JPH07193264A - Solar cell - Google Patents

Solar cell

Info

Publication number
JPH07193264A
JPH07193264A JP5331627A JP33162793A JPH07193264A JP H07193264 A JPH07193264 A JP H07193264A JP 5331627 A JP5331627 A JP 5331627A JP 33162793 A JP33162793 A JP 33162793A JP H07193264 A JPH07193264 A JP H07193264A
Authority
JP
Japan
Prior art keywords
layer
photoelectric conversion
amorphous semiconductor
type
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5331627A
Other languages
Japanese (ja)
Other versions
JP3284151B2 (en
Inventor
Tetsumasa Umemoto
哲正 梅本
Hitoshi Sannomiya
仁 三宮
Yoshihiro Yamamoto
義宏 山本
Koji Tomita
孝司 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP33162793A priority Critical patent/JP3284151B2/en
Publication of JPH07193264A publication Critical patent/JPH07193264A/en
Application granted granted Critical
Publication of JP3284151B2 publication Critical patent/JP3284151B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To restrain impurities diffusion from a substrate at the time of manufacturing or impurities diffusion between semiconductors, by forming a tetrahedral amorphous carbon layer, a photoelectric conversion layer, and a photo detection surface electrode in order on a substrate. CONSTITUTION:On a metal electrode substrate 11 composed of stainless, the following are laminated in order; an N-type tetrahedral amorphous carbon layer 12, a photoelectric conversion layer, i.e., an N-type amorphous semiconductor layer 14, an I-type amorphous semiconductor layer 15, a P-type amorphous semiconductor layer 16, and a transparent conductive film electrode 11, on which a collector electrode 18 is formed. Since the tetrahedral amorphous carbon film 12 does not form grain boundary, diffusion of impurities can be more effectively blocked. A photoelectric conversion layer of excellent quality can be formed by laminating amorphous semiconductor layers in the order of the N-layer, the I-layer, and the P-layer. Ohmic contact can be obtained by putting a P<+> type amorphous semiconductor between the P-type carbon thin film and the N-type photoelectric conversion layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は太陽電池の構造に関す
る。
FIELD OF THE INVENTION The present invention relates to the structure of solar cells.

【0002】[0002]

【従来の技術】太陽電池には、光電変換層がpn接合に
より形成されたもの、pin接合により形成されたもの
があり、pn接合は結晶系で、pin接合は非晶質系で
用いられる。そして、非晶質系の太陽電池には、ガラス
等の透光性絶縁基板上にSnO2やITO等の透明導電
性膜電極が形成され、その上に非晶質半導体のp層、i
層、n層がこの順に積層されて光電変換層が形成され、
その上に金属薄膜裏面電極が積層されてなる構造や、金
属基板電極の上に非晶質半導体のn層、i層、p層がこ
の順に積層されて光電変換層が形成され、その上に透明
導電性膜電極が積層されてなる構造がある。
2. Description of the Related Art There are solar cells in which a photoelectric conversion layer is formed by a pn junction and those in which a photoelectric conversion layer is formed by a pin junction. The pn junction is a crystalline system and the pin junction is an amorphous system. In an amorphous solar cell, a transparent conductive film electrode such as SnO 2 or ITO is formed on a transparent insulating substrate such as glass, and an amorphous semiconductor p layer, i
A layer and an n layer are laminated in this order to form a photoelectric conversion layer,
A structure in which a metal thin film back electrode is laminated on it, or an amorphous semiconductor n layer, i layer, and p layer are laminated in this order on a metal substrate electrode to form a photoelectric conversion layer, on which a photoelectric conversion layer is formed. There is a structure in which transparent conductive film electrodes are laminated.

【0003】また、光電変換層は、Si,GaAs,S
iC等の無機物や有機化合物等種々の材料で形成するこ
とができ、光電変換効率等の特性を考慮して場合により
二種以上が組み合わされる。例えば、pin接合を有す
る非晶質系太陽電池の受光面側のp層または裏面電極に
接するn層を炭素で形成し、他の層をケイ素で形成した
り(例えば特開平1-212478、特開平1-212479)、受光面
側のp層とi層を炭素で形成し、n層を炭化ケイ素で形
成したもの(例えば特開平2-34975)がある。これらで
は、電極膜からの不純物の拡散を防止できる事や良好な
光透過性をもつ事という炭素膜の性質が利用されてい
る。
The photoelectric conversion layer is made of Si, GaAs, S.
It can be formed of various materials such as an inorganic material such as iC or an organic compound, and two or more kinds may be combined depending on the case in consideration of characteristics such as photoelectric conversion efficiency. For example, the p-layer on the light-receiving surface side of an amorphous solar cell having a pin junction or the n-layer in contact with the back electrode may be formed of carbon and the other layers may be formed of silicon (see, for example, Japanese Patent Laid-Open No. 1-212478, Kaihei 1-212479), in which the p-layer and the i-layer on the light-receiving surface side are formed of carbon, and the n-layer is formed of silicon carbide (for example, JP-A-2-34975). In these materials, the properties of the carbon film, that is, that the diffusion of impurities from the electrode film can be prevented and that the film has good light transmittance, are utilized.

【0004】[0004]

