JPH07192718A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH07192718A
JPH07192718A JP5347810A JP34781093A JPH07192718A JP H07192718 A JPH07192718 A JP H07192718A JP 5347810 A JP5347810 A JP 5347810A JP 34781093 A JP34781093 A JP 34781093A JP H07192718 A JPH07192718 A JP H07192718A
Authority
JP
Japan
Prior art keywords
positive electrode
conductive agent
aqueous electrolyte
negative electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5347810A
Other languages
Japanese (ja)
Other versions
JP3182277B2 (en
Inventor
Mikiya Yamazaki
幹也 山崎
Atsushi Suemori
敦 末森
Takeshi Maeda
丈志 前田
Yoshihiro Shoji
良浩 小路
Koji Nishio
晃治 西尾
Toshihiko Saito
俊彦 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP34781093A priority Critical patent/JP3182277B2/en
Publication of JPH07192718A publication Critical patent/JPH07192718A/en
Application granted granted Critical
Publication of JP3182277B2 publication Critical patent/JP3182277B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a nonaqueous electrolyte secondary battery excellent in recycle characteristic by using a positive electrode composed of transition metal oxide and a conducting agent including a carbon material having a specific (d) value and a negative electrode made of metal lithium. CONSTITUTION:A nonaqueous electrolyte secondary battery using a nonaqueous electrolyte comprises a positive electrode formed of a positive electrode active material composed of transition metal oxide or transition metal composite oxide having a potential of 2V (vs. Li/Li<+>) or higher in an electric charging/ discharging region and including a conducting agent for enhancing conductivity, and a negative electrode made of a negative electrode material capable of storing or discharging metal lithium or a lithium ion. The conducting agent includes at least 10wt.% of a carbon material having a (d) value (d002) of a grid surface (002) is 3.358Angstrom or less by X-ray analysis measurement or 1000Angstrom or more of a size (Lc) of a crystallite in the C axis direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、充放電領域において2
V(vs.Li/Li+ )以上の電位を示す遷移金属酸
化物又は遷移金属複合酸化物を正極活物質とし、且つ、
導電剤を含有する正極と、金属リチウム又はリチウムイ
オンを吸蔵及び放出することが可能な物質を負極材料と
する負極と、非水電解質とを備える非水電解質二次電池
に係わり、詳しくは当該非水電解質二次電池のサイクル
特性を改善することを目的とした正極中に配合すべき導
電剤の改良に関する。
BACKGROUND OF THE INVENTION The present invention relates to a charging / discharging region.
A transition metal oxide or a transition metal composite oxide showing a potential of V (vs. Li / Li + ) or more is used as a positive electrode active material, and
The present invention relates to a non-aqueous electrolyte secondary battery including a positive electrode containing a conductive agent, a negative electrode using a material capable of inserting and extracting metal lithium or lithium ions as a negative electrode material, and a non-aqueous electrolyte. The present invention relates to improvement of a conductive agent to be blended in a positive electrode for the purpose of improving cycle characteristics of a water electrolyte secondary battery.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
非水電解質二次電池が、エネルギー密度が高く、しかも
水の分解電圧を考慮する必要が無いため高電圧化が可能
であるなどの利点を有することから、次世代の二次電池
として、注目されている。
2. Description of the Related Art In recent years,
Non-aqueous electrolyte secondary batteries have attracted attention as next-generation secondary batteries because they have advantages such as high energy density and higher voltage because it is not necessary to consider the decomposition voltage of water. ing.

【0003】かかる高電圧型の非水電解質二次電池の正
極活物質としては、充放電領域において2V(vs.L
i/Li+ )以上の電位を示すLiNix Co 1-x2
(0≦x≦1)で表される遷移金属複合酸化物などが提
案されているが、この種の正極活物質は一般に導電性が
低いため、アセチレンブラック、カーボンブラック等の
導電剤を正極中に添加する必要がある。
As a positive electrode active material for such a high voltage type non-aqueous electrolyte secondary battery, 2 V (vs.L) in a charge / discharge region is used.
i / Li + ) or more potential LiNi x Co 1-x O 2
A transition metal composite oxide represented by (0 ≦ x ≦ 1) has been proposed. However, since a positive electrode active material of this type generally has low conductivity, a conductive agent such as acetylene black or carbon black is used in the positive electrode. Need to be added to.

