晶粒が集合してグループ硬
質相を形成し、このグループ硬質相が素地中に分散して
いる組織を有する強度および耐摩耗性に優れた焼結アル
ミニウム合金、に特徴を有するものである。この場合、
素地にはSiが0.05〜2重量%固溶していることが
好ましい。
The present invention has been made based on the results of such research, and has a strength having a structure in which Si crystal grains aggregate to form a group hard phase, and the group hard phase is dispersed in the matrix. And a sintered aluminum alloy having excellent wear resistance. in this case,
It is preferable that Si is 0.05 to 2% by weight as a solid solution in the base material.

【0010】この発明の強度および耐摩耗性に優れた焼
結アルミニウム合金の組織を図面に基づいて説明する。
The structure of the sintered aluminum alloy having excellent strength and wear resistance according to the present invention will be described with reference to the drawings.

【0011】図1は、この発明の焼結アルミニウム合金
の組織写真を模写した組織の説明図である。
FIG. 1 is an explanatory view of a structure obtained by copying a structure photograph of the sintered aluminum alloy of the present invention.

【0012】図1において1は、Si結晶粒である。こ
のSi結晶粒1は、平均粒径が1.5μmより小さいと
耐摩耗性に寄与する効果が少なくなるので好ましくな
く、一方、15μmより大きいと材料の強度が低下し、
かつ切削性が低下するので好ましくない。したがって、
Si結晶粒の平均粒径:1.5〜15μmの範囲内に定
めた。
In FIG. 1, 1 is a Si crystal grain. If the average grain size of the Si crystal grains 1 is smaller than 1.5 μm, the effect of contributing to wear resistance is reduced, and if it is larger than 15 μm, the strength of the material decreases,
Moreover, the machinability deteriorates, which is not preferable. Therefore,
Average grain size of Si crystal grains: Determined within a range of 1.5 to 15 μm.

【0013】上記Si結晶粒1が過密に集合して、図1
に示されるようなグループ硬質相2が形成されており、
このグループ硬質相2は素地3中に分散(好ましくは均
一分散)している。
As shown in FIG.
Group hard phase 2 as shown in is formed,
The group hard phase 2 is dispersed (preferably uniformly dispersed) in the matrix 3.

【0014】上記グループ硬質相2は、Si結晶粒1が
10〜70面積%の割合で過密に集合して形成されるこ
とが好ましく、その理由はSi結晶粒1が10面積%未
満では耐摩耗性に及ぼす効果が十分に得られず、一方、
70面積%を越えて過密に集合せしめるとグループ硬質
相2が塊に近い密度となり、相手攻撃性が顕著になり、
強度および切削性も劣るので好ましくないことによるも
のである。
The group hard phase 2 is preferably formed by densely gathering Si crystal grains 1 at a ratio of 10 to 70 area%, because the Si crystal grains 1 are less than 10 area% in abrasion resistance. The effect on sex is not fully obtained, while
If they are densely aggregated over 70 area%, the group hard phase 2 will have a density close to a lump, and the opponent's aggression becomes remarkable,
This is because the strength and machinability are inferior, which is not preferable.

【0015】上記Si結晶粒1が10〜70面積%の割
合で過密に集合してなるグループ硬質相2は、平均寸法
が20〜150μmの範囲内にあることが好ましく、そ
の理由は平均寸法が20μm未満であると耐摩耗性に及
ぼす効果が少なくなり、一方、150μmを越えると材
料の強度低下をもたらすので好ましくないことによるも
のである。
The group hard phase 2 in which the Si crystal grains 1 are densely aggregated at a ratio of 10 to 70 area% preferably has an average size in the range of 20 to 150 μm, because the average size is. This is because if it is less than 20 μm, the effect on the wear resistance is reduced, while if it exceeds 150 μm, the strength of the material is lowered, which is not preferable.

【0016】上述のように、この発明の焼結アルミニウ
ム合金は、上記平均粒径:1.5〜15μmのSi結晶
粒1が10〜70面積%の割合で過密に集合してグルー
プ硬質相2を形成しているが、このグループ硬質相2は
素地3に3〜50面積%の割合で分散していることが好
ましい。その理由は、3面積%未満では耐摩耗性に及ぼ
す効果が少なくなり、一方、50面積%を越えると材料
の強度が格段に低下するので好ましくないことによるも
のである。
As described above, in the sintered aluminum alloy of the present invention, the Si crystal grains 1 having an average grain size of 1.5 to 15 μm are densely assembled at a ratio of 10 to 70 area% and the group hard phase 2 is formed. However, it is preferable that the group hard phase 2 is dispersed in the matrix 3 at a rate of 3 to 50 area%. The reason is that if it is less than 3% by area, the effect on the wear resistance is reduced, while if it exceeds 50% by area, the strength of the material is significantly reduced, which is not preferable.