【発明が解決しようとする課題】従来の太陽電池では、
光電変換効率や光劣化といった特性、価格といった点で
十分ではなかった。特に、基板の上に光電変換層を成膜
して製造される太陽電池では、製造時の光電変換層中へ
の不純物拡散が特性向上、低価格化の阻害要因となって
いた。例えば、光劣化が少なく高効率の非晶質ケイ素半
導体光電変換層を作製するためには、i層を300〜4
00℃という高温で作製しa−Si:H薄膜の膜中水素
量を制御するのが良い。また、これにより、光学バンド
ギャップEgoptも1.75eVから高温成膜により
1.65eVと狭バンドギャップになり、短絡電流が大
きくなり光電変換効率の向上に寄与する。尚、このよう
に高温にしてバンドギャップを変化させて特性を向上さ
せることが可能なものとしては、他にa−SiCやアモ
ルファスシリコン合金がある。しかしながら、透明導電
性膜電極の上にp−i−n層をこの順に積層すると、i
層の積層時にp層中のホウ素が不純物としてi層中に拡
散したり、透明導電性電極膜からp層へ不純物が拡散し
たりして、光電変換層の光入射側に損傷を与えて光電変
換特性を低下させてしまうという問題がある。また、金
属膜電極の上にn−i−p層をこの順に積層すると、金
属膜電極からn層へ不純物が熱拡散しやはり特性を低下
させてしまうという問題がある。また、金属級シリコン
基板といった安価な基板の上に多結晶シリコン薄膜を形
成して光電変換層を得ようとする場合にも、多結晶シリ
コン薄膜中へ基板から不純物が拡散し同様の問題が生じ
る。
In the conventional solar cell,
It was not sufficient in terms of characteristics such as photoelectric conversion efficiency and light deterioration, and price. In particular, in a solar cell manufactured by depositing a photoelectric conversion layer on a substrate, diffusion of impurities into the photoelectric conversion layer during manufacturing has been a factor that hinders improvement in characteristics and cost reduction. For example, in order to produce a highly efficient amorphous silicon semiconductor photoelectric conversion layer with little photodegradation, the i layer is 300 to 4
It is preferable to control the amount of hydrogen in the a-Si: H thin film produced at a high temperature of 00 ° C. Further, as a result, the optical band gap Eg opt also becomes a narrow band gap from 1.75 eV to 1.65 eV due to the high temperature film formation, the short-circuit current increases, and the photoelectric conversion efficiency is improved. Incidentally, a-SiC and amorphous silicon alloys are other examples that can improve the characteristics by changing the band gap at such a high temperature. However, if a p-i-n layer is laminated in this order on the transparent conductive film electrode, i
When the layers are stacked, boron in the p-layer diffuses as an impurity into the i-layer, or the impurities diffuse from the transparent conductive electrode film to the p-layer to damage the light incident side of the photoelectric conversion layer to cause photoelectric conversion. There is a problem that the conversion characteristics are deteriorated. Further, when the n-i-p layers are laminated in this order on the metal film electrode, there is a problem that impurities are thermally diffused from the metal film electrode to the n layer, which also deteriorates the characteristics. Also, when a polycrystalline silicon thin film is formed on an inexpensive substrate such as a metal-grade silicon substrate to obtain a photoelectric conversion layer, impurities are diffused from the substrate into the polycrystalline silicon thin film, and a similar problem occurs. .

【0005】以上に鑑み、本発明は製造時の基板からの
不純物拡散又は半導体間の不純物拡散を抑制して、変換
効率が大きく安価な太陽電池を提供することを目的とす
る。
In view of the above, it is an object of the present invention to provide an inexpensive solar cell having high conversion efficiency by suppressing the impurity diffusion from the substrate or the impurity diffusion between the semiconductors during manufacturing.

【0006】[0006]

【課題を解決するための手段】本発明の太陽電池は、基
板上にテトラヘドラル炭素結合を主とする炭素薄膜が形
成され、該炭素薄膜上に光電変換層が形成され、該光電
変換層上に受光面電極が形成されていることを特徴とす
る。
A solar cell according to the present invention comprises a substrate on which a carbon thin film having tetrahedral carbon bonds as a main component is formed, a photoelectric conversion layer formed on the carbon thin film, and the photoelectric conversion layer formed on the photoelectric conversion layer. It is characterized in that a light-receiving surface electrode is formed.

【0007】上記基板としては、例えば、ステンレス等
の金属基板、ガラス等の絶縁物基板、炭素基板、シリコ
ン基板等をもちいることができ、適宜選択されて用いら
れる。例えば、基板に裏面電極の役割を持たせる場合に
は、金属基板、金属級シリコン基板等を用いるのが良
い。
As the above-mentioned substrate, for example, a metal substrate such as stainless steel, an insulating substrate such as glass, a carbon substrate, a silicon substrate or the like can be used, and they are appropriately selected and used. For example, when the substrate has a role of a back electrode, it is preferable to use a metal substrate, a metal grade silicon substrate, or the like.

【0008】上記テトラヘドラル炭素結合を主とする炭
素薄膜には、代表的なものとして薄膜ダイアモンド膜、
テトラヘドラル非晶質カーボン(ta−C)膜等があ
り、特にテトラヘドラル非晶質カーボン膜が本発明に適
している。
The carbon thin film mainly composed of the tetrahedral carbon bond is typically a thin diamond film,
There is a tetrahedral amorphous carbon (ta-C) film or the like, and a tetrahedral amorphous carbon film is particularly suitable for the present invention.

【0009】また、上記炭素薄膜は不純物が添加されて
p型またはn型となっているのが好ましい。
The carbon thin film is preferably p-type or n-type by adding impurities.

【0010】光電変換層としては、非晶質半導体による
pin接合構造、多結晶半導体によるpn接合構造等を
用いることができ、材料としてはSi,GaAs,Si
C等を用いることができ、適宜選択される。例えば、非
晶質半導体材料としては、非晶質シリコン(a−Si:
H)、非晶質シリコンゲルマニウム(a−SiGe:
H)、非晶質シリコンカーバイト(a−SiC:H)、
非晶質シリコン錫(a−SiSn:H)、等のa−Si
系半導体があり、これらは比較的良好な特性を得易い。
As the photoelectric conversion layer, a pin junction structure made of an amorphous semiconductor, a pn junction structure made of a polycrystalline semiconductor, or the like can be used, and the material is Si, GaAs, Si.
C or the like can be used and is appropriately selected. For example, as an amorphous semiconductor material, amorphous silicon (a-Si:
H), amorphous silicon germanium (a-SiGe:
H), amorphous silicon carbide (a-SiC: H),
A-Si such as amorphous silicon tin (a-SiSn: H)
There are system semiconductors, and it is easy to obtain relatively good characteristics.

【0011】また、非晶質半導体によるpin接合構造
を用いる場合には、上記炭素薄膜の側からn層、i層、
p層の順に非晶質半導体層を積層して光電変換層を形成
するのが好ましい。
When using a pin junction structure made of an amorphous semiconductor, an n layer, an i layer, and
It is preferable to stack the amorphous semiconductor layers in order of the p-layer to form a photoelectric conversion layer.

【0012】さらにこの場合、上記炭素薄膜をp型と
し、該炭素薄膜上にp+型の非晶質半導体層を形成し、
該半導体層上にn層、i層、p層の順に非晶質半導体層
を積層して光電変換層を形成するのが好ましい。
Further, in this case, the carbon thin film is of p-type, and a p + -type amorphous semiconductor layer is formed on the carbon thin film,
It is preferable to stack an amorphous semiconductor layer on the semiconductor layer in the order of n layer, i layer, and p layer to form a photoelectric conversion layer.

【0013】上記受光面電極としては、金属、金属酸化
物等の材料を用いることができ、光電変換層の全面また
は一部に形成される。そして、本発明の太陽電池は、光
が基板と反対側から入射するようにして用いられる。
As the light-receiving surface electrode, a material such as metal or metal oxide can be used and is formed on the whole surface or a part of the photoelectric conversion layer. Then, the solar cell of the present invention is used such that light is incident from the side opposite to the substrate.