【0004】しかしながら、これらの導電剤を正極に用
いた従来の非水電解質二次電池には、その理由は定かで
ないが、サイクル特性が総じて良くないという問題があ
った。
However, the conventional non-aqueous electrolyte secondary battery using these conductive agents in the positive electrode has a problem that the cycle characteristics are generally poor, although the reason for this is not clear.

【0005】本発明は、この問題を解決するべくなされ
たものであって、その目的とするところは、正極に新規
な導電剤を用いることによりサイクル特性に優れた非水
電解質二次電池を提供するにある。
The present invention has been made to solve this problem, and an object thereof is to provide a non-aqueous electrolyte secondary battery having excellent cycle characteristics by using a novel conductive agent for the positive electrode. There is.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の請求項1記載の発明に係る非水電解質二次電池は、充
放電領域において2V(vs.Li/Li+ )以上の電
位を示す遷移金属酸化物又は遷移金属複合酸化物を正極
活物質とし、且つ、導電剤を含有する正極と、金属リチ
ウム又はリチウムイオンを吸蔵及び放出することが可能
な物質を負極材料とする負極と、非水電解質とを備える
非水電解質二次電池において、前記導電剤として、X線
回折測定における格子面(002)面のd値(d002
が3.358Å以下である炭素材料を少なくとも10重
量%含有する導電剤が用いられてなる。
A non-aqueous electrolyte secondary battery according to the present invention for attaining the above object exhibits a potential of 2 V (vs. Li / Li + ) or more in a charge / discharge region. A positive electrode containing a transition metal oxide or a transition metal composite oxide as a positive electrode active material, and a positive electrode containing a conductive agent, and a negative electrode containing a material capable of inserting and extracting metal lithium or lithium ions as a negative electrode material. In a non-aqueous electrolyte secondary battery including a water electrolyte, the d-value (d 002 ) of a lattice plane (002) plane in X-ray diffraction measurement is used as the conductive agent.
Is a conductive material containing at least 10% by weight of a carbon material having a viscosity of 3.358Å or less.

【0007】また、請求項2記載の発明に係る非水電解
質二次電池は、充放電領域において2V(vs.Li/
Li+ )以上の電位を示す遷移金属酸化物又は遷移金属
複合酸化物を正極活物質とし、且つ、導電剤を含有する
正極と、金属リチウム又はリチウムイオンを吸蔵及び放
出することが可能な物質を負極材料とする負極と、非水
電解質とを備える非水電解質二次電池において、前記導
電剤として、X線回折測定におけるc軸方向の結晶子の
大きさ(Lc)が1000Å以上である炭素材料を少な
くとも10重量%含有する導電剤が用いられてなる。
The non-aqueous electrolyte secondary battery according to the invention of claim 2 has a voltage of 2 V (vs. Li /
Li + ) a positive electrode active material of a transition metal oxide or a transition metal composite oxide exhibiting a potential of Li + ) or more, a positive electrode containing a conductive agent, and a substance capable of inserting and extracting metal lithium or lithium ions. A non-aqueous electrolyte secondary battery comprising a negative electrode as a negative electrode material and a non-aqueous electrolyte, wherein the conductive material is a carbon material having a crystallite size (Lc) in the c-axis direction in X-ray diffraction measurement of 1000 Å or more. A conductive agent containing at least 10% by weight is used.

【0008】さらに、請求項3記載の発明に係る非水電
解質二次電池は、充放電領域において2V(vs.Li
/Li+ )以上の電位を示す遷移金属酸化物又は遷移金
属複合酸化物を正極活物質とし、且つ、導電剤を含有す
る正極と、金属リチウム又はリチウムイオンを吸蔵及び
放出することが可能な物質を負極材料とする負極と、非
水電解質とを備える非水電解質二次電池において、前記
導電剤として、X線回折測定における格子面(002)
面のd値(d002 )が3.358Å以下であり、且つ、
X線回折測定におけるc軸方向の結晶子の大きさ(L
c)が1000Å以上である炭素材料を少なくとも10
重量%含有する導電剤が用いられてなる。
Further, the non-aqueous electrolyte secondary battery according to the invention of claim 3 has a voltage of 2 V (vs. Li) in the charge / discharge region.
/ Li + ) or more as a positive electrode active material of a transition metal oxide or a transition metal composite oxide showing a potential, and a positive electrode containing a conductive agent and a substance capable of inserting and extracting metal lithium or lithium ions. In a non-aqueous electrolyte secondary battery including a negative electrode having a negative electrode as a negative electrode material and a non-aqueous electrolyte, the conductive agent is a lattice plane (002) in X-ray diffraction measurement.
The d value (d 002 ) of the surface is 3.358Å or less, and
Crystallite size in the c-axis direction (L
At least 10 carbon materials whose c) is 1000Å or more
A conductive agent contained in a weight percentage is used.