【0017】前記したように、上述のようなグループ硬
質相が分散した組織を有し、強度および耐摩耗性に優れ
た合金を得るには、グループ硬質相形成用の原料粉末と
してSi:13〜60重量%含有する、冷却速度:10
2 ℃/秒以上で製造されたAl合金粉末、好ましくは、
アモルファスAl合金粉末を用いることにより得ること
ができるが、それは以下の理由による。
As described above, in order to obtain an alloy having a structure in which the group hard phase is dispersed as described above and having excellent strength and wear resistance, Si: 13 to 13 is used as the raw material powder for forming the group hard phase. Cooling rate: 10 containing 60% by weight
Al alloy powder produced at 2 ° C./sec or more, preferably,
It can be obtained by using an amorphous Al alloy powder for the following reason.

【0018】硬質相形成用Al合金粉末中のSi成分
は、焼結時の加熱により硬質なSi結晶として成長、粗
大化していくが、102 ℃/秒以下の冷却速度で製造さ
れたAl合金粉末は、粉末中のSi成分が既に粗大な初
晶Siとして晶出しており、このSi結晶が焼結時に更
に粗大化するため15μm以下の粒径にコントロールで
きず、且つ、1.5〜15μmのSi結晶が集合して成
るグループ硬質相を形成せず粗大なSi結晶として分散
するようになり、材料の強度や切削性を低下させる原因
となることによる。また、前記理由より、グループ硬質
相形成用Al合金粉末原料としては、アモルファス粉末
が、焼結時にSi結晶粒径をより制御しやすいため、好
ましい。
The Si component in the Al alloy powder for forming a hard phase grows and coarsens as a hard Si crystal by heating during sintering, but the Al alloy produced at a cooling rate of 10 2 ° C / sec or less. In the powder, the Si component in the powder was already crystallized as coarse primary crystal Si, and the Si crystal was further coarsened during sintering, so that the grain size could not be controlled to 15 μm or less, and the particle size was 1.5 to 15 μm. This is because the group hard phase formed by aggregating Si crystals does not form and is dispersed as coarse Si crystals, which causes a decrease in the strength and machinability of the material. From the above reason, as the Al alloy powder raw material for forming the group hard phase, amorphous powder is preferable because it is easier to control the Si crystal grain size during sintering.

【0019】[0019]

【実施例】原料粉末として、いずれもアトマイズ法によ
り製造された粒度−100メッシュの純Al粉末、Al
−50重量%Zn粉末、Al−5重量%Mg粉末、Al
−30重量%Cu粉末、Al−10重量%Fe粉末、お
よび、グループ硬質相形成用の表1に示される平均粒径
と組成を有する、アトマイズ法により103 〜104
/秒の冷却速度で製造されたAl−高Si系粉末と、単
ロール急冷凝固法により105 ℃/秒以上の冷却速度で
製造されたアモルファスリボンを粉砕して得たアモルフ
ァスAl−高Si系粉末を用意した。
[Examples] As raw material powders, pure Al powder having a grain size of -100 mesh and Al produced by the atomization method were used.
-50 wt% Zn powder, Al-5 wt% Mg powder, Al
-30 wt% Cu powder, Al-10 wt% Fe powder, and 10 3 to 10 4 ° C. by an atomizing method having the average particle size and composition shown in Table 1 for forming a group hard phase.
Al-high Si-based powder produced at a cooling rate of 1 / sec and an amorphous Al-high Si-based powder obtained by crushing an amorphous ribbon produced at a cooling rate of 10 5 ° C / sec or more by a single roll rapid solidification method. A powder was prepared.

【0020】これら原料粉末を表2に示される割合で配
合し混合したのち、加圧力:4ton/cm2 で成形体を作
製し、得られた成形体を表3の条件で焼結し、5.5to
n /cm2 の加圧力で矯正(再圧縮)を施し、溶体化処理
および時効処理することにより本発明焼結アルミニウム
合金(以下、本発明合金という)1〜13および比較焼
結アルミニウム合金(以下、比較合金という)1〜8を
作製した。
After mixing and mixing these raw material powders in the proportions shown in Table 2, a molded body was prepared at a pressing force of 4 ton / cm 2 , and the obtained molded body was sintered under the conditions shown in Table 3 and 5 .5 to
corrected with pressure of n / cm 2 (the recompression) subjecting, the present invention sintered aluminum alloy by solution treatment and aging treatment (hereinafter, referred to as the present invention alloy) 13 and Comparative sintered aluminum alloy (hereinafter , Comparative alloys) 1 to 8 were produced.

