JPH0719635A - Pulse tube refrigerator - Google Patents
Pulse tube refrigeratorInfo
- Publication number
- JPH0719635A JPH0719635A JP15834793A JP15834793A JPH0719635A JP H0719635 A JPH0719635 A JP H0719635A JP 15834793 A JP15834793 A JP 15834793A JP 15834793 A JP15834793 A JP 15834793A JP H0719635 A JPH0719635 A JP H0719635A
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- pulse tube
- working gas
- tip
- cold heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000020169 heat generation Effects 0.000 claims description 28
- 230000001172 regenerating effect Effects 0.000 claims description 25
- 238000001816 cooling Methods 0.000 abstract description 10
- 239000007789 gas Substances 0.000 description 87
- 230000006835 compression Effects 0.000 description 8
- 238000007906 compression Methods 0.000 description 8
- 230000005855 radiation Effects 0.000 description 7
- 239000012530 fluid Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 239000004020 conductor Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 3
- 238000005057 refrigeration Methods 0.000 description 3
- 230000008929 regeneration Effects 0.000 description 3
- 238000011069 regeneration method Methods 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 238000005338 heat storage Methods 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/14—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
- F25B9/145—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/14—Compression machines, plants or systems characterised by the cycle used
- F25B2309/1417—Pulse-tube cycles without any valves in gas supply and return lines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/14—Compression machines, plants or systems characterised by the cycle used
- F25B2309/1419—Pulse-tube cycles with pulse tube having a basic pulse tube refrigerator [PTR], i.e. comprising a tube with basic schematic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/14—Compression machines, plants or systems characterised by the cycle used
- F25B2309/1422—Pulse tubes with basic schematic including a counter flow heat exchanger instead of a regenerative heat exchanger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/14—Compression machines, plants or systems characterised by the cycle used
- F25B2309/1425—Pulse tubes with basic schematic including several pulse tubes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/10—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point with several cooling stages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D19/00—Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
- F25D19/006—Thermal coupling structure or interface
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、作動ガスの吐出と吸入
とを交互に繰り返す脈動手段からの作動ガス経路に、再
生熱交換器、冷熱発生熱交換器、パルスチューブ、並び
に、先端冷却器をその順に接続するパルスチューブ冷凍
機に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a regenerative heat exchanger, a cold heat generating heat exchanger, a pulse tube, and a tip cooler in a working gas path from a pulsating means for alternately repeating discharge and suction of a working gas. Related to the pulse tube refrigerator.
【0002】[0002]
【従来の技術】従来、上記の如きパルスチューブ冷凍機
において生成低温の一層の低温化を図るのに、図3に示
す如く、作動ガスGの吐出と吸入とを交互に繰り返す脈
動手段1からの作動ガス経路F1に、(第1の)再生熱
交換器6、(第1の)冷熱発生熱交換器7、(第1の)
パルスチューブ8、並びに、(第1の)先端冷却器9を
その順に接続する基本構成に対し、その第1再生熱交換
器6と第1冷熱発生熱交換器7との間から分岐する分岐
作動ガス経路F2を設けて、この分岐作動ガス経路F2
に、第2の再生熱交換器10、第2の冷熱発生熱交換器
11、第2のパルスチューブ12、並びに、第2の先端
冷却器13をその順に接続し、そして、基本構成側であ
る第1の冷熱発生熱交換器7と分岐経路側である第2先
端冷却器13との間で熱授受させるように、固体の熱伝
導材Xを第1の冷熱発生熱交換器7と第2先端冷却器1
3とにわたらせたものがある。2. Description of the Related Art Conventionally, in order to further reduce the generated low temperature in the above pulse tube refrigerator, as shown in FIG. 3, the discharge and suction of the working gas G from the pulsating means 1 are alternately repeated. In the working gas path F1, the (first) regenerative heat exchanger 6, the (first) cold heat generation heat exchanger 7, and the (first)
A branch operation for branching from between the first regenerative heat exchanger 6 and the first cold heat generating heat exchanger 7 to the basic configuration in which the pulse tube 8 and the (first) tip cooler 9 are connected in that order. By providing the gas path F2, the branch working gas path F2
The second regenerative heat exchanger 10, the second cold heat generating heat exchanger 11, the second pulse tube 12, and the second tip cooler 13 are connected in that order to the basic configuration side. The solid heat-conducting material X and the second cold heat generating heat exchanger 7 and the second cold heat generating heat exchanger 7 are exchanged so as to transfer heat between the first cold heat generating heat exchanger 7 and the second tip cooler 13 on the branch path side. Tip cooler 1
There is a cross over.
【0003】つまり、基本構成側である第1冷熱発生熱
交換器7での発生低温を固体熱伝導材Xを介して第2先
端冷却器13に伝えることで、第2パルスチューブ12
の先端部での作動ガスG’の放熱温度(すなわち、第2
先端冷却器13での作動ガス冷却温度)を基本構成側の
第1パルスチューブ8における先端部の作動ガス放熱温
度よりも低くし、これにより、第2冷熱発生熱交換器1
1において基本構成側の第1冷熱発生熱交換器7よりも
さらに低い低温を発生させるようにしたものである。That is, by transmitting the low temperature generated in the first cold heat generating heat exchanger 7 which is the basic configuration side to the second tip cooler 13 via the solid heat conducting material X, the second pulse tube 12
Heat radiation temperature of the working gas G'at the tip of the
The cooling temperature of the working gas in the tip cooler 13 is set lower than the heat radiation temperature of the working gas in the tip portion of the first pulse tube 8 on the basic configuration side, whereby the second cold heat generation heat exchanger 1
In the first example, a lower temperature than that of the first cold heat generation heat exchanger 7 on the basic configuration side is generated.