【0009】以下において、請求項1、2又は3記載の
各発明に係る非水電解質二次電池を本発明電池と総称す
ることがある。
In the following, the non-aqueous electrolyte secondary battery according to each invention of claim 1, 2 or 3 may be collectively referred to as the battery of the present invention.

【0010】本発明が、充放電領域において2V(v
s.Li/Li+ )以上の電位を示す遷移金属酸化物又
は遷移金属複合酸化物を正極活物質とする正極と、金属
リチウム又はリチウムイオンを吸蔵及び放出することが
可能な物質を負極材料とする負極とを備える非水電解質
二次電池を対象とするのは、充電末期又は過充電時に正
極電位が4V(vs.Li/Li+ )程度に貴となる高
電圧型の非水電解質二次電池の場合に特に、正極表面で
電解液が分解し易く、充放電を繰り返した際の容量低下
が著しいからである。
According to the present invention, in the charging / discharging region, 2V (v
s. Li / Li + ) A positive electrode that uses a transition metal oxide or a transition metal composite oxide that exhibits a potential of Li / Li + ) or more as a positive electrode active material, and a negative electrode that uses a material capable of inserting and extracting metal lithium or lithium ions as a negative electrode material. The target of the non-aqueous electrolyte secondary battery including is a high-voltage non-aqueous electrolyte secondary battery in which the positive electrode potential becomes noble to about 4 V (vs. Li / Li + ) at the end of charging or overcharge. In this case, in particular, the electrolytic solution is easily decomposed on the surface of the positive electrode, and the capacity is significantly reduced when charging and discharging are repeated.

【0011】正極活物質たる遷移金属酸化物としては、
MnO2 、TiO2 、V2 5 が、また遷移金属複合酸
化物としてはLiNix Co 1-x2 (0≦x≦1)、
LiMnO2 、LiCrO2 、LiMn2 4 が、それ
ぞれ例示される。
As the transition metal oxide as the positive electrode active material,
MnO 2 , TiO 2 , and V 2 O 5 , and LiNi x Co 1-x O 2 (0 ≦ x ≦ 1) as the transition metal composite oxide,
Examples are LiMnO 2 , LiCrO 2 , and LiMn 2 O 4 .

【0012】本発明における負極材料としては、金属リ
チウム又はリチウムイオンを吸蔵及び放出することが可
能な物質が用いられる。リチウムイオンを吸蔵及び放出
することが可能な物質としては、コークス、黒鉛、有機
物焼成体等の炭素材料が例示される。
As the negative electrode material in the present invention, a substance capable of inserting and extracting metallic lithium or lithium ions is used. Examples of the substance capable of inserting and extracting lithium ions include carbon materials such as coke, graphite, and a fired organic material.

【0013】[0013]

【作用】本発明電池においては、正極の導電剤として、
002 及び/又はLcが所定の範囲にある炭素材料を1
0重量%以上含むものが用いられているので、正極電位
が貴となる充電末期又は過充電時の正極表面における電
解液の分解が抑制される。
In the battery of the present invention, as the positive electrode conductive agent,
d 002 and / or 1 for a carbon material having Lc within a predetermined range
Since the one containing 0% by weight or more is used, decomposition of the electrolytic solution on the surface of the positive electrode at the end of charging or overcharging at which the positive electrode potential becomes noble is suppressed.

【0014】[0014]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例により何ら限定され
るものではなく、その要旨を変更しない範囲において適
宜変更して実施することが可能なものである。
EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited by the examples described below, and various modifications may be made without departing from the scope of the invention. Is possible.

【0015】(実施例1) 〔正極の作製〕LiOHとCo(OH)2 とを乳鉢にて
混合した後、乾燥空気雰囲気下にて、850°Cで20
時間熱処理し、次いで石川式らいかい乳鉢中で平均粒径
約5μmの粉末に粉砕し、正極活物質としてのLiCo
2 粉末を得た。
Example 1 [Preparation of Positive Electrode] LiOH and Co (OH) 2 were mixed in a mortar and then dried at 850 ° C. in a dry air atmosphere.
Heat treatment for a period of time, and then crushed into powder with an average particle size of about 5 μm in an Ishikawa type mortar, and LiCo as the positive electrode active material.
O 2 powder was obtained.