【0021】得られた本発明合金1〜13および比較合
金1〜10の組織を金属顕微鏡で観察し、その組織のS
i結晶粒の平均粒径、Si結晶粒が集合して出来たグル
ープ硬質相のSi結晶粒集合密度およびグループ硬質相
の平均寸法、並びにグループ硬質相の素地中の分散割合
について測定し、これらの測定値を表4に示した。
The structures of the obtained alloys 1 to 13 of the present invention and comparative alloys 1 to 10 were observed with a metallographic microscope, and the S
The average grain size of the i crystal grains, the Si crystal grain aggregation density of the group hard phase formed by aggregating Si crystal grains, the average size of the group hard phase, and the dispersion ratio of the group hard phase in the matrix were measured. The measured values are shown in Table 4.

【0022】さらに比較のために、通常の初晶Siが析
出しているSi:20重量%を含有し、残りがAlおよ
び不可避不純物からなる粒度−100メッシュのアトマ
イズ粉末および、いずれも−100メッシュの粒度のC
u粉末、Mg粉末、純Al粉末を用意し、このアトマイ
ズ粉末を表2に示される割合で配合し、混合したのち加
圧力:4ton /cm2 で成形し、表3に示される条件で焼
結、溶体化処理および時効処理することにより従来焼結
アルミニウム合金(以下、従来合金という)を作製し
た。
Further, for comparison, an atomized powder having a grain size of -100 mesh, which contains Si: 20% by weight in which normal primary crystal Si is precipitated and the balance is Al and inevitable impurities, and -100 mesh in all cases. Grain size of C
u powder, Mg powder, and pure Al powder were prepared, and the atomized powder was blended at the ratio shown in Table 2, mixed, and then molded at a pressing force of 4 ton / cm 2 , and sintered under the conditions shown in Table 3. A conventional sintered aluminum alloy (hereinafter referred to as a conventional alloy) was produced by solution treatment and aging treatment.

【0023】得られた本発明合金1〜13、比較合金1
〜8および従来合金を用い、たて:10mm、横:10m
m、厚さ:40mmの寸法を有するブロックを作製し、こ
のブロックを回転する鋳鉄(FC250)製の外径:4
0mm、内径:30mm、幅:15mmの寸法を有するリング
に一定荷重で押し付けるブロックオンリング型の摩耗試
験を行なった。
The alloys 1 to 13 of the present invention obtained and the comparative alloy 1
~ 8 and conventional alloy, vertical: 10mm, width: 10m
A block having a size of m and a thickness of 40 mm was prepared, and the cast iron (FC250) rotating the block had an outer diameter of 4
A block-on-ring type abrasion test was performed in which a ring having a size of 0 mm, an inner diameter of 30 mm and a width of 15 mm was pressed with a constant load.

【0024】試験条件は下記の通りである。The test conditions are as follows.

【0025】荷重:30kgf 、 摺動速度:5m/秒、 摺動距離:1500m、 潤滑:エンジンオイル滴下(ガソリンエンジン用)、 かかる条件のブロックオンリング型摩耗試験を行ったの
ち、ブロックの体積摩耗量を測定し、その結果を表4に
示した。
Load: 30 kgf, Sliding speed: 5 m / sec, Sliding distance: 1,500 m, Lubrication: Engine oil drip (for gasoline engine) The amount was measured and the results are shown in Table 4.

【0026】さらに、本発明合金1〜13、比較合金1
〜8および従来合金を用いてJIS規格JISZ255
0に基づく引張り試験片を作製し、この試験片を用いて
引張り強さを測定し、これらの測定値を表4に示した。
Further, alloys 1 to 13 of the present invention and comparative alloy 1
~ 8 and conventional alloy using JIS standard JISZ255
The tensile test piece based on 0 was produced, the tensile strength was measured using this test piece, and these measured values are shown in Table 4.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【表3】 [Table 3]

【0030】[0030]

【表4】 [Table 4]

【0031】さらに、素地のSi含有量についても測定
し、その平均含有量を表4の備考の欄に示した。
Further, the Si content of the base material was also measured, and the average content is shown in the remarks column of Table 4.