【0014】[0014]

【作用】本発明の太陽電池では、基板と光電変換層との
間にテトラヘドラル炭素結合を主とする炭素薄膜が設け
られているので、この炭素薄膜の強固で短いテトラヘド
ラル炭素のc−c結合により基板からの不純物拡散が阻
止される。したがって、光電変換層の形成時に基板から
の不純物の混入を避けることができる構造となってい
る。テトラヘドラル炭素結合はこのような役割をしてい
るので、テトラヘドラル炭素結合が他の結合に対して主
となっているのが良く、その占める割合は多い方が良
く、その密度も高い方が良い。
In the solar cell of the present invention, since the carbon thin film having mainly tetrahedral carbon bond is provided between the substrate and the photoelectric conversion layer, the strong and short cc bond of the tetrahedral carbon causes the carbon thin film. Impurity diffusion from the substrate is prevented. Therefore, the structure is such that impurities can be prevented from entering from the substrate when the photoelectric conversion layer is formed. Since the tetrahedral carbon bond plays such a role, it is preferable that the tetrahedral carbon bond is the main component with respect to other bonds, and the ratio of the tetrahedral carbon bond is preferably high and the density thereof is also high.

【0015】また、テトラヘドラル非晶質カーボン膜
は、薄膜ダイアモンド膜のように粒界を形成することが
ないので、より効果的に不純物の拡散を阻止できる。
Further, since the tetrahedral amorphous carbon film does not form grain boundaries unlike the thin diamond film, the diffusion of impurities can be prevented more effectively.

【0016】さらに、炭素薄膜が不純物が添加されてp
型またはn型となっていると導電性が良くなって、発生
した電流を取り出し易くなる。また、オーミック接触が
得やすくなり、特に、炭素薄膜と光電変換層とがp−
p,n−nと続くように組み合わせると容易にオーミッ
ク接触が得られ好ましい。
Further, the carbon thin film is doped with impurities to obtain p
If it is of the n-type or n-type, the conductivity is improved, and the generated current is easily extracted. Further, ohmic contact is easily obtained, and in particular, the carbon thin film and the photoelectric conversion layer are p-type.
Combining with p and n-n in succession is preferable because ohmic contact can be easily obtained.

【0017】また、炭素薄膜の側からn層、i層、p層
の順に非晶質半導体層が積層された構造とすると、製造
時にn層、i層、p層の順に積層することができるの
で、p層、i層、n層の順に積むよりも良質の光電変換
層が形成される。これは、例えばa−Si系半導体では
p層中のドープ材料であるホウ素がi層中に拡散混入す
ることを避けることができpi界面での不純物拡散の影
響がなくなり、また、光の入射側であるp層側が損傷を
うけると光電変換効率に著しい影響が出ることは避けら
れないが、n層側の場合は、p−i−nと光が入射する
過程においてp層とi層で既に光電変換に必要な大部分
の入射光が吸収されておりn層に到達する光電変換に必
要な光は本来少なく、ni界面での不純物混入の影響が
実質的に少なくなるからである。
Further, when the amorphous semiconductor layers are laminated in this order from the carbon thin film side, the n layer, the i layer and the p layer, the n layer, the i layer and the p layer can be laminated in this order at the time of manufacturing. Therefore, a photoelectric conversion layer of higher quality than that of p layer, i layer, and n layer stacked in this order is formed. This is because, for example, in an a-Si-based semiconductor, it is possible to avoid that boron, which is a doping material in the p-layer, is diffused and mixed into the i-layer, the influence of the impurity diffusion at the pi interface is eliminated, and the light incident side is eliminated. It is unavoidable that the photoelectric conversion efficiency is significantly affected if the p-layer side is damaged. However, in the case of the n-layer side, the p-layer and the i-layer have already been damaged in the process of incident light with p-i-n. This is because most of the incident light required for photoelectric conversion is absorbed, and the light required for photoelectric conversion that reaches the n-layer is essentially small, and the influence of impurities mixed in the ni interface is substantially reduced.

【0018】また、p型炭素薄膜と光電変換層のn層と
の間にp+の非晶質半導体層を挟むと、オーミック接触
が得られる。
If a p + amorphous semiconductor layer is sandwiched between the p-type carbon thin film and the n layer of the photoelectric conversion layer, ohmic contact is obtained.

【0019】[0019]

【実施例】以下、実施例によりさらに詳細に説明する。 実施例1 図1は、本実施例の太陽電池の概略構造図である。本実
施例の太陽電池は、ステンレスからなる金属電極基板1
の上にp型薄膜ダイアモンド層2、非晶質半導体p+
3、非晶質半導体n層4、非晶質半導体i層5、非晶質
半導体p層6、透明導電性膜電極7をこの順に積層し、
該透明導電性膜電極7上に集電極8を形成した構造とな
っている。
EXAMPLES The present invention will be described in more detail below with reference to examples. Example 1 FIG. 1 is a schematic structural diagram of a solar cell of this example. The solar cell of the present embodiment has a metal electrode substrate 1 made of stainless steel.
A p-type thin film diamond layer 2, an amorphous semiconductor p + layer 3, an amorphous semiconductor n layer 4, an amorphous semiconductor i layer 5, an amorphous semiconductor p layer 6, and a transparent conductive film electrode 7 are formed on the Stack in this order,
It has a structure in which a collecting electrode 8 is formed on the transparent conductive film electrode 7.

【0020】本実施例の太陽電池は以下のようにして作
製される。マイクロ波プラズマCVD法により、ホウ素
をドープしてp型にした薄膜ダイアモンド層2をステン
レスの金属電極基板1上に形成する。CH4/H2の濃度
1vol%、流量250sccm,ドーピングガスの1
%水素希釈のジボランガスの流量3sccm、ガス圧力
20Torr、基板温度500℃、マイクロ波電力30
0W、反応時間10minで150nm堆積させる。こ
の薄膜ダイアモンド層2はテクスチュア構造を有してお
り、裏面反射光収集効率を向上させることができる。こ
のように、薄膜ダイアモンド膜は、膜自信にテクスチャ
構造(図では省略)を持たせることができるので好まし
い。
The solar cell of this example is manufactured as follows. A p-type thin film diamond layer 2 doped with boron is formed on a stainless metal electrode substrate 1 by a microwave plasma CVD method. CH 4 / H 2 concentration 1 vol%, flow rate 250 sccm, doping gas 1
Flow rate of diborane gas diluted with hydrogen of 3%, gas pressure of 20 Torr, substrate temperature of 500 ° C., microwave power of 30
Deposition is performed to 150 nm with 0 W and a reaction time of 10 min. This thin-film diamond layer 2 has a texture structure, and can improve the efficiency of collecting light reflected from the back surface. As described above, the thin diamond film is preferable because the film itself can have a texture structure (not shown).