【0016】このようにして得たLiCoO2 粉末と、
導電剤としての表1に示す炭素材料(黒鉛粉末;d002
=3.356Å、Lc=900Å)と、結着剤としての
フッ素樹脂粉末とを、重量比90:6:4の比率で混合
して正極合剤を調製し、この正極合剤を成形圧2トン/
cm2 で直径20mmの円板状に加圧成形したのち25
0°Cで熱処理して正極を作製した。
LiCoO 2 powder thus obtained,
Carbon materials shown in Table 1 as a conductive agent (graphite powder; d 002
= 3.356Å, Lc = 900Å) and fluororesin powder as a binder are mixed in a weight ratio of 90: 6: 4 to prepare a positive electrode mixture, and this positive electrode mixture is molded at a molding pressure of 2 Tons /
After pressure forming into a disc with a diameter of 20 cm and a diameter of 2 cm, 25
It heat-processed at 0 degreeC and produced the positive electrode.

【0017】〔負極の作製〕リチウム圧延板を直径20
mmの円板状に打ち抜いて負極を作製した。
[Production of Negative Electrode] A rolled lithium plate having a diameter of 20
A negative electrode was manufactured by punching out into a disc shape of mm.

【0018】〔電解液の調製〕プロピレンカーボネート
と1,2−ジメトキシエタンとの等体積混合溶媒に、過
塩素酸リチウムを1モル/リットル溶かして電解液(非
水電解液)を調製した。
[Preparation of Electrolytic Solution] 1 mol / liter of lithium perchlorate was dissolved in an equal volume mixed solvent of propylene carbonate and 1,2-dimethoxyethane to prepare an electrolytic solution (non-aqueous electrolytic solution).

【0019】〔電池の作製〕以上の正負両極及び非水電
解液を用いて扁平型の本発明電池BA1を組み立てた
(電池寸法:直径24.0mm、厚さ3.0mm)。な
お、セパレータとしては、ポリプロピレン製の微多孔膜
(ヘキストセラニーズ社製、商品名「セルガード」)を
使用し、これに先の電解液を含浸させた。
[Production of Battery] A flat type battery BA1 of the present invention was assembled using the above-mentioned positive and negative electrodes and a non-aqueous electrolyte (battery size: diameter 24.0 mm, thickness 3.0 mm). As the separator, a polypropylene microporous film (manufactured by Hoechst Celanese Co., Ltd., trade name “Celgard”) was used and impregnated with the electrolytic solution.

【0020】図1は、組み立てた本発明電池BA1を模
式的に示す断面図であり、同図に示す本発明電池BA1
は、正極1、負極2、これら両電極1,2を互いに離間
するセパレータ3、正極缶4、負極缶5、正極集電体
6、負極集電体7及びポリプロピレン製の絶縁パッキン
グ8などからなる。
FIG. 1 is a sectional view schematically showing the assembled battery BA1 of the present invention. The battery BA1 of the present invention shown in the same drawing.
Is composed of a positive electrode 1, a negative electrode 2, a separator 3 for separating the electrodes 1 and 2 from each other, a positive electrode can 4, a negative electrode can 5, a positive electrode current collector 6, a negative electrode current collector 7 and an insulating packing 8 made of polypropylene. .

【0021】正極1及び負極2は、非水電解液を含浸し
たセパレータ3を介して対向して正負両極缶4,5が形
成する電池ケース内に収納されており、正極1は正極集
電体6を介して正極缶4に、また負極2は負極集電体7
を介して負極缶5に接続され、電池内部に生じた化学エ
ネルギーを正極缶4及び負極缶5の両端子から電気エネ
ルギーとして外部へ取り出し得るようになっている。
The positive electrode 1 and the negative electrode 2 are housed in a battery case formed by positive and negative bipolar cans 4 and 5 facing each other through a separator 3 impregnated with a non-aqueous electrolyte solution, and the positive electrode 1 is a positive electrode current collector. 6 to the positive electrode can 4 and the negative electrode 2 to the negative electrode current collector 7
It is connected to the negative electrode can 5 via the so that the chemical energy generated inside the battery can be taken out as electric energy from both terminals of the positive electrode can 4 and the negative electrode can 5.

【0022】(実施例2〜7)導電剤として表1に示す
炭素材料を用いたこと以外は実施例1と同様にして、本
発明電池BA2〜BA7を組み立てた。
(Examples 2 to 7) Batteries BA2 to BA7 of the present invention were assembled in the same manner as in Example 1 except that the carbon materials shown in Table 1 were used as the conductive agent.