【0032】[0032]

【発明の効果】表1〜表4に示される結果から、平均粒
径:1.5〜15μmの範囲内の寸法を有するSi結晶
粒が40〜70面積%の割合で過密に集合して形成され
ているグループ硬質相の平均寸法が20〜150μmの
範囲内にあり、このグループ硬質相が素地中に3〜50
面積%の割合で分散している本発明合金1〜13は、素
地中にSi結晶粒が均一分散している従来合金に比べ
て、引張強さに優れかつ摩耗量が少ないところから耐摩
耗性に優れていることがわかる。
From the results shown in Tables 1 to 4, Si crystal grains having an average grain size of 1.5 to 15 μm are densely aggregated at a rate of 40 to 70 area%. The average size of the group hard phase is within the range of 20 to 150 μm, and the group hard phase is 3 to 50 μm in the matrix.
The alloys 1 to 13 of the present invention, which are dispersed in the area% ratio, are superior in tensile strength and wear resistance from the conventional alloy in which Si crystal grains are uniformly dispersed in the base material, because the wear amount is small. It turns out that it is excellent.

【0033】しかし、上記範囲から外れている比較合金
1〜8は、引張強さまたは耐摩耗性の少なくともいずれ
かが劣ることがわかる。
However, it is understood that the comparative alloys 1 to 8 out of the above range are inferior in at least either tensile strength or wear resistance.

【0034】上述のように、この発明の焼結アルミニウ
ム合金を用いて機械部品等を製造すると、従来よりも機
械的強度の優れた機械部品を製造することができ、苛酷
な使用に耐えることができるので、駆動装置等の性能向
上に大いに貢献しうるものである。
As described above, when a machine part or the like is manufactured using the sintered aluminum alloy of the present invention, a machine part having mechanical strength superior to the conventional one can be manufactured and it can withstand severe use. Therefore, it can greatly contribute to the performance improvement of the drive device and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の焼結アルミニウム合金の組織を説明
するための模写説明図である。
FIG. 1 is a schematic explanatory view for explaining the structure of a sintered aluminum alloy of the present invention.

【符号の説明】[Explanation of symbols]

1 Si結晶粒 2 グループ硬質相 3 素地 1 Si crystal grain 2 group hard phase 3 substrate

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Si結晶粒が集合してグループ硬質相を
形成し、このグループ硬質相が素地中に分散している組
織を有することを特徴とする強度および耐摩耗性に優れ
た焼結アルミニウム合金。
1. Sintered aluminum excellent in strength and wear resistance, characterized by having a structure in which Si crystal grains aggregate to form a group hard phase, and the group hard phase is dispersed in the matrix. alloy.
【請求項2】 Si結晶粒が10〜70面積%の割合で
集合してグループ硬質相を形成し、このグループ硬質相
が素地中に3〜50面積%の割合で分散している組織を
有することを特徴とする強度および耐摩耗性に優れた焼
結アルミニウム合金。
2. A structure in which Si crystal grains are aggregated at a rate of 10 to 70 area% to form a group hard phase, and the group hard phase is dispersed in the matrix at a rate of 3 to 50 area%. A sintered aluminum alloy having excellent strength and wear resistance, which is characterized in that
【請求項3】 Si結晶粒が10〜70面積%の割合で
集合して形成されているグループ硬質相は平均寸法が2
0〜150μmの範囲内にあり、このグループ硬質相が
素地中に3〜50面積%の割合で分散している組織を有
することを特徴とする強度および耐摩耗性に優れた焼結
アルミニウム合金。
3. The group hard phase formed by aggregating Si crystal grains at a ratio of 10 to 70 area% has an average size of 2
A sintered aluminum alloy having excellent strength and wear resistance, characterized in that it has a structure in which the group hard phase is in the range of 0 to 150 μm and is dispersed in the matrix at a ratio of 3 to 50 area%.
【請求項4】 上記Si結晶粒は、平均粒径:1.5〜
15μmの範囲内の寸法を有することを特徴とする請求
項1,2または3記載の強度および耐摩耗性に優れた焼
結アルミニウム合金。
4. The Si crystal grains have an average grain size of 1.5 to
The sintered aluminum alloy excellent in strength and wear resistance according to claim 1, wherein the sintered aluminum alloy has a size within a range of 15 μm.
JP35441593A 1993-12-28 1993-12-28 Sintered aluminum alloy with excellent strength and wear resistance Expired - Fee Related JP3329046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35441593A JP3329046B2 (en) 1993-12-28 1993-12-28 Sintered aluminum alloy with excellent strength and wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35441593A JP3329046B2 (en) 1993-12-28 1993-12-28 Sintered aluminum alloy with excellent strength and wear resistance