【0004】[0004]
【発明が解決しようとする課題】しかし、上記の従来構
成では、基本構成側である第1冷熱発生熱交換器7と分
岐経路側である第2先端冷却器13との間での熱授受に
おいて、固体熱伝導材Xでの熱抵抗が大きいため、その
熱授受の効率(すなわち、第1冷熱発生熱交換器7にお
ける作動ガスGと第2パルスチューブ12の先端部にお
ける作動ガスG’との間での熱交換効率)が低いものと
なり、このため、所期目的である生成低温の一層の低温
化が大きく制限される問題があった。However, in the above-mentioned conventional configuration, in the heat transfer between the first cold heat generating heat exchanger 7 which is the basic configuration side and the second tip cooler 13 which is the branch path side. Since the solid heat-conducting material X has a large heat resistance, the efficiency of heat transfer (that is, the working gas G in the first cold heat generating heat exchanger 7 and the working gas G ′ in the tip portion of the second pulse tube 12 is Therefore, there is a problem that the desired lowering of the production low temperature is greatly limited.
【0005】殊に、パルスチューブ冷凍機では、例えば
150Kや100K以下といった極低温を対象とするた
め、固体熱伝導材Xでの上記の如き熱抵抗が低温生成
上、特に大きな能力低下要因となり、このため、上記の
問題が顕著となる。In particular, since the pulse tube refrigerator is intended for extremely low temperatures of, for example, 150 K or 100 K or less, the above-mentioned thermal resistance of the solid heat conductive material X becomes a particularly large capacity deteriorating factor in low temperature generation. For this reason, the above problem becomes remarkable.
【0006】本発明の目的は、合理的な改良により生成
低温の一層の低温化を効果的に達成できるようにする点
にある。An object of the present invention is to make it possible to effectively achieve further lowering of the low temperature of formation by rational improvement.
【0007】[0007]
【課題を解決するための手段】本発明によるパルスチュ
ーブ冷凍機の第1特徴構成は、作動ガスの吐出と吸入と
を交互に繰り返す脈動手段からの作動ガス経路に、再生
熱交換器、冷熱発生熱交換器、パルスチューブ、並び
に、先端冷却器をその順に接続する基本構成に対し、前
記再生熱交換器と前記冷熱発生熱交換器との間から分岐
する分岐作動ガス経路を設け、この分岐作動ガス経路
に、第2再生熱交換器、第2冷熱発生熱交換器、並び
に、第2パルスチューブをその順に接続し、その第2パ
ルスチューブの先端部に設ける第2先端冷却器は、前記
冷熱発生熱交換器における流通作動ガスと前記第2パル
スチューブの先端部における流通作動ガスとを熱交換さ
せるように、前記第2パルスチューブの先端部を前記冷
熱発生熱交換器に接続する形態で前記冷熱発生熱交換器
と一体的に構成してあることにある。A first characteristic configuration of a pulse tube refrigerator according to the present invention is a regeneration heat exchanger and cold heat generation in a working gas path from a pulsating means for alternately repeating discharge and suction of a working gas. A branch working gas path that branches from between the regenerative heat exchanger and the cold heat generating heat exchanger is provided for the basic configuration in which the heat exchanger, the pulse tube, and the tip cooler are connected in that order, and this branch operation is performed. The second regenerative heat exchanger, the second cold heat generating heat exchanger, and the second pulse tube are connected in that order to the gas path, and the second tip cooler provided at the tip of the second pulse tube is the cold heat The tip portion of the second pulse tube is connected to the cold heat generation heat exchanger so that the flowing working gas in the generated heat exchanger and the circulating working gas in the tip portion of the second pulse tube are heat-exchanged. Form at some that have configured the integrally with cold generating heat exchanger.
【0008】本発明による第2の特徴構成は、前記第2
再生熱交換器と前記第2冷熱発生熱交換器との間から分
岐する第2の分岐作動ガス経路を設け、この第2の分岐
作動ガス経路に、第3再生熱交換器、第3冷熱発生熱交
換器、並びに、第3パルスチューブをその順に接続し、
その第3パルスチューブの先端部に設ける第3先端冷却
器は、前記第2冷熱発生熱交換器における流通作動ガス
と前記第3パルスチューブの先端部における流通作動ガ
スとを熱交換させるように、前記第3パルスチューブの
先端部を前記第2冷熱発生熱交換器に接続する形態で前
記第2冷熱発生熱交換器と一体的に構成してあることに
ある。A second characteristic configuration according to the present invention is the above-mentioned second configuration.
A second branch working gas path branched from between the regenerative heat exchanger and the second cold heat generating heat exchanger is provided, and a third regenerative heat exchanger and a third cold heat generating path are provided in the second branch working gas path. Connect the heat exchanger and the third pulse tube in that order,
The third tip cooler provided at the tip of the third pulse tube is configured to exchange heat between the working fluid flowing in the second cold heat generating heat exchanger and the working fluid flowing in the tip of the third pulse tube. The tip of the third pulse tube is connected to the second cold heat generating heat exchanger and is integrally configured with the second cold heat generating heat exchanger.