【0023】(実施例8〜16)導電剤として特定のd
002 及びLcを有する炭素材料とアセチレンブラックと
からなる表1に示す混合物を用いたこと以外は実施例1
と同様にして、本発明電池BA8〜BA16を組み立て
た。
(Examples 8 to 16) Specific d as a conductive agent
Example 1 except that the mixture shown in Table 1 consisting of a carbon material having 002 and Lc and acetylene black was used.
Inventive batteries BA8 to BA16 were assembled in the same manner as in.

【0024】(比較例1〜3)導電剤として特定のd
002 及びLcを有する表2に示す炭素材料を用いたこと
以外は実施例1と同様にして、比較電池BC1〜BC3
を組み立てた。
(Comparative Examples 1 to 3) Specific d as a conductive agent
Comparative batteries BC1 to BC3 were made in the same manner as in Example 1 except that the carbon materials shown in Table 2 having 002 and Lc were used.
Assembled.

【0025】(比較例4〜6)導電剤として特定のd
002 及びLcを有する炭素材料とアセチレンブラックと
からなる表2に示す混合物を用いたこと以外は実施例1
と同様にして、比較電池BC4〜BC6を組み立てた。
(Comparative Examples 4 to 6) Specific d as a conductive agent
Example 1 except using the mixture shown in Table 2 consisting of a carbon material having 002 and Lc and acetylene black.
Comparative batteries BC4 to BC6 were assembled in the same manner as in.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】〔各電池の充放電サイクル特性〕本発明電
池BA1〜BA16及び比較電池BC1〜BC6につい
て、充電電流密度1mA/cm2 で4.3Vまで充電し
た後、放電電流密度3mA/cm2 で2.5Vまで放電
する工程を1サイクルとする充放電サイクル試験を行
い、100サイクル目の放電容量の1サイクル目の放電
容量を100としたときの容量劣化率を求めた。結果を
先の表1及び表2に示す。
[Charge / Discharge Cycle Characteristics of Each Battery] The batteries BA1 to BA16 of the present invention and the comparative batteries BC1 to BC6 were charged at a charging current density of 1 mA / cm 2 to 4.3 V and then at a discharging current density of 3 mA / cm 2 . A charging / discharging cycle test in which the step of discharging up to 2.5 V was set as one cycle was performed, and the capacity deterioration rate was calculated when the discharge capacity at the first cycle of the discharge capacity at the 100th cycle was 100. The results are shown in Tables 1 and 2 above.

【0029】表1及び表2より、d002 及び/又はLc
が本発明で規制する範囲内にある炭素材料を少なくとも
10重量%含有する導電剤を正極の導電剤として用いた
本発明電池は比較電池に比し容量劣化率が小さいことか
ら、サイクル特性に優れていることが分かる。
From Table 1 and Table 2, d 002 and / or Lc
However, the battery of the present invention using a conductive agent containing at least 10% by weight of a carbon material within the range regulated by the present invention as the conductive agent of the positive electrode has a smaller capacity deterioration rate than the comparative battery, and therefore has excellent cycle characteristics. I understand that.

【0030】図2、図3及び図4は、表1及び表2に示
した結果を図示したグラフであり、図2は導電剤として
用いた炭素材料のd002 と容量劣化率との関係を、図3
は導電剤として用いた炭素材料のLcと容量劣化率との
関係を、また図4は導電剤中の本発明で規制する炭素材
料の比率と容量劣化率との関係を、それぞれ示す。
2, 3 and 4 are graphs showing the results shown in Tables 1 and 2, and FIG. 2 shows the relationship between d 002 and the capacity deterioration rate of the carbon material used as the conductive agent. , Fig. 3
Shows the relationship between Lc of the carbon material used as the conductive agent and the capacity deterioration rate, and FIG. 4 shows the relationship between the ratio of the carbon material in the conductive agent regulated by the present invention and the capacity deterioration rate.

【0031】図2は、縦軸に100サイクル目の容量劣
化率(%)を、また横軸に炭素材料のd002 (Å)をと
って示したグラフであり、同図中の、Lcが900Åの
炭素材料を導電剤として用いた本発明電池BA1、BA
2及び比較電池BC1、BC2の各容量劣化率の比較か
ら、Lcが1000Å未満であってもd002 が3.35
8Å以下の炭素材料を用いることにより(本発明電池B
A1、BA2)、容量劣化率の小さい電池が得られるこ
とが分かる。
FIG. 2 is a graph in which the vertical axis represents the capacity deterioration rate (%) at the 100th cycle, and the horizontal axis represents d 002 (Å) of the carbon material, where Lc is Inventive batteries BA1 and BA using 900Å carbon material as a conductive agent
2 and comparative batteries BC1 and BC2, comparing the respective capacity deterioration rates, d 002 is 3.35 even if Lc is less than 1000Å.
By using a carbon material of 8 Å or less (the present invention battery B
It can be seen that a battery having a small capacity deterioration rate can be obtained.