Publications (2)

Publication Number Publication Date
JPH07197167A true JPH07197167A (en) 1995-08-01
JP3329046B2 JP3329046B2 (en) 2002-09-30

Family

ID=18437408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35441593A Expired - Fee Related JP3329046B2 (en) 1993-12-28 1993-12-28 Sintered aluminum alloy with excellent strength and wear resistance

Country Status (1)

Country Link
JP (1) JP3329046B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7166254B2 (en) 2002-05-14 2007-01-23 Hitachi Powdered Metals Co., Ltd. Process for producing sintered aluminum alloy
WO2013183488A1 (en) 2012-06-08 2013-12-12 株式会社豊田中央研究所 Method for molding aluminum alloy powder, and aluminum alloy member
CN109371298A (en) * 2018-12-11 2019-02-22 湖南金昊新材料科技股份有限公司 A kind of aluminium-based alloyed powder ultimogeniture production. art
CN109957684A (en) * 2017-12-25 2019-07-02 北京有色金属研究总院 A kind of preparation method of auto parts and components High-strength heat-resistant aluminum alloy material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7166254B2 (en) 2002-05-14 2007-01-23 Hitachi Powdered Metals Co., Ltd. Process for producing sintered aluminum alloy
WO2013183488A1 (en) 2012-06-08 2013-12-12 株式会社豊田中央研究所 Method for molding aluminum alloy powder, and aluminum alloy member
CN109957684A (en) * 2017-12-25 2019-07-02 北京有色金属研究总院 A kind of preparation method of auto parts and components High-strength heat-resistant aluminum alloy material
CN109957684B (en) * 2017-12-25 2021-02-02 有研工程技术研究院有限公司 Preparation method of high-strength heat-resistant aluminum alloy material for automobile parts
CN109371298A (en) * 2018-12-11 2019-02-22 湖南金昊新材料科技股份有限公司 A kind of aluminium-based alloyed powder ultimogeniture production. art

Also Published As

Publication number Publication date
JP3329046B2 (en) 2002-09-30

Similar Documents

Publication Publication Date Title
US4702885A (en) Aluminum alloy and method for producing the same
US4857267A (en) Aluminum base bearing alloy and method of producing same
CN114438377B (en) High-strength and high-toughness die-casting aluminum alloy for new energy automobile and preparation method thereof
US4537167A (en) Engine cylinder liners based on aluminum alloys and intermetallic compounds, and methods of obtaining them
US4177069A (en) Process for manufacturing sintered compacts of aluminum-base alloys
DE102009016111B4 (en) Die castings from a hypereutectic aluminum-silicon casting alloy and process for its production
JPH0120215B2 (en)
JPH0551683A (en) Hypereutectic al-si powder metallurgical alloy with high strength
JPH07197167A (en) Sintered aluminum alloy having excellent strength and wear resistance
CN111041291B (en) High-strength aluminum alloy material and preparation method thereof
US6706126B2 (en) Aluminum alloy for sliding bearing and its production method
JPH07197168A (en) Sintered aluminum alloy having excellent strength and wear resistance
JPS6316459B2 (en)
JP3184367B2 (en) Method for producing high toughness Al-Si alloy
JP2004027316A (en) Aluminum alloy having excellent high temperature strength and its production method
JP2003277867A (en) Aluminum powder alloy having excellent high temperature strength, method of producing piston for internal combustion engine and piston for internal combustion engine
JPH04325648A (en) Production of sintered aluminum alloy
US6899844B2 (en) Production method of aluminum alloy for sliding bearing
JPH0261023A (en) Heat-resistant and wear-resistant aluminum alloy material and its manufacture
EP0137180B1 (en) Heat-resisting aluminium alloy
JPH04131352A (en) Al-si-mg sintered alloy having excellent wear resistance
JP2856251B2 (en) High-strength wear-resistant Al-Si alloy forged member having low coefficient of thermal expansion and method for producing the same
JPH06228697A (en) Rapidly solidified al alloy excellent in high temperature property
JP2003342660A (en) Sintered aluminum alloy excellent in strength and abrasion resistance
JP3250131B2 (en) Free graphite precipitated iron-based sintered body with high strength and high toughness

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020618

LAPS Cancellation because of no payment of annual fees