【0009】[0009]
【作用】つまり、上記の第1特徴構成においては(図1
参照)、先述の図3に示す従来構成と同様、基本的に
は、基本構成側の(第1)冷熱発生熱交換器7における
流通作動ガスGと分岐経路側である第2パルスチューブ
12の先端部における流通作動ガスG’とを熱交換させ
ることで、すなわち、(第1)冷熱発生熱交換器7にお
ける流通作動ガスGにより第2パルスチューブ12の先
端部における流通作動ガスG’を冷却することで、第2
パルスチューブ12の先端部での作動ガスG’の放熱温
度(すなわち、第2先端冷却器13での作動ガス冷却温
度)を基本構成側の(第1)パルスチューブ8における
先端部の作動ガス放熱温度よりも低くし、これにより、
第2冷熱発生熱交換器11において基本構成側の(第
1)冷熱発生熱交換器7よりもさらに低い低温を発生さ
せる。In other words, in the above first characteristic configuration (see FIG.
Similarly to the conventional configuration shown in FIG. 3 described above, basically, the working fluid G flowing in the (first) cold heat generating heat exchanger 7 on the basic configuration side and the second pulse tube 12 on the branch path side are disposed. By heat exchange with the flow working gas G ′ at the tip, that is, the flow working gas G at the tip of the second pulse tube 12 is cooled by the flow working gas G in the (first) cold heat generation heat exchanger 7. By doing the second
The heat radiation temperature of the working gas G ′ at the tip of the pulse tube 12 (that is, the working gas cooling temperature in the second tip cooler 13) is set to the heat radiation of the working gas at the tip of the (first) pulse tube 8 on the basic configuration side. Lower than the temperature, which
The second cold heat generation heat exchanger 11 generates a lower temperature than that of the (first) cold heat generation heat exchanger 7 on the basic configuration side.
【0010】そして、上記の如く(第1)冷熱発生熱交
換器7における流通作動ガスGと第2パルスチューブ1
2の先端部における流通作動ガスG’とを熱交換させる
にあたり、その熱交換構成として、第2パルスチューブ
12の先端部を(第1)冷熱発生熱交換器7に接続する
形態で、第2パルスチューブ先端の第2先端冷却器13
を(第1)冷熱発生熱交換器7と一体的に構成すること
により、(第1)冷熱発生熱交換器7における流通作動
ガスGと第2パルスチューブ12の先端部における流通
作動ガスG’との間での熱交換経路上における熱抵抗を
低減する。Then, as described above, the flow working gas G in the (first) cold heat generating heat exchanger 7 and the second pulse tube 1
In heat exchange with the flow working gas G ′ at the tip of the second pulse tube, as a heat exchange configuration, the tip of the second pulse tube 12 is connected to the (first) cold heat generation heat exchanger 7, Second tip cooler 13 at the tip of the pulse tube
Is integrally formed with the (first) cold heat generating heat exchanger 7, whereby the working gas G flowing in the (first) cold heat generating heat exchanger 7 and the working gas G ′ flowing in the tip portion of the second pulse tube 12 are formed. The thermal resistance on the heat exchange path between and is reduced.
【0011】第2特徴構成においては(図2参照)、第
2冷熱発生熱交換器11における流通作動ガスG’と第
3パルスチューブ16の先端部における流通作動ガス
G”とを熱交換させることで、すなわち、第2冷熱発生
熱交換器11における流通作動ガスG’により第3パル
スチューブ16の先端部における流通作動ガスG”を冷
却することで、第3パルスチューブ16の先端部での作
動ガスG”の放熱温度(すなわち、第3先端冷却器17
での作動ガス冷却温度)を第2パルスチューブ12にお
ける先端部の作動ガス放熱温度よりも低くし、これによ
り、第3冷熱発生熱交換器15において第2冷熱発生熱
交換器11よりもさらに低い低温を発生させる。In the second characteristic configuration (see FIG. 2), the flow working gas G'in the second cold heat generating heat exchanger 11 and the flow working gas G "in the tip portion of the third pulse tube 16 are heat-exchanged. In other words, by cooling the flow working gas G ″ at the tip of the third pulse tube 16 by the flow working gas G ′ in the second cold heat generating heat exchanger 11, the operation at the tip of the third pulse tube 16 is performed. Heat dissipation temperature of gas G "(that is, third tip cooler 17
Cooling temperature of the working gas in the second pulse tube 12 is lower than the heat radiation temperature of the working gas in the tip portion of the second pulse tube 12, so that it is lower in the third cold heat generating heat exchanger 15 than in the second cold heat generating heat exchanger 11. Generates low temperature.
【0012】そして、第3パルスチューブ16の先端部
を第2冷熱発生熱交換器11に接続する形態で、第3パ
ルスチューブ先端の第3先端冷却器17を第2冷熱発生
熱交換器11と一体的に構成することにより、第2冷熱
発生熱交換器11における流通作動ガスG’と第3パル
スチューブ16の先端部における流通作動ガスG”との
間での熱交換経路上における熱抵抗を低減する。Then, the third tip cooler 17 at the tip of the third pulse tube is connected to the second cold heat generating heat exchanger 11 so that the tip portion of the third pulse tube 16 is connected to the second cold heat generating heat exchanger 11. By being integrally configured, the thermal resistance on the heat exchange path between the flow working gas G ′ in the second cold heat generating heat exchanger 11 and the flow working gas G ″ at the tip of the third pulse tube 16 is reduced. Reduce.
【0013】[0013]
【発明の効果】すなわち、本発明の第1特徴構成によれ
ば、基本構成側の(第1)冷熱発生熱交換器と分岐経路
側の第2先端冷却器との間に固体の熱伝導材をわたらせ
る先述の従来構成に比べ、それら(第1)冷熱発生熱交
換器における作動ガスと第2パルスチューブの先端部に
おける作動ガスとの間での熱交換上における熱抵抗を低
減できることで、所期目的である生成低温の一層の低温
化をより効果的に達成できて、さらに低い低温を効率良
く得ることができる。That is, according to the first characteristic configuration of the present invention, a solid heat conduction material is provided between the (first) cold heat generating heat exchanger on the basic configuration side and the second tip cooler on the branch path side. In comparison with the above-mentioned conventional configuration that applies the above, it is possible to reduce the thermal resistance in heat exchange between the working gas in those (first) cold heat generating heat exchangers and the working gas in the tip portion of the second pulse tube, It is possible to more effectively achieve the desired lowering of the production low temperature, and it is possible to efficiently obtain a lower low temperature.