【0032】また、d002 が3.358Å以下でLcが
1000Åである本発明電池BA5、BA6の容量劣化
率が本発明電池BA1、BA2のそれらに比し極めて小
さいことから、d002 が3.358Å以下であり、且
つ、Lcが1000Å以上の炭素材料を用いることによ
り、容量劣化率の極めて小さい電池が得られることが分
かる。
Further, since the capacity deterioration rates of the batteries BA5 and BA6 of the present invention having d 002 of 3.358 Å or less and Lc of 1000 Å are extremely smaller than those of the batteries BA1 and BA2 of the present invention, d 002 of 3. It can be seen that a battery having an extremely small capacity deterioration rate can be obtained by using a carbon material having 358 Å or less and Lc of 1000 Å or more.

【0033】図3は、縦軸に100サイクル目の容量劣
化率(%)を、また横軸に炭素材料のLc(Å)をとっ
て示したグラフであり、同図中の、d002 が3.360
Åの炭素材料を導電剤として用いた本発明電池BA3、
BA4及び比較電池BC1、BC3の各容量劣化率の比
較から、d002 が3.358Åより大きくてもLcが1
000Å以上の炭素材料を用いることにより(本発明電
池BA3、BA4)、容量劣化率の小さい電池が得られ
ることが分かる。
FIG. 3 is a graph in which the vertical axis shows the capacity deterioration rate (%) at the 100th cycle, and the horizontal axis shows Lc (Å) of the carbon material. In the figure, d 002 is 3.360
The battery BA3 of the present invention using the carbon material of Å as a conductive agent,
From the comparison of the capacity deterioration rates of BA4 and comparative batteries BC1 and BC3, Lc is 1 even if d 002 is larger than 3.358Å
It can be seen that by using a carbon material of 000 Å or more (invention batteries BA3 and BA4), batteries having a small capacity deterioration rate can be obtained.

【0034】また、Lcが1000Å以上でd002
3.358Åである本発明電池BA6、BA7の容量劣
化率が本発明電池BA3、BA4のそれらに比し極めて
小さいことから、d002 が3.358Å以下であり、且
つ、Lcが1000Å以上の炭素材料を用いることによ
り、容量劣化率の極めて小さい電池が得られることが分
かる。
Further, since the capacity deterioration rates of the batteries BA6 and BA7 of the present invention having Lc of 1000 Å or more and d 002 of 3.358 Å are extremely smaller than those of the batteries BA3 and BA4 of the present invention, d 002 of 3. It can be seen that a battery having an extremely small capacity deterioration rate can be obtained by using a carbon material having 358 Å or less and Lc of 1000 Å or more.

【0035】図4は、縦軸に100サイクル目の容量劣
化率(%)を、また横軸に導電剤中の本発明で規制する
炭素材料の比率(重量%)をとって示したグラフであ
り、同図より、本発明で規制する炭素材料の比率が10
重量%、好ましくは30重量%以上である導電剤を用い
ることにより、容量劣化率の小さい電池が得られること
が分かる。
FIG. 4 is a graph in which the vertical axis shows the capacity deterioration rate (%) at the 100th cycle, and the horizontal axis shows the ratio (% by weight) of the carbon material regulated by the present invention in the conductive agent. From the figure, the ratio of the carbon material regulated by the present invention is 10
It is understood that a battery having a small capacity deterioration rate can be obtained by using the conductive agent in an amount of 30% by weight or more, preferably 30% by weight or more.

【0036】叙上の実施例では本発明を扁平型電池に適
用する場合を例に挙げて説明したが、電池の形状に特に
制限はなく、本発明は円筒型、角型等、種々の形状の非
水電解質二次電池に適用し得るものである。
In the above embodiments, the case where the present invention is applied to the flat type battery has been described as an example, but the shape of the battery is not particularly limited, and the present invention has various shapes such as a cylindrical shape and a square shape. It is applicable to the non-aqueous electrolyte secondary battery of.