【0021】次に、該金属電極基板1をマイクロ波プラ
ズマCVD装置から取り出し、プラズマCVD装置中に
金属電極基板1を置き、基板温度を200℃に昇温す
る。反応ガスはモノシランガスを流量32sccm、ド
ーピングガスは5%の水素希釈のジボランガスを流量3
2sccmで流し、a−Si:Hの非晶質半導体p+
3を形成する。なお、このようにn層のi層との接触面
と反対側の面にP+層を形成しても、光の入射面からは
遠いため,ホウ素拡散による光電変換効率低下の影響は
無視できる。
Next, the metal electrode substrate 1 is taken out from the microwave plasma CVD apparatus, the metal electrode substrate 1 is placed in the plasma CVD apparatus, and the substrate temperature is raised to 200.degree. The reaction gas is monosilane gas at a flow rate of 32 sccm, and the doping gas is diborane gas diluted with 5% hydrogen at a flow rate of 3
Flowing at 2 sccm to form an amorphous semiconductor p + layer 3 of a-Si: H. Even if the P + layer is formed on the surface of the n layer opposite to the contact surface with the i layer in this way, since it is far from the light incident surface, the influence of the photoelectric conversion efficiency reduction due to boron diffusion can be ignored. .

【0022】続いて、a−Si:Hの非晶質半導体n層
4を100nmの厚さに積層する。反応ガスはモノシラ
ンガスを流量60sccm、水素ガスを流量3scc
m、ドーピングガスは、0.3%水素希釈のホスフィン
ガスを流量18sccmで流す。こうして形成された非
晶質半導体p+層3と非晶質半導体n層4はオーミック
接触となり、薄膜ダイアモンド層2と非晶質半導体p+
層3もオーミック接触となる。このように、炭素薄膜と
光電変換層とはオーミック接触するのが好ましい。
Subsequently, an amorphous semiconductor n layer 4 of a-Si: H is laminated to a thickness of 100 nm. The reaction gas is monosilane gas at a flow rate of 60 sccm, and hydrogen gas is at a flow rate of 3 sccc.
As the doping gas, a phosphine gas diluted with 0.3% hydrogen is flowed at a flow rate of 18 sccm. The amorphous semiconductor p + layer 3 and the amorphous semiconductor n layer 4 thus formed are in ohmic contact, and the thin film diamond layer 2 and the amorphous semiconductor p + layer 4 are formed.
Layer 3 is also in ohmic contact. Thus, it is preferable that the carbon thin film and the photoelectric conversion layer make ohmic contact.

【0023】続いてa−Si:Hの非晶質半導体i層5
を400nmの厚さに積層する。この時、基板温度は3
50℃に昇温し、反応ガスはモノシランガスを流量60
sccm、キャリアガスは水素ガスを流量20sccm
で流す。基板をこのように高温にしても金属電極基板か
ら非晶質半導体層への不純物拡散はp型薄膜ダイアモン
ド層でブロッキングされる。
Then, an amorphous semiconductor i layer 5 of a-Si: H is formed.
Are laminated to a thickness of 400 nm. At this time, the substrate temperature is 3
The temperature is raised to 50 ° C., and the reaction gas is monosilane gas at a flow rate of 60.
sccm, carrier gas is hydrogen gas at a flow rate of 20 sccm
Flush with. Even if the substrate is heated to such a high temperature, impurity diffusion from the metal electrode substrate to the amorphous semiconductor layer is blocked by the p-type thin film diamond layer.

【0024】続いてa−SiC:Hの非晶質半導体p層
6を12nmの厚さに積層する。この場合は、基板温度
は200℃に降温し、反応ガスはモノシランガスを流量
30sccm、メタンガスを流量89sccm、キャリ
アガスは水素ガスを流量150sccm、ドーピングガ
スは1%の水素希釈のジボランガスを流量10sccm
で流す。
Subsequently, an amorphous semiconductor p layer 6 of a-SiC: H is laminated to a thickness of 12 nm. In this case, the substrate temperature is lowered to 200 ° C., the reaction gas is a monosilane gas flow rate of 30 sccm, the methane gas flow rate is 89 sccm, the carrier gas is a hydrogen gas flow rate of 150 sccm, and the doping gas is a diborane gas diluted with 1% flow rate of 10 sccm.
Flush with.

【0025】こうして非晶質半導体光電変換層を積層し
た後、その上に透明導電性膜電極としてITOを60n
mの厚さでDCマグネトロンスパッタ法により積層す
る。そして、この上に部分的に表面を覆うように集電極
8を形成する。以下の実施例でも同じであるが、透明導
電性膜としては、この他SnO2、In23、ZnO等
も用いることができる。
After stacking the amorphous semiconductor photoelectric conversion layer in this way, 60 n of ITO as a transparent conductive film electrode is formed thereon.
The thickness of m is laminated by the DC magnetron sputtering method. Then, a collecting electrode 8 is formed on the electrode so as to partially cover the surface. The same applies to the following examples, but SnO 2 , In 2 O 3 , ZnO, or the like can also be used as the transparent conductive film.

【0026】本実施例の薄膜太陽電池の特性は、AM
1.5(100mW/cm2)においてIsc:20.
6mA/cm2,Voc:0.87V、F.F.:0.
74、Pmax:13.3mW/cm2であった。
The characteristics of the thin film solar cell of this embodiment are AM
Isc: 20 at 1.5 (100 mW / cm 2 ).
6 mA / cm 2 , Voc: 0.87 V, F.I. F. : 0.
74, Pmax: 13.3 mW / cm 2 .

【0027】実施例2 図2は、第2実施例の太陽電池の概略構造図である。本
実施例の太陽電池は、ステンレスからなる金属電極基板
11の上にn型テトラヘドラル非晶質カーボン層12、
非晶質半導体n層14、非晶質半導体i層15、非晶質
半導体p層16、透明導電性膜電極17をこの順に積層
し、該透明導電性膜電極17上に集電極18を形成した
構造となっている。
Embodiment 2 FIG. 2 is a schematic structural diagram of a solar cell of the second embodiment. The solar cell according to the present embodiment includes an n-type tetrahedral amorphous carbon layer 12 on a metal electrode substrate 11 made of stainless steel,
An amorphous semiconductor n layer 14, an amorphous semiconductor i layer 15, an amorphous semiconductor p layer 16, and a transparent conductive film electrode 17 are laminated in this order, and a collector electrode 18 is formed on the transparent conductive film electrode 17. It has a structure.