【0014】又、本発明の第2特徴構成によれば、上記
の如く第2冷熱発生熱交換器において基本構成側の(第
1)冷熱発生熱交換器よりも低い低温を得られることに
加え、その第2冷熱発生熱交換器よりもさらに低い低温
を第3冷熱発生熱交換器において得られることで、所期
目的である生成低温の低温化をさらに効果的に達成でき
る。Further, according to the second characteristic construction of the present invention, in addition to the fact that the second cold heat generating heat exchanger can obtain a lower temperature than that of the (first) cold heat generating heat exchanger of the basic construction side as described above. By obtaining a lower temperature lower than that of the second cold heat generating heat exchanger in the third cold heat generating heat exchanger, it is possible to more effectively achieve the intended lowering of the generated low temperature.
【0015】[0015]
【実施例】次に実施例を説明する。EXAMPLES Next, examples will be described.
【0016】図1は二重パルスチューブ冷凍機を示し、
1は脈動手段としての圧縮機であり、この圧縮機1は、
クランク軸2の駆動回転により往復動作するピストン3
を圧縮室4に内装し、このピストン3の往復動作により
例えばヘリウムガスや水素ガス等の作動ガスGを圧縮室
4から吐出することと圧縮室4に吸入することとを交互
に繰り返す。FIG. 1 shows a double pulse tube refrigerator,
1 is a compressor as pulsation means, and this compressor 1 is
A piston 3 that reciprocates by the driving rotation of the crankshaft 2.
Is housed in the compression chamber 4, and the reciprocating motion of the piston 3 alternately discharges the working gas G such as helium gas or hydrogen gas from the compression chamber 4 and sucks it into the compression chamber 4.
【0017】圧縮機1からの作動ガス経路F1には、冷
却器5、第1再生熱交換器6、第1冷熱発生熱交換器
7、第1パルスチューブ8、並びに、第1先端冷却器9
をその順に接続してあり、この基本構成においてパルス
チューブ冷凍機の冷凍原理により第1冷熱発生熱交換器
7で例えば150K程度の低温を発生する。In the working gas path F1 from the compressor 1, a cooler 5, a first regenerative heat exchanger 6, a first cold heat generating heat exchanger 7, a first pulse tube 8 and a first tip cooler 9 are provided.
Are connected in that order, and in this basic configuration, the first cold heat generation heat exchanger 7 generates a low temperature of, for example, about 150K according to the refrigeration principle of the pulse tube refrigerator.
【0018】冷却器5は、大気や冷却水、あるいは、そ
の他の適当流体を用いる冷却媒体W1と作動ガスGとを
熱交換させて、作動ガスGを予冷する機能を備え、ま
た、第1再生熱交換器6は、内部に蓄熱要素を備える構
成で蓄冷器として機能する。The cooler 5 has a function of pre-cooling the working gas G by exchanging heat between the working medium G and the cooling medium W1 using the atmosphere, cooling water, or other suitable fluid, and also the first regeneration. The heat exchanger 6 functions as a regenerator by having a heat storage element inside.
【0019】第1先端冷却器9は、第1パルスチューブ
8の先端部で、大気や冷却水、あるいは、その他の適当
流体を用いた冷却媒体W2と作動ガスGとを熱交換させ
て、作動ガスGを冷却する。The first tip cooler 9 is operated at the tip of the first pulse tube 8 by exchanging heat between the working medium G2 and the cooling medium W2 using the atmosphere, cooling water, or other suitable fluid. Cool the gas G.
【0020】つまり、パルスチューブ冷凍機の冷凍原理
として、圧縮機1による作動ガスGの吐出と吸入に伴
い、冷却器5で予冷した作動ガスGの断熱圧縮と断熱膨
張とを第1パルスチューブ8において交互に生じさせ、
これに伴い、断熱圧縮で高温化した作動ガスGを第1先
端冷却器9において放熱させ、また、断熱膨張で低温化
した作動ガスGにより、第1冷熱発生熱交換器7におい
て冷熱を発生させるとともに、蓄冷器としての第1再生
熱交換器6に蓄冷させる。That is, according to the refrigeration principle of the pulse tube refrigerator, the adiabatic compression and adiabatic expansion of the working gas G precooled by the cooler 5 in accordance with the discharge and suction of the working gas G by the compressor 1 is performed by the first pulse tube 8 Alternately occur at
Along with this, the working gas G whose temperature has been raised by adiabatic compression is radiated in the first tip cooler 9, and the working gas G whose temperature has been lowered by adiabatic expansion is used to generate cold heat in the first cold heat generation heat exchanger 7. At the same time, the first regenerative heat exchanger 6 as a regenerator is made to store cold.
【0021】そして、上記の如き断熱圧縮に対する第1
先端冷却器9での放熱と、断熱膨張による低温発生の繰
り返しに伴い、第1再生熱交換器6での蓄冷温度、及
び、第1冷熱発生熱交換器7での発生冷熱温度を次第に
低下させる運転立ち上げ形態を経て、最終的には定常運
転で第1冷熱発生熱交換器7において前述の如き150
Kといった極低温を得る。Then, the first for adiabatic compression as described above
With the repeated heat dissipation in the tip cooler 9 and the low temperature generation due to adiabatic expansion, the cold storage temperature in the first regenerative heat exchanger 6 and the cold temperature generated in the first cold heat generation heat exchanger 7 are gradually decreased. After the operation start-up mode, finally, in the steady operation, the first cold heat generation heat exchanger 7 is operated at the above-mentioned 150
Obtain a very low temperature such as K.