【0037】また、正極活物質としてLiCoO2 を用
いたが、充放電領域において2V(vs.Li/L
+ )以上の電位を示す遷移金属酸化物又は遷移金属複
合酸化物であれば、特に制限なく用いることができる。
Although LiCoO 2 was used as the positive electrode active material, it was 2 V (vs. Li / L) in the charge / discharge region.
Any transition metal oxide or transition metal composite oxide exhibiting a potential of i + ) or higher can be used without particular limitation.

【0038】さらに、電解液として非水電解液を用いた
が、固体電解質を用いることももとより可能である。
Further, although the non-aqueous electrolytic solution is used as the electrolytic solution, it is naturally possible to use a solid electrolyte.

【0039】[0039]

【発明の効果】正極の導電剤として、d002 及び/又は
Lcが所定の範囲にある炭素材料を10重量%以上含む
ものが用いられているので、正極電位が貴となる充電末
期又は過充電時の正極表面における電解液の分解が抑制
され、その結果サイクル特性に優れる。
EFFECT OF THE INVENTION As the positive electrode conductive agent, a material containing 10% by weight or more of a carbon material having d 002 and / or Lc within a predetermined range is used, and thus the positive electrode potential becomes noble at the end of charging or overcharge. The decomposition of the electrolytic solution on the surface of the positive electrode at that time is suppressed, resulting in excellent cycle characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例で作製した本発明電池(扁平型電池)の
断面図である。
FIG. 1 is a cross-sectional view of a battery of the present invention (flat battery) manufactured in an example.

【図2】炭素材料のd002 と容量劣化率との関係を示す
グラフである。
FIG. 2 is a graph showing a relationship between d 002 of a carbon material and a capacity deterioration rate.

【図3】炭素材料のLcと容量劣化率との関係を示すグ
ラフである。
FIG. 3 is a graph showing a relationship between Lc of a carbon material and a capacity deterioration rate.

【図4】導電剤中の本発明で規制する炭素材料の比率と
容量劣化率との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the ratio of the carbon material regulated by the present invention in the conductive agent and the capacity deterioration rate.

【符号の説明】[Explanation of symbols]

BA1 本発明電池 1 正極 2 負極 3 セパレータ BA1 Inventive battery 1 Positive electrode 2 Negative electrode 3 Separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小路 良浩 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 斎藤 俊彦 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshihiro Koji 2-5-5 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd. (72) Koji Nishio 2-5 Keihanhondori, Moriguchi City, Osaka Prefecture No. 5 Sanyo Electric Co., Ltd. (72) Inventor Toshihiko Saito 2-5-5 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】充放電領域において2V(vs.Li/L
+ )以上の電位を示す遷移金属酸化物又は遷移金属複
合酸化物を正極活物質とし、且つ、導電剤を含有する正
極と、金属リチウム又はリチウムイオンを吸蔵及び放出
することが可能な物質を負極材料とする負極と、非水電
解質とを備える非水電解質二次電池において、前記導電
剤として、X線回折測定における格子面(002)面の
d値(d002 )が3.358Å以下である炭素材料を少
なくとも10重量%含有する導電剤が用いられているこ
とを特徴とする非水電解質二次電池。
1. A charging / discharging region of 2 V (vs. Li / L)
i + ) a positive electrode active material of a transition metal oxide or a transition metal composite oxide exhibiting a potential of not less than, and a positive electrode containing a conductive agent, and a substance capable of inserting and extracting metal lithium or lithium ions. In a non-aqueous electrolyte secondary battery comprising a negative electrode as a negative electrode material and a non-aqueous electrolyte, the conductive agent has a d-value (d 002 ) of a lattice plane (002) plane of 3.358 Å or less in X-ray diffraction measurement. A non-aqueous electrolyte secondary battery, wherein a conductive agent containing at least 10% by weight of a certain carbon material is used.
【請求項2】充放電領域において2V(vs.Li/L
+ )以上の電位を示す遷移金属酸化物又は遷移金属複
合酸化物を正極活物質とし、且つ、導電剤を含有する正
極と、金属リチウム又はリチウムイオンを吸蔵及び放出
することが可能な物質を負極材料とする負極と、非水電
解質とを備える非水電解質二次電池において、前記導電
剤として、X線回折測定におけるc軸方向の結晶子の大
きさ(Lc)が1000Å以上である炭素材料を少なく
とも10重量%含有する導電剤が用いられていることを
特徴とする非水電解質二次電池。
2. A charging / discharging region of 2 V (vs. Li / L)
i + ) a positive electrode active material of a transition metal oxide or a transition metal composite oxide exhibiting a potential of not less than, and a positive electrode containing a conductive agent, and a substance capable of inserting and extracting metal lithium or lithium ions. A non-aqueous electrolyte secondary battery comprising a negative electrode as a negative electrode material and a non-aqueous electrolyte, wherein the conductive material is a carbon material having a crystallite size (Lc) in the c-axis direction in X-ray diffraction measurement of 1000 Å or more. A non-aqueous electrolyte secondary battery, wherein a conductive agent containing at least 10% by weight is used.
【請求項3】充放電領域において2V(vs.Li/L
+ )以上の電位を示す遷移金属酸化物又は遷移金属複
合酸化物を正極活物質とし、且つ、導電剤を含有する正
極と、金属リチウム又はリチウムイオンを吸蔵及び放出
することが可能な物質を負極材料とする負極と、非水電
解質とを備える非水電解質二次電池において、前記導電
剤として、X線回折測定における格子面(002)面の
d値(d002 )が3.358Å以下であり、且つ、X線
回折測定におけるc軸方向の結晶子の大きさ(Lc)が
1000Å以上である炭素材料を少なくとも10重量%
含有する導電剤が用いられていることを特徴とする非水
電解質二次電池。
3. A charge / discharge region of 2 V (vs. Li / L)
i + ) a positive electrode active material of a transition metal oxide or a transition metal composite oxide exhibiting a potential of not less than, and a positive electrode containing a conductive agent, and a substance capable of inserting and extracting metal lithium or lithium ions. In a non-aqueous electrolyte secondary battery comprising a negative electrode as a negative electrode material and a non-aqueous electrolyte, the conductive agent has a d-value (d 002 ) of a lattice plane (002) plane of 3.358 Å or less in X-ray diffraction measurement. And at least 10% by weight of a carbon material having a crystallite size (Lc) in the c-axis direction of 1000 Å or more in X-ray diffraction measurement
A non-aqueous electrolyte secondary battery comprising a conductive agent contained therein.
JP34781093A 1993-12-24 1993-12-24 Non-aqueous electrolyte secondary battery Expired - Lifetime JP3182277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34781093A JP3182277B2 (en) 1993-12-24 1993-12-24 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34781093A JP3182277B2 (en) 1993-12-24 1993-12-24 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH07192718A true JPH07192718A (en) 1995-07-28
JP3182277B2 JP3182277B2 (en) 2001-07-03