【0028】本実施例の太陽電池は以下のようにして作
製される。まず、金属電極基板11の上に、n型テトラ
ヘドラル非晶質カーボン層12を形成する。ノンドープ
のテトラヘドラル非晶質カーボン(ta−C)は、sp
3混成軌道結合を80%以上含み、残りはsp2混成軌道
結合と、不定型炭素からなる構造で、光学的バンドギャ
ップ:1.8〜2.2eV、フェルミ準位近傍の状態密
度:1018cm-3eV-1、450〜800nmの波長光
で外部量子効率:10%、導電率:10-7〜10-8Sc
-1,わずかに茶色の透明膜である。この膜はFCVA
(filtered cathodic vacuum arc)法で形成でき、カソー
ドの高純度カーボン・ディスクをアーク放電でイオン化
し、このプラズマビームを磁場フィルタ中を通すことで
薄膜として堆積される。このようにして作製されるた
め、テトラヘドラル非晶質カーボンは構造中に水素を含
まない。本実施例では、これに燐イオンをドープしてn
型とする。これは、カソードに燐含有のカーボンディス
クを使用することでなされ、0.1〜1%の燐含有のn
型テトラヘドラル非晶質カーボン(n−type ta
−C)を形成する。燐ドープにより、導電率:10-3
10-4Scm-1となるが、光学的バンドギャップとsp
3混成軌道結合は、ノンドープ時と変わらない。堆積速
度は150nm/minとし、100nm堆積させる。
The solar cell of this example is manufactured as follows. First, the n-type tetrahedral amorphous carbon layer 12 is formed on the metal electrode substrate 11. Non-doped tetrahedral amorphous carbon (ta-C) is sp
80% or more of 3 hybrid orbital bonds and the rest of sp 2 hybrid orbital bonds and a structure of amorphous carbon, optical band gap: 1.8 to 2.2 eV, density of states near Fermi level: 10 18 cm -3 eV -1 , wavelength quantum light of 450 to 800 nm, external quantum efficiency: 10%, conductivity: 10 -7 to 10 -8 Sc
m -1 , a slightly brown transparent film. This film is FCVA
It can be formed by a (filtered cathodic vacuum arc) method, and a high-purity carbon disk of the cathode is ionized by arc discharge, and this plasma beam is passed through a magnetic field filter to be deposited as a thin film. Since it is produced in this manner, the tetrahedral amorphous carbon does not contain hydrogen in its structure. In the present embodiment, this is doped with phosphorus ions to obtain n.
Use as a mold. This was done by using a phosphorus-containing carbon disk for the cathode, with n containing 0.1-1% phosphorus.
Type tetrahedral amorphous carbon (n-type ta)
-C) is formed. Conductivity: 10 -3 ~ due to phosphorus doping
10 −4 Scm −1 , but the optical bandgap and sp
The three- hybrid orbital coupling is the same as in the undoped state. The deposition rate is 150 nm / min, and 100 nm is deposited.

【0029】次にa−Si:Hの非晶質半導体n層14
を100nmの厚さに積層する。プラズマCVD装置中
に基板を置き、基板温度を200℃に昇温する。反応ガ
スはモノシランガスを流量60sccm、水素ガスを流
量3sccm、ドーピングガスは、0.3%水素希釈の
ホスフィンガスを流量18sccmで流す。このような
構成にすることにより、n型テトラヘドラル非晶質カー
ボン層12と非晶質半導体n層14はオーミック接触と
なる。
Next, an a-Si: H amorphous semiconductor n layer 14 is formed.
Are laminated to a thickness of 100 nm. The substrate is placed in a plasma CVD apparatus and the substrate temperature is raised to 200 ° C. The reaction gas is a monosilane gas at a flow rate of 60 sccm, the hydrogen gas is at a flow rate of 3 sccm, and the doping gas is a phosphine gas diluted with 0.3% hydrogen at a flow rate of 18 sccm. With such a structure, the n-type tetrahedral amorphous carbon layer 12 and the amorphous semiconductor n layer 14 are in ohmic contact.

【0030】続いてa−Si:Hの非晶質半導体i層1
5を500nmの厚さに積層する。この時、基板温度は
350℃に昇温し、反応ガスはモノシランガスを流量6
0sccm、水素ガスを流量20sccmで流す。
Next, an amorphous semiconductor i layer 1 of a-Si: H
5 is laminated to a thickness of 500 nm. At this time, the substrate temperature is raised to 350 ° C., and the reaction gas is monosilane gas at a flow rate of 6
0 sccm, hydrogen gas is flown at a flow rate of 20 sccm.

【0031】続いてa−SiC:Hの非晶質半導体p層
16を12nmの厚さに積層する。この場合は、基板温
度は200℃に降温し、反応ガスはモノシランガスを流
量30sccm、メタンガスを流量89sccm、キャ
リアガスは水素ガスを流量150sccm、ドーピング
ガスは1%の水素希釈のジボランガスを流量10scc
mで流す。
Subsequently, an amorphous semiconductor p layer 16 of a-SiC: H is laminated to a thickness of 12 nm. In this case, the substrate temperature is lowered to 200 ° C., the reaction gas is monosilane gas at a flow rate of 30 sccm, the methane gas is at a flow rate of 89 sccm, the carrier gas is hydrogen gas at a flow rate of 150 sccm, and the doping gas is 1% dilute diborane gas at a flow rate of 10 sccc.
Flow at m.

【0032】こうして非晶質半導体層を積層した後、そ
の上に透明導電性膜電極17としてITOを60nmの
厚さでDCマグネトロンスパッタ法により積層する。そ
して、この上に部分的に表面を覆うように集電極18を
形成する。
After laminating the amorphous semiconductor layer in this manner, ITO having a thickness of 60 nm is laminated thereon as the transparent conductive film electrode 17 by the DC magnetron sputtering method. Then, a collector electrode 18 is formed on this so as to partially cover the surface.

【0033】本実施例により作製した単層の薄膜太陽電
池の特性は、AM1.5(100mW/cm2)におい
てIsc:20.3mA/cm2,Voc:0.88
V、F.F.:0.74、Pmax:13.2mW/c
2であった。本実施例では、テクスチャ構造を持たせ
ていないにも拘わらず実施例1の太陽電池と同等の特性
が得られている。これはテトラヘドラル非晶質カーボン
層の不純物阻止の効率が高いためである。
The characteristics of the single-layer thin-film solar cell manufactured according to this example are as follows: AMc (100 mW / cm 2 ) Isc: 20.3 mA / cm 2 , Voc: 0.88
V, F. F. : 0.74, Pmax: 13.2 mW / c
It was m 2 . In this example, the characteristics equivalent to those of the solar cell of Example 1 were obtained even though no texture structure was provided. This is because the tetrahedral amorphous carbon layer has a high efficiency of blocking impurities.