【0022】上記の基本構成に対し、本例の二重パルス
チューブ冷凍機では第1再生熱交換器6と第1冷熱発生
熱交換器7との間から分岐する分岐作動ガス経路F2を
設け、この分岐作動ガス経路F2に、第2再生熱交換器
10、第2冷熱発生熱交換器11、及び、第2パルスチ
ューブ12をその順に接続してある。In contrast to the above basic structure, the double pulse tube refrigerator of this embodiment is provided with a branch working gas path F2 which branches from between the first regenerative heat exchanger 6 and the first cold heat generating heat exchanger 7, A second regenerative heat exchanger 10, a second cold heat generating heat exchanger 11, and a second pulse tube 12 are connected in this order to the branch working gas path F2.
【0023】また、第2パルスチューブ12の先端部に
は第2先端冷却器13を設けるが、この第2先端冷却器
13は、基本構成側の第1冷熱発生熱交換器7における
流通作動ガスGと第2パルスチューブ12の先端部にお
ける流通作動ガスG’とを熱交換させるように、第2パ
ルスチューブ12の先端部を第1冷熱発生熱交換器7に
接続する形態で、その第1冷熱発生熱交換器7と一体的
に構成してある。A second tip cooler 13 is provided at the tip of the second pulse tube 12, and the second tip cooler 13 is a working gas flowing through the first cold heat generating heat exchanger 7 on the basic structure side. The first part of the second pulse tube 12 is connected to the first cold heat generating heat exchanger 7 so that the G and the working gas G ′ flowing at the tip part of the second pulse tube 12 are heat-exchanged. It is configured integrally with the cold heat generation heat exchanger 7.
【0024】尚、第1冷熱発生熱交換器7と第2先端冷
却器13との具体的一体化構造については、第1細流路
aと第2細流路bとを熱交換用隔壁cを介して気密に隣
接させる状態で、これら第1細流路aと第2細流路bと
を多数形成した熱交換器Nを設け、そして、第1細流路
aを第1冷熱発生熱交換器7における流通作動ガスGの
通過経路(つまり、第1再生熱交換器6と第1パルスチ
ューブ8とにわたって流通させる作動ガスGの通過経
路)とする状態で、この熱交換器Nを第1再生熱交換器
6と第1パルスチューブ8とを結ぶ基本構成側の作動ガ
ス管路中に装備するとともに、他方の第2細流路bを第
2パルスチューブ12の先端部における作動ガスG’の
通過経路とするように、この熱交換器Nに対して第2パ
ルスチューブ12の先端部を接続する形態を採用してお
り、この熱交換器Nにより第1冷熱発生熱交換器7と第
2先端冷却器13とを構成してある。Regarding the specific integrated structure of the first cold heat generating heat exchanger 7 and the second tip cooler 13, the first narrow channel a and the second narrow channel b are connected via the heat exchanging partition wall c. A heat exchanger N in which a large number of the first narrow channels a and the second narrow channels b are formed, and the first narrow channels a are circulated in the first cold heat generation heat exchanger 7. This heat exchanger N is used as a passage for the working gas G (that is, a passage for the working gas G to be circulated between the first regenerative heat exchanger 6 and the first pulse tube 8). 6 is provided in the working gas pipeline on the side of the basic configuration connecting the first pulse tube 8 and the other second fine flow path b is used as a passage for the working gas G ′ at the tip of the second pulse tube 12. As described above, the tip of the second pulse tube 12 is connected to the heat exchanger N. A form in which the end portions are connected is adopted, and the heat exchanger N constitutes the first cold heat generating heat exchanger 7 and the second tip cooler 13.
【0025】一方、第2再生熱交換器10は、第1再生
熱交換器6と同様、内部に蓄熱要素を備える構成で蓄冷
器として機能し、また、第2冷熱発生熱交換器11は、
本例における二重パルスチューブ冷凍機の冷熱取り出し
端末として、発生冷熱により冷却対象媒体W3を冷却す
る。On the other hand, like the first regenerative heat exchanger 6, the second regenerative heat exchanger 10 functions as a regenerator having a heat storage element inside, and the second cold heat generating heat exchanger 11 is
As the cold heat extraction terminal of the double pulse tube refrigerator in this example, the cooling target medium W3 is cooled by the generated cold heat.
【0026】この分岐作動ガス経路F2の側では、前述
の基本構成側と同様に、パルスチューブ冷凍機の冷凍原
理として基本的には、圧縮機1による作動ガスGの吐出
と吸入に伴い、第2パルスチューブ12において断熱圧
縮と断熱膨張とを交互に生じさせ、この断熱圧縮により
高温化した作動ガスG’を第2先端冷却器13において
放熱させ、また、断熱膨張で低温化した作動ガスG’に
より、第2冷熱発生熱交換器11において冷熱を発生さ
せるとともに、蓄冷器としての第2再生熱交換器10に
蓄冷させる。On the side of the branch working gas path F2, as in the case of the above-mentioned basic configuration side, basically, as the refrigeration principle of the pulse tube refrigerator, the discharge and suction of the working gas G by the compressor 1 The adiabatic compression and the adiabatic expansion are alternately generated in the two-pulse tube 12, the working gas G ′ whose temperature is raised by the adiabatic compression is radiated in the second tip cooler 13, and the working gas G whose temperature is lowered by the adiabatic expansion is generated. 'Causes the second cold heat generation heat exchanger 11 to generate cold heat and causes the second regenerative heat exchanger 10 as a regenerator to store cold.