Family

ID=18392744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34781093A Expired - Lifetime JP3182277B2 (en) 1993-12-24 1993-12-24 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3182277B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014116217A (en) * 2012-12-11 2014-06-26 Toyota Industries Corp Lithium ion secondary battery cathode and lithium ion secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014116217A (en) * 2012-12-11 2014-06-26 Toyota Industries Corp Lithium ion secondary battery cathode and lithium ion secondary battery

Also Published As

Publication number Publication date
JP3182277B2 (en) 2001-07-03

Similar Documents

Publication Publication Date Title
JP3172388B2 (en) Lithium secondary battery
JP2000195516A (en) Lithium secondary battery
JPH08264183A (en) Lithium secondary battery
JPH08250120A (en) Lithium secondary battery
JPH08236155A (en) Lithium secondary battery
JP3160920B2 (en) Non-aqueous electrolyte secondary battery
JPH06243871A (en) Nonaqueous secondary battery
JPH07201316A (en) Nonaqueous electrolyte secondary battery
JP3717544B2 (en) Lithium secondary battery
JPH0896849A (en) Nonaqueous electrolytic secondary battery
JPH10208777A (en) Non-aqueous electrolyte secondary battery
JP3268924B2 (en) Non-aqueous electrolyte battery
JPH08171936A (en) Lithium secondary battery
JP3182296B2 (en) Non-aqueous electrolyte secondary battery
JP3522783B2 (en) Lithium secondary battery
JPH07142056A (en) Nonaqueous type battery
JPH06243870A (en) Nonaqeous secondary battery
JP3182277B2 (en) Non-aqueous electrolyte secondary battery
JPH07142055A (en) Nonaqueous type battery
JPH06243869A (en) Nonaqueous secondary battery
JP3321541B2 (en) Lithium secondary battery
JPH06275273A (en) Nonaqueous secondary battery
JPH1154122A (en) Lithium ion secondary battery
JP3182271B2 (en) Non-aqueous battery
JP3030141B2 (en) Non-aqueous battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090420

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090420

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140420

Year of fee payment: 13

EXPY Cancellation because of completion of term