【0034】実施例3 図3は、第3実施例の太陽電池の概略構造図である。本
実施例の太陽電池は、ステンレスからなる金属電極基板
21の上にn型テトラヘドラル非晶質カーボン層22、
非晶質半導体n層24、非晶質半導体i層25、非晶質
半導体p層26、非晶質半導体n層34、非晶質半導体
i層35、非晶質半導体p層36、透明導電性膜電極2
7をこの順に積層し、該透明導電性膜電極27上に集電
極28を形成した構造となっている。本実施例の太陽電
池は、実施例2の光電変換層を2層積層したタンデム構
造の太陽電池である。
Embodiment 3 FIG. 3 is a schematic structural diagram of a solar cell of the third embodiment. The solar cell of this example comprises an n-type tetrahedral amorphous carbon layer 22 on a metal electrode substrate 21 made of stainless steel,
Amorphous semiconductor n layer 24, amorphous semiconductor i layer 25, amorphous semiconductor p layer 26, amorphous semiconductor n layer 34, amorphous semiconductor i layer 35, amorphous semiconductor p layer 36, transparent conductivity Membrane electrode 2
7 is laminated in this order, and a collecting electrode 28 is formed on the transparent conductive film electrode 27. The solar cell of this example is a tandem structure solar cell in which two photoelectric conversion layers of Example 2 are laminated.

【0035】本実施例の太陽電池は、以下のようにして
作製される。まず、金属電極基板21の上に、n型テト
ラヘドラル非晶質カーボン層22を形成する。製法はF
CVA(filtered cathodic vacuum arc)法で、カソード
の、燐含有のカーボンディスクをアーク放電でイオン化
し、プラズマビームを磁場フィルタ中を通して薄膜とし
て堆積させ、0.1〜1%の燐含有のn型テトラヘドラ
ル非晶質カーボン(n−type ta−C)を形成す
る。堆積速度は150nm/minとし、100nm堆
積させる。燐ドープにより、導電率:10-3〜10-4
cm-1となる。
The solar cell of this example is manufactured as follows. First, the n-type tetrahedral amorphous carbon layer 22 is formed on the metal electrode substrate 21. The manufacturing method is F
A CVA (filtered cathodic vacuum arc) method is used to ionize a cathode-containing carbon disk containing phosphorus by arc discharge, deposit a plasma beam as a thin film through a magnetic field filter, and then deposit 0.1 to 1% phosphorus-containing n-type tetrahedral Amorphous carbon (n-type ta-C) is formed. The deposition rate is 150 nm / min, and 100 nm is deposited. Conductivity: 10 -3 to 10 -4 S due to phosphorus doping
It becomes cm -1 .

【0036】次に第1段目のa−Si:Hの非晶質半導
体n層24を100nmの厚さに積層する。プラズマC
VD装置中に基板を置き、基板温度を200℃に昇温す
る。反応ガスはモノシランガスを流量60sccm、水
素ガスを流量20sccm、ドーピングガスは、2%ホ
スフィンガスを流量0.35sccmで流し、反応圧力
0.12torrで反応させる。n型テトラヘドラル非
晶質カーボン層22と非晶質半導体n層24はオーミッ
クコンタクトとなっている。続いてa−Si:Hの非晶
質半導体i層25を200nmの厚さに積層する。この
時、基板温度は350℃に昇温し、反応ガスはモノシラ
ンガスを流量60sccm、水素ガスを流量20scc
mで流し、反応圧力12torrで反応させる。続いて
a−SiC:Hの非晶質半導体p層26を10nmの厚
さに積層する。この場合は、基板温度は200℃に降温
し、反応ガスはモノシランガスを流量30ml/mi
n、メタンガスを流量35.6sccm、キャリアガス
は水素ガスを流量160sccm、ドーピングガスは
0.6%のジボランガスを流量0.06sccmで流
し、反応圧力0.32torrで反応させる。
Next, the first-stage amorphous semiconductor n layer 24 of a-Si: H is laminated to a thickness of 100 nm. Plasma C
The substrate is placed in the VD apparatus and the substrate temperature is raised to 200 ° C. The reaction gas is a monosilane gas at a flow rate of 60 sccm, the hydrogen gas is at a flow rate of 20 sccm, and the doping gas is a 2% phosphine gas at a flow rate of 0.35 sccm. The reaction pressure is 0.12 torr. The n-type tetrahedral amorphous carbon layer 22 and the amorphous semiconductor n layer 24 are in ohmic contact. Then, an amorphous semiconductor i layer 25 of a-Si: H is laminated to a thickness of 200 nm. At this time, the substrate temperature is increased to 350 ° C., the reaction gas is monosilane gas at a flow rate of 60 sccm, and the hydrogen gas is at a flow rate of 20 sccc.
The reaction is carried out at a reaction pressure of 12 torr. Subsequently, an amorphous semiconductor p-layer 26 of a-SiC: H is stacked to a thickness of 10 nm. In this case, the substrate temperature is lowered to 200 ° C., and the reaction gas is monosilane gas at a flow rate of 30 ml / mi.
n, a flow rate of methane gas is 35.6 sccm, a carrier gas is hydrogen gas at a flow rate of 160 sccm, and a doping gas is 0.6% diborane gas at a flow rate of 0.06 sccm, and the reaction is performed at a reaction pressure of 0.32 torr.