【0027】そして、この分岐経路側での低温生成にお
いては、前述の如く、第2先端冷却器13において第1
冷熱発生熱交換器7における流通作動ガスGと第2パル
スチューブ12の先端部における流通作動ガスG’とを
熱交換させることにより、すなわち、第1冷熱発生熱交
換器7における発生低温をもって第2パルスチューブ1
2の先端部における流通作動ガスG’を冷却する形態と
することにより、第2パルスチューブ12の先端部での
作動ガスG’の放熱温度(すなわち、第2先端冷却器1
3での作動ガス冷却温度)を基本構成側の第1パルスチ
ューブ8における先端部の作動ガス放熱温度よりも低く
し、これにより、分岐経路側の第2冷熱発生熱交換器1
1において基本構成側の第1冷熱発生熱交換器7よりも
さらに低い低温を発生させる。Then, in the low temperature generation on the side of the branch path, as described above, the first tip cooler 13
When the circulating working gas G in the cold heat generating heat exchanger 7 and the circulating working gas G ′ in the tip portion of the second pulse tube 12 are heat-exchanged, that is, at the low temperature generated in the first cold heat generating heat exchanger 7, Pulse tube 1
The heat dissipation temperature of the working gas G ′ at the tip of the second pulse tube 12 (that is, the second tip cooler 1 is set by cooling the flowing working gas G ′ at the tip of the second pulse tube 12.
3) is lower than the working gas heat radiation temperature of the tip end of the first pulse tube 8 on the basic configuration side, whereby the second cold heat generation heat exchanger 1 on the branch path side.
In No. 1, a low temperature lower than that of the first cold heat generation heat exchanger 7 on the basic configuration side is generated.
【0028】また、第1冷熱発生熱交換器7における流
通作動ガスGと第2パルスチューブ12の先端部におけ
る流通作動ガスG’とを熱交換させるにあたり、第2パ
ルスチューブ12の先端部を第1冷熱発生熱交換器7に
接続する形態で、第2先端冷却器13を第1冷熱発生熱
交換器7と一体的に構成することにより、第1冷熱発生
熱交換器7における流通作動ガスGと第2パルスチュー
ブ12の先端部における流通作動ガスG’との間で熱抵
抗を低減した効率的な伝熱を行わせ、これにより、分岐
経路側の第2冷熱発生熱交換器11において基本構成側
の第1冷熱発生熱交換器7よりもさらに低い低温を効率
良く発生させる(例えば、第1冷熱発生熱交換器7での
発生低温が150K程度であるのに対し、第2冷熱発生
熱交換器11において70K程度の極低温を効率良く発
生させる)。Further, in exchanging heat between the flow working gas G in the first cold heat generating heat exchanger 7 and the flow working gas G'in the tip of the second pulse tube 12, the tip of the second pulse tube 12 is moved to the first position. By connecting the second tip cooler 13 integrally with the first cold heat generating heat exchanger 7 in the form of being connected to the first cold heat generating heat exchanger 7, the circulation working gas G in the first cold heat generating heat exchanger 7 is formed. And the circulating working gas G ′ at the tip of the second pulse tube 12 are caused to perform efficient heat transfer with reduced thermal resistance, whereby the second cold heat generation heat exchanger 11 on the branch path side is basically Efficiently generate a lower temperature that is lower than that of the first cold heat generation heat exchanger 7 on the configuration side (for example, while the low temperature generated in the first cold heat generation heat exchanger 7 is about 150 K, the second cold heat generation heat exchanger 7 Smell of exchanger 11 Efficiently generating a degree of cryogenic 70K).
【0029】〔別実施例〕次に別実施例を列記する。[Other Embodiments] Next, other embodiments will be listed.
【0030】(1)図1に示す実施例構成に対する改良
として、図2に示すように、第2再生熱交換器10と第
2冷熱発生熱交換器11との間から分岐する第2の分岐
作動ガス経路F3を設け、そして、この第2の分岐作動
ガス経路F3に、第3再生熱交換器14、第3冷熱発生
熱交換器15、並びに、第3パルスチューブ16をその
順に接続するとともに、この第3パルスチューブ16の
先端部に設ける第3先端冷却器17は、第2冷熱発生熱
交換器11における流通作動ガスG’と第3パルスチュ
ーブ16の先端部における流通作動ガスG”とを熱交換
させるように、第3パルスチューブ16の先端部を第2
冷熱発生熱交換器11に接続する形態で第2冷熱発生熱
交換器11と一体的に構成するようにしてもよい。(1) As an improvement to the configuration of the embodiment shown in FIG. 1, as shown in FIG. 2, a second branch is provided between the second regenerative heat exchanger 10 and the second cold heat generating heat exchanger 11. A working gas passage F3 is provided, and a third regenerative heat exchanger 14, a third cold heat generating heat exchanger 15, and a third pulse tube 16 are connected in this order to the second branch working gas passage F3. The third tip cooler 17 provided at the tip of the third pulse tube 16 has a flow working gas G ′ in the second cold heat generating heat exchanger 11 and a flow working gas G ″ in the tip of the third pulse tube 16. The tip of the third pulse tube 16 to the second
It may be configured to be integrated with the second cold heat generating heat exchanger 11 in a form of being connected to the cold heat generating heat exchanger 11.
【0031】つまり、第2冷熱発生熱交換器11におけ
る流通作動ガスG’と第3パルスチューブ16の先端部
における流通作動ガスG”とを熱交換させて、第2冷熱
発生熱交換器11の発生冷熱で第3パルスチューブ16
の先端部における流通作動ガスG”を冷却することによ
り、第3パルスチューブ16の先端部での作動ガスG”
の放熱温度(すなわち、第3先端冷却器17での作動ガ
ス冷却温度)を第2パルスチューブ12における先端部
の作動ガス放熱温度よりも低くし、これにより、第3冷
熱発生熱交換器15において第2冷熱発生熱交換器11
よりもさらに低い低温を効率良く発生させる三重パルス
チューブ構成とする。That is, the flow working gas G'in the second cold heat generating heat exchanger 11 and the flow working gas G "in the tip portion of the third pulse tube 16 are heat-exchanged, and the second cold heat generating heat exchanger 11 is heated. Generated cold heat causes the third pulse tube 16
The working gas G ″ at the tip of the third pulse tube 16 is cooled by cooling the working gas G ″ flowing through the tip of the third pulse tube 16.
(Ie, the working gas cooling temperature in the third tip cooler 17) is set lower than the working gas heat radiation temperature in the tip portion of the second pulse tube 12, whereby the third cold heat generation heat exchanger 15 Second cold heat generation heat exchanger 11
A triple pulse tube configuration that efficiently generates a lower temperature than the above is adopted.
【0032】(2)図1に示す二重パルスチューブ構成
から上記の図2に示す三重パルスチューブ構成への改良
と同様にして、四重パルスチューブ構成やそれ以上の多
重パルスチューブ構成を採用してもよい。(2) Similar to the improvement from the double pulse tube configuration shown in FIG. 1 to the triple pulse tube configuration shown in FIG. 2, a quadruple pulse tube configuration or a multiple pulse tube configuration more than that is adopted. May be.
【0033】(3)第1冷熱発生熱交換器7と第2先端
冷却器13との具体的一体化構成、また、三重以上の多
重パルスチューブ構成における冷熱発生熱交換器11と
分岐経路側の先端冷却器17との具体一体化構成は種々
の改良が可能である。(3) A specific integrated structure of the first cold heat generating heat exchanger 7 and the second tip cooler 13, and the cold heat generating heat exchanger 11 and the branch path side in the multiple pulse tube structure of triple or more. Various improvements can be made to the specific integrated configuration with the tip cooler 17.
【0034】(4)作動ガスはヘリウムガスや水素ガス
に限らず種々のものを適用でき、また、冷凍機の冷熱取
り出し端末としての冷熱発生熱交換器での冷却対象も不
問である。(4) The working gas is not limited to helium gas or hydrogen gas, various kinds of gases can be applied, and the object to be cooled in the cold heat generating heat exchanger as the cold heat take-out terminal of the refrigerator does not matter.
【0035】尚、特許請求の範囲の項に図面との対照を
便利にするため符号を記すが、該記入により本発明は添
付図面の構成に限定されるものではない。It should be noted that reference numerals are given in the claims for convenience of comparison with the drawings, but the present invention is not limited to the configuration of the accompanying drawings by the entry.
【図1】実施例を示す構造図FIG. 1 is a structural diagram showing an embodiment.
【図2】別実施例を示す構造図FIG. 2 is a structural diagram showing another embodiment.
【図3】従来例を示す構造図FIG. 3 is a structural diagram showing a conventional example.
1 脈動手段 6 再生熱交換器 7 冷熱発生熱交換器 8 パルスチューブ 9 先端冷却器 10 第2再生熱交換器 11 第2冷熱発生熱交換器 12 第2パルスチューブ 13 第2先端冷却器 14 第3再生熱交換器 15 第3冷熱発生熱交換器 16 第3パルスチューブ 17 第3先端冷却器 F1 作動ガス経路 F2 分岐作動ガス経路 F3 第2の分岐作動ガス経路 G,G’,G” 作動ガス 1 Pulsating Means 6 Regenerative Heat Exchanger 7 Cold Heat Generation Heat Exchanger 8 Pulse Tube 9 Tip Cooler 10 Second Regenerative Heat Exchanger 11 Second Cold Heat Generation Heat Exchanger 12 Second Pulse Tube 13 Second Tip Cooler 14 Third Regeneration heat exchanger 15 Third cold heat generation heat exchanger 16 Third pulse tube 17 Third tip cooler F1 Working gas path F2 Branch working gas path F3 Second branch working gas path G, G ', G "Working gas
───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤島 一郎 兵庫県尼崎市浜1丁目1番1号 株式会社 クボタ技術開発研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ichiro Fujishima 1-1-1, Hama, Amagasaki City, Hyogo Prefecture Kubota Technology Development Laboratory
Claims (2)
繰り返す脈動手段(1)からの作動ガス経路(F1)
に、再生熱交換器(6)、冷熱発生熱交換器(7)、パ
ルスチューブ(8)、並びに、先端冷却器(9)をその
順に接続したパルスチューブ冷凍機であって、 前記再生熱交換器(6)と前記冷熱発生熱交換器(7)
との間から分岐する分岐作動ガス経路(F2)を設け、 この分岐作動ガス経路(F2)に、第2再生熱交換器
(10)、第2冷熱発生熱交換器(11)、並びに、第
2パルスチューブ(12)をその順に接続し、 その第2パルスチューブ(12)の先端部に設ける第2
先端冷却器(13)は、前記冷熱発生熱交換器(7)に
おける流通作動ガス(G)と前記第2パルスチューブ
(12)の先端部における流通作動ガス(G’)とを熱
交換させるように、前記第2パルスチューブ(12)の
先端部を前記冷熱発生熱交換器(7)に接続する形態で
前記冷熱発生熱交換器(7)と一体的に構成してあるパ
ルスチューブ冷凍機。1. A working gas path (F1) from a pulsating means (1) which alternately repeats discharge and suction of a working gas (G).
A pulse tube refrigerator in which a regenerative heat exchanger (6), a cold heat generating heat exchanger (7), a pulse tube (8), and a tip cooler (9) are connected in that order. Vessel (6) and cold heat generating heat exchanger (7)
A branch working gas path (F2) branching from between and is provided, and in this branch working gas path (F2), a second regenerative heat exchanger (10), a second cold heat generating heat exchanger (11), and a second The second pulse tube (12) is connected in that order, and a second pulse tube (12) is provided at the tip of the second pulse tube (12).
The tip cooler (13) exchanges heat between the circulating working gas (G) in the cold heat generating heat exchanger (7) and the circulating working gas (G ′) in the tip portion of the second pulse tube (12). Further, a pulse tube refrigerator in which the tip of the second pulse tube (12) is connected to the cold heat generating heat exchanger (7) so as to be integrated with the cold heat generating heat exchanger (7).
2冷熱発生熱交換器(11)との間から分岐する第2の
分岐作動ガス経路(F3)を設け、 この第2の分岐作動ガス経路(F3)に、第3再生熱交
換器(14)、第3冷熱発生熱交換器(15)、並び
に、第3パルスチューブ(16)をその順に接続し、 その第3パルスチューブ(16)の先端部に設ける第3
先端冷却器(17)は、前記第2冷熱発生熱交換器(1
1)における流通作動ガス(G’)と前記第3パルスチ
ューブ(16)の先端部における流通作動ガス(G”)
とを熱交換させるように、前記第3パルスチューブ(1
6)の先端部を前記第2冷熱発生熱交換器(11)に接
続する形態で前記第2冷熱発生熱交換器(11)と一体
的に構成してある請求項1記載のパルスチューブ冷凍
機。2. A second branch working gas path (F3) is provided which branches from between the second regenerative heat exchanger (10) and the second cold heat generating heat exchanger (11). A third regenerative heat exchanger (14), a third cold heat generating heat exchanger (15), and a third pulse tube (16) are connected in this order to the branch working gas path (F3), and the third pulse tube Third provided at the tip of (16)
The tip cooler (17) includes the second cold heat generation heat exchanger (1
Circulating working gas (G ′) in 1) and circulating working gas (G ″) at the tip of the third pulse tube (16)
And the third pulse tube (1
The pulse tube refrigerator according to claim 1, wherein the tip of (6) is integrally formed with the second cold heat generating heat exchanger (11) in a form of being connected to the second cold heat generating heat exchanger (11). .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15834793A JPH0719635A (en) | 1993-06-29 | 1993-06-29 | Pulse tube refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15834793A JPH0719635A (en) | 1993-06-29 | 1993-06-29 | Pulse tube refrigerator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0719635A true JPH0719635A (en) | 1995-01-20 |
Family
ID=15669665
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15834793A Pending JPH0719635A (en) | 1993-06-29 | 1993-06-29 | Pulse tube refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0719635A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001051862A1 (en) * | 2000-01-15 | 2001-07-19 | Forschungszentrum Karlsruhe Gmbh | Periodic refrigerating machine |
JP2007183252A (en) * | 2005-12-09 | 2007-07-19 | Taiyo Nippon Sanso Corp | Cooling system for analyzer, and device and method of gas chromatography |
-
1993
- 1993-06-29 JP JP15834793A patent/JPH0719635A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001051862A1 (en) * | 2000-01-15 | 2001-07-19 | Forschungszentrum Karlsruhe Gmbh | Periodic refrigerating machine |
JP2007183252A (en) * | 2005-12-09 | 2007-07-19 | Taiyo Nippon Sanso Corp | Cooling system for analyzer, and device and method of gas chromatography |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH055568A (en) | Pulse tube type refrigerator | |
US6644038B1 (en) | Multistage pulse tube refrigeration system for high temperature super conductivity | |
US6779349B2 (en) | Sterling refrigerating system and cooling device | |
US5519999A (en) | Flow turning cryogenic heat exchanger | |
CN109556318B (en) | Thermoacoustic refrigerator | |
JP3674791B2 (en) | Cooling system | |
JPS61256158A (en) | Refrigeration system | |
CN206637883U (en) | Thermoelectricity subcooler expanding machine joint auxiliary supercooling CO2 transcritical cooling systems | |
JPH0719635A (en) | Pulse tube refrigerator | |
JPS63302259A (en) | Cryogenic generator | |
JPH09178278A (en) | Cold heat accumulator | |
JPH03194364A (en) | Cryostatic freezer | |
JPH0854151A (en) | Pulse tube refrigerating machine | |
US3318101A (en) | Device for producing cold at low temperatures and compression devices suitable for use in said devices | |
JPH11223398A (en) | Heat exchanger for heat engine | |
JP3609469B2 (en) | Kook Jabolov cycle agency | |
Jeong et al. | Magnetically augmented regeneration in Stirling Cryocooler | |
JP2000018742A (en) | Cooling device | |
JPH09303978A (en) | Heat pipe device for loop type thin pipe | |
JPS608667A (en) | Method of efficiently absorbing heat energy at low temperature | |
JPS625057A (en) | Cryogenic device | |
JPS61225556A (en) | Cryogenic cooling device | |
JPS5840454A (en) | Cryogenic refrigerator | |
JP3363697B2 (en) | Refrigeration equipment | |
JP2003075001A (en) | Pulse pipe refrigerating machine |