【0037】続いて、第2段目のa−Si:Hの非晶質
半導体n+層34を5nmの厚さに堆積する。基板温度
は200℃で、n+層はその下のp層とオーミック接触
をとるため、ドープ量を2倍にする。反応ガスはモノシ
ランガスを流量60sccm、水素ガスを流量20sc
m、ドーピングガスは2%のホスフィンガスを流量2s
ccmで流し、反応圧力0.12torrで反応させ
る。続いて第2段目のa−Si:Hの非晶質半導体i層
35を150nmの厚さに堆積する。基板温度は200
℃で、反応ガスはモノシランガスを流量60sccm、
水素ガスを流量20sccmで流し、反応圧力0.12
torrで反応させる。続いて第2段目のa−SiC:
Hの非晶質半導体p層36を10nmの厚さに堆積す
る。基板温度は200℃で、反応ガスはモノシランガス
を流量30sccm、メタンガスを流量35.6scc
m、水素ガスを流量160sccm、ドーピングガスは
0.6%のジボランガスを流量0.06sccmで流
し、反応圧力0.32torrで反応させる。
Subsequently, a second-stage a-Si: H amorphous semiconductor n + layer 34 is deposited to a thickness of 5 nm. The substrate temperature is 200 ° C., and the n + layer makes ohmic contact with the underlying p layer, so the doping amount is doubled. The reaction gas is monosilane gas at a flow rate of 60 sccm and hydrogen gas at a flow rate of 20 sc
m, doping gas is 2% phosphine gas for 2s
Flow at ccm and react at a reaction pressure of 0.12 torr. Subsequently, the second-stage amorphous semiconductor i layer 35 of a-Si: H is deposited to a thickness of 150 nm. Substrate temperature is 200
The reaction gas is monosilane gas at a flow rate of 60 sccm,
Hydrogen gas was flown at a flow rate of 20 sccm, and the reaction pressure was 0.12.
React at torr. Then, the second stage a-SiC:
An amorphous semiconductor p layer 36 of H is deposited to a thickness of 10 nm. The substrate temperature is 200 ° C., the reaction gas is monosilane gas at a flow rate of 30 sccm, and methane gas is at a flow rate of 35.6 scc.
m, hydrogen gas at a flow rate of 160 sccm, and 0.6% diborane gas as a doping gas at a flow rate of 0.06 sccm, and the reaction is performed at a reaction pressure of 0.32 torr.

【0038】こうして非晶質半導体光電変換層を形成し
た後、その上に透明導電性膜電極27としてITOを6
0nmの厚さでDCマグネトロンスパッタ法により積層
する。そして、この上に部分的に表面を覆うように集電
極28を形成する。このようにして、2段ダンデムの、
金属電極/n-type ta-C/n(a-Si:H)/i(a-Si:H)/p(a-S
iC:H)/n(a-Si:H)/i(a-Si:H)/p(a-SiC:H)/ITO構造の
薄膜太陽電池が作製される。
After the amorphous semiconductor photoelectric conversion layer is formed in this way, ITO is used as the transparent conductive film electrode 27 on the amorphous semiconductor photoelectric conversion layer.
The layers are stacked with a thickness of 0 nm by the DC magnetron sputtering method. Then, a collector electrode 28 is formed on this so as to partially cover the surface. In this way, the two-stage dandem
Metal electrode / n-type ta-C / n (a-Si: H) / i (a-Si: H) / p (aS
A thin film solar cell of iC: H) / n (a-Si: H) / i (a-Si: H) / p (a-SiC: H) / ITO structure is produced.

【0039】本実施例の太陽電池の特性は、AM1.5
(100mW/cm2)においてIsc:10.1mA
/cm2,Voc:1.78V、F.F.:0.75、
Pmax:13.4mW/cm2であった。
The characteristics of the solar cell of this embodiment are AM1.5.
Isc: 10.1 mA at (100 mW / cm 2 ).
/ Cm 2 , Voc: 1.78V, F.I. F. : 0.75,
The Pmax was 13.4 mW / cm 2 .

【0040】以上の実施例では、CVD法により成膜し
ているので、大面積の太陽電池に適している。このよう
に、非晶質半導体を用いると原料のグロー放電分解によ
るプラズマCVD法や光CVD法による気相成長が可能
となり、大面積の薄膜形成を行う場合に適している。ま
た、非晶質半導体の場合には、一般に光の吸収効率が悪
いため、炭素薄膜を透明にして基板面で光が反射するよ
うにするのが好ましい。この場合、基板そのものに本実
施例のように反射特性を持たせれば構造が簡単になる。
なお、シリコン多結晶半導体を用いた場合のように、光
が十分に吸収される場合には透明にする必要はない。さ
らに、炭素薄膜そのものに反射特性を持たせてもよい。
In the above embodiments, since the film is formed by the CVD method, it is suitable for a large area solar cell. As described above, when an amorphous semiconductor is used, vapor phase growth by plasma CVD method or photo CVD method by glow discharge decomposition of a raw material is possible, and it is suitable for forming a thin film on a large area. Further, in the case of an amorphous semiconductor, since the light absorption efficiency is generally poor, it is preferable to make the carbon thin film transparent so that the light is reflected on the substrate surface. In this case, the structure is simplified if the substrate itself has a reflection characteristic as in the present embodiment.
It is not necessary to make it transparent when light is sufficiently absorbed as in the case of using a silicon polycrystalline semiconductor. Further, the carbon thin film itself may have a reflection characteristic.

【0041】[0041]

【発明の効果】本発明の太陽電池によれば、基板と光電
変換層との間にテトラヘドラル炭素結合を主とする炭素
薄膜が設けられているので、基板からの不純物拡散が防
止され、またこれにより、不純物を含んだ安価な基板を
利用することが可能となる。さらに、非晶質半導体を用
いる場合には、従来に比べi層積層時に基板を高温にす
ることができ、高温積層により形成できる高効率または
低劣化のa−Si:H膜等を用いることが可能となる。
According to the solar cell of the present invention, since the carbon thin film mainly containing tetrahedral carbon bonds is provided between the substrate and the photoelectric conversion layer, diffusion of impurities from the substrate is prevented, and This makes it possible to use an inexpensive substrate containing impurities. Further, when an amorphous semiconductor is used, it is possible to use a high-efficiency or low-degradation a-Si: H film or the like that can raise the temperature of the substrate at the time of laminating the i-layer and can be formed by the high-temperature laminating as compared with the conventional case. It will be possible.

【0042】また、テトラヘドラル非晶質カーボン膜を
用いれば、より効果的に不純物の拡散を防止できる。
If a tetrahedral amorphous carbon film is used, the diffusion of impurities can be prevented more effectively.

【0043】また、炭素薄膜を不純物を添加してp型ま
たはn型とすると、導電性が良くなって、発生した電流
を効率的に取り出せる。
When the carbon thin film is added with impurities to be p-type or n-type, the conductivity is improved and the generated current can be efficiently taken out.

【0044】また、炭素薄膜の側からn層、i層、p層
の順に非晶質半導体層が積層された構造とすると、半導
体層間の不純物拡散による悪影響も防止できる。
Further, when the amorphous semiconductor layer is laminated in the order of the n layer, the i layer, and the p layer from the carbon thin film side, it is possible to prevent adverse effects due to impurity diffusion between the semiconductor layers.

【0045】さらに、p型炭素薄膜と光電変換層のn層
との間にp+の半導体層を挟むと、p型の炭素薄膜を使
用してもオーミック接触を得ることができ、発生した電
流を効率的に取り出すことができる。
Furthermore, if a p + semiconductor layer is sandwiched between the p-type carbon thin film and the n layer of the photoelectric conversion layer, ohmic contact can be obtained even if a p-type carbon thin film is used, and the generated current is generated. Can be taken out efficiently.

【0046】以上のことから、本発明によれば高効率又
は低劣化または安価な太陽電池の製造が可能となる。
From the above, according to the present invention, it is possible to manufacture a solar cell with high efficiency, low deterioration or low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例のp型薄膜ダイアモンド層を用いた
太陽電池の概略構造図である。
FIG. 1 is a schematic structural diagram of a solar cell using a p-type thin film diamond layer of a first embodiment.

【図2】第2実施例のn型テトラヘドラル非晶質カーボ
ン層を用いた太陽電池の概略構造図である。
FIG. 2 is a schematic structural diagram of a solar cell using an n-type tetrahedral amorphous carbon layer of a second embodiment.

【図3】第3実施例のn型テトラヘドラル非晶質カーボ
ン層を用いたタンデム構造の太陽電池の概略構造図であ
る。
FIG. 3 is a schematic structural diagram of a tandem solar cell using an n-type tetrahedral amorphous carbon layer of a third embodiment.

【符号の説明】[Explanation of symbols]

1,11,21 金属電極基板 2 p型薄膜ダイアモンド層 12,22 n型テトラヘドラル非晶質カーボン層 3 非晶質半導体p+層(a−Si:H) 4,14,24 非晶質半導体n層(a−Si:H) 34 非晶質半導体n+層(a−Si:H) 5,15,25,35 非晶質半導体i層(a−Si:H) 6,16,26,36 非晶質半導体p層(a−SiC:H) 7,17,27 透明導電性膜電極 8,18,28 集電極1,11,21 metal electrode substrate 2 p-type thin film diamond layer 12,22 n-type tetrahedral amorphous carbon layer 3 amorphous semiconductor p + layer (a-Si: H) 4,14,24 amorphous semiconductor n Layer (a-Si: H) 34 Amorphous semiconductor n + layer (a-Si: H) 5,15,25,35 Amorphous semiconductor i layer (a-Si: H) 6,16,26,36 Amorphous semiconductor p layer (a-SiC: H) 7,17,27 Transparent conductive film electrode 8,18,28 Collection electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 富田 孝司 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Koji Tomita 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基板上にテトラヘドラル炭素結合を主と
する炭素薄膜が形成され、該炭素薄膜上に光電変換層が
形成され、該光電変換層上に受光面電極が形成されてい
ることを特徴とする太陽電池。
1. A carbon thin film mainly containing tetrahedral carbon bonds is formed on a substrate, a photoelectric conversion layer is formed on the carbon thin film, and a light-receiving surface electrode is formed on the photoelectric conversion layer. And solar cells.
【請求項2】 上記炭素薄膜がテトラヘドラル非晶質カ
ーボンであることを特徴とする請求項1の太陽電池
2. The solar cell according to claim 1, wherein the carbon thin film is tetrahedral amorphous carbon.
【請求項3】 上記炭素薄膜は不純物が添加されてp型
またはn型となっていることを特徴とする請求項1また
は2の太陽電池。
3. The solar cell according to claim 1, wherein the carbon thin film is p-type or n-type by adding impurities.
【請求項4】 上記炭素薄膜の側からn層、i層、p層
の順に非晶質半導体層が積層されて光電変換層が形成さ
れていることを特徴とする請求項3の太陽電池。
4. The solar cell according to claim 3, wherein an amorphous semiconductor layer is laminated in this order from the carbon thin film side to an n layer, an i layer, and ap layer to form a photoelectric conversion layer.
【請求項5】 上記炭素薄膜がp型であり、該炭素薄膜
上にp+型の非晶質半導体層が形成され、該半導体層上
にn層、i層、p層の順に非晶質半導体層が積層されて
光電変換層が形成されていることを特徴とする請求項4
の太陽電池。
5. The carbon thin film is a p-type, a p + -type amorphous semiconductor layer is formed on the carbon thin film, and an n-layer, an i-layer, and a p-layer are amorphous in this order on the semiconductor layer. 5. The photoelectric conversion layer is formed by stacking semiconductor layers.
Solar cells.
JP33162793A 1993-12-27 1993-12-27 Solar cell Expired - Fee Related JP3284151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33162793A JP3284151B2 (en) 1993-12-27 1993-12-27 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33162793A JP3284151B2 (en) 1993-12-27 1993-12-27 Solar cell

Publications (2)

Publication Number Publication Date
JPH07193264A true JPH07193264A (en) 1995-07-28
JP3284151B2 JP3284151B2 (en) 2002-05-20

Family

ID=18245778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33162793A Expired - Fee Related JP3284151B2 (en) 1993-12-27 1993-12-27 Solar cell

Country Status (1)

Country Link
JP (1) JP3284151B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011003848A (en) * 2009-06-22 2011-01-06 Kaneka Corp Crystal silicon-based solar cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011003848A (en) * 2009-06-22 2011-01-06 Kaneka Corp Crystal silicon-based solar cell

Also Published As

Publication number Publication date
JP3284151B2 (en) 2002-05-20

Similar Documents

Publication Publication Date Title
EP0523919B1 (en) Multijunction photovoltaic device and fabrication method
US7879644B2 (en) Hybrid window layer for photovoltaic cells
JP3490964B2 (en) Photovoltaic device
US6368892B1 (en) Monolithic multi-junction solar cells with amorphous silicon and CIS and their alloys
JP4208281B2 (en) Multilayer photovoltaic device
JPH05243596A (en) Manufacture of laminated type solar cell
JP2001267598A (en) Laminated solar cell
JP2001028452A (en) Photoelectric conversion device
JP4864077B2 (en) Photoelectric conversion device and manufacturing method thereof
JP3284151B2 (en) Solar cell
JPWO2005109526A1 (en) Thin film photoelectric converter
JP4441377B2 (en) Photoelectric conversion device and manufacturing method thereof
JP2845383B2 (en) Photovoltaic element
JP4441298B2 (en) Photoelectric conversion device and manufacturing method thereof
JP2003258286A (en) Thin film solar cell and method of manufacturing the same
JP2958491B2 (en) Method for manufacturing photoelectric conversion device
JPH0282655A (en) Manufacture of photovolatic device
JPH0513790A (en) Photoelectromotive force element
JP2757896B2 (en) Photovoltaic device
JPH0927630A (en) Photovoltaic element and manufacture thereof
JP2784820B2 (en) Photovoltaic element
JP3067820B2 (en) Deposition film formation method
JP3025122B2 (en) Photovoltaic element and power generation system
JPH0927632A (en) Photovoltaic element and manufacture thereof
JP3245111B2 (en) Amorphous silicon solar cell

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080301

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110301

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees