JPH07192280A - Near-field optical scan recording and reproducing device - Google Patents

Near-field optical scan recording and reproducing device

Info

Publication number
JPH07192280A
JPH07192280A JP5336636A JP33663693A JPH07192280A JP H07192280 A JPH07192280 A JP H07192280A JP 5336636 A JP5336636 A JP 5336636A JP 33663693 A JP33663693 A JP 33663693A JP H07192280 A JPH07192280 A JP H07192280A
Authority
JP
Japan
Prior art keywords
scanning head
recording
scanning
opening
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5336636A
Other languages
Japanese (ja)
Other versions
JP3229475B2 (en
Inventor
Satoshi Kiyomatsu
智 清松
Koki Kojima
光喜 小島
Haruhiko Kono
治彦 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP33663693A priority Critical patent/JP3229475B2/en
Publication of JPH07192280A publication Critical patent/JPH07192280A/en
Application granted granted Critical
Publication of JP3229475B2 publication Critical patent/JP3229475B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)

Abstract

PURPOSE:To improve the accuracy of tracking control and to make a disk- shaped recording medium usable in the case of a high-density recording/ reproducing utilizing evanescent light. CONSTITUTION:Laser beams radiated from a semiconductor laser 1 are converged by a lens 6 and applied through an opening 8 to an optical fiber. A scanning head 9 formed at the head part of the tip of the optical fiber 7 is provided with an opening 10, of which diameter is equal or smaller than the wavelength of the laser beam, on a projecting end face and a recording plane 11 is moved relatively to the opening 10. The reflected light extracted from the recording plane 11 through a scanning head 9 is detected by a photodetector 13. A scanning control head 20 integrally juxtaposed at the scanning head 9 is provided with a semiconductor laser 15 as its own original light source, lens system and optic/electric converting element 19 and generates a tracking error detect signal for matching the position of the scanning head 9 with the track of the recording plane.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、エヴァネッセント光を
利用して情報信号の記録または再生を行う近視野光走査
記録再生装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a near-field optical scanning recording / reproducing apparatus for recording or reproducing an information signal using evanescent light.

【0002】[0002]

【従来の技術】半導体レーザ等の光源から放射させた情
報信号光をレンズで集束して記録媒体に照射し、記録媒
体の反射率や偏光特性などを部分的に変化させて情報信
号を記録することが一般に行われている。波長の短い光
を使用したり、レンズの開口数を増したりして分解能を
高めると、情報信号の記録または再生の密度を高めるこ
とができるものの、それには限度がある。レンズを用い
た光の集束では回折現象を伴うので、可視光または近赤
外光を記録媒体の記録面に結像させて生成し得る結像ス
ポットの直径は1μm前後が下限となる。
2. Description of the Related Art Information signal light emitted from a light source such as a semiconductor laser is focused by a lens and applied to a recording medium, and an information signal is recorded by partially changing the reflectance or polarization characteristics of the recording medium. Is commonly done. The use of light with a short wavelength and the increase of the numerical aperture of the lens to increase the resolution can increase the density of recording or reproducing the information signal, but there is a limit. Since the focusing of light using a lens is accompanied by a diffraction phenomenon, the lower limit of the diameter of an imaging spot that can be generated by imaging visible light or near infrared light on the recording surface of a recording medium is around 1 μm.

【0003】しかし、このような回折現象を生じる進行
波であっても、その波長よりも小さい微小領域に局在す
る局在波(エヴァネッセント光)を利用すれば、さらに
径小のスポットを得ることができる。
However, even with a traveling wave that causes such a diffraction phenomenon, if a localized wave (evanescent light) localized in a minute region smaller than the wavelength is used, a spot with a smaller diameter can be obtained. Obtainable.

【0004】エヴァネッセント光は、波長よりも小さい
微小領域に局在し、光エネルギを外部へ伝ぱんしないと
いう特性を有している。しかし、通常の進行波がその波
長よりも小さい開口を通じて外部へ伝ぱんしないのに対
し、エヴァネッセント光は波長程度またはそれ以下であ
れば開口を通じて外部へ伝ぱんできる。
The evanescent light has a characteristic that it is localized in a minute region smaller than the wavelength and does not propagate light energy to the outside. However, while the normal traveling wave does not propagate to the outside through the aperture smaller than the wavelength, the evanescent light can propagate to the outside through the aperture if it is about the wavelength or less.

【0005】したがって、使用するレーザ光の波長とほ
ぼ同等かそれよりも小さい開口を波長程度またはそれ以
下の距離で記録面に近接させると、光エネルギーを記録
面の極小領域に集中させ得て、信号ピットの書き込みま
たは読み出しを行うことができる。つまり、高屈折率媒
体(基台)にレーザ光を全反射可能に入射させ、低屈折
率媒体(空気)たる基台表面上にエヴァネッセント光を
生成させると、微小領域に記録されている信号ピットを
検出することができる。また、微小の開口を通じて与え
たエヴァネッセント光によって信号ピットを書き込むこ
ともできる。
Therefore, when an aperture that is approximately equal to or smaller than the wavelength of the laser light used is brought close to the recording surface at a distance of about the wavelength or less, the light energy can be concentrated in the minimum area of the recording surface. It is possible to write or read signal pits. In other words, when the laser light is incident on the high refractive index medium (base) so as to be capable of total reflection and the evanescent light is generated on the surface of the base that is a low refractive index medium (air), it is recorded in a minute area. Signal pits can be detected. Further, the signal pit can be written by the evanescent light given through the minute opening.

【0006】このような技術は、フォトン走査トンネル
顕微鏡(フォトンSTM)の呼称で知られているが、そ
の透過型のものを図5とともに説明すると以下のとおり
である。
Such a technique is known by the name of a photon scanning tunneling microscope (photon STM), and its transmission type will be described below with reference to FIG.

【0007】半導体レーザ1から放射された所定波長の
レーザ光は、コリメータレンズ2を透過して並行光線と
なる。これを再生動作用の参照光としてプリズム状誘電
体の基台3にその傾斜下面から入射させると、入射光は
基台3の上面に達するが、上面での光入射角は基台3の
屈折率で決まる全反射臨界角よりも大きくとってあるの
で全反射する。全反射した光はそのまま利用されず捨て
られるが、基台3の上面から波長程度までの空気層にエ
ヴァネッセント光が局在するようになる。
Laser light of a predetermined wavelength emitted from the semiconductor laser 1 passes through the collimator lens 2 and becomes parallel rays. When this is made to enter the prismatic dielectric base 3 from the inclined lower surface as reference light for reproducing operation, the incident light reaches the upper surface of the base 3, but the light incident angle on the upper surface is the refraction of the base 3. Since the angle is larger than the critical angle for total reflection determined by the index, total reflection occurs. The totally reflected light is not used as it is and is discarded, but the evanescent light becomes localized in the air layer from the upper surface of the base 3 up to about the wavelength.

【0008】このエヴァネッセント光を取り込むための
プローブ4は光ファイバからなり、先細の先端部の突端
面にコア径が数10nmの開口を有している。そして、
この開口が基台3の上面から約10nm隔たる平面内を
一次元または二次元で走査するので、エヴァネッセント
光は前記開口を通じてプローブ4に取り込まれ、取り込
まれた光は光検出器5で光電変換される。つまり、基台
3の上面に凹凸または濃淡のかたちで記録されていた情
報信号を読み出すことができる。なお、エヴァネッセン
ト光は光ファイバ内で通常の進行波に変換されるので、
プローブ4は通常の光路として光エネルギーを伝達す
る。
The probe 4 for taking in the evanescent light is made of an optical fiber and has an opening with a core diameter of several tens nm on the tip end surface of the tapered tip. And
Since this opening scans the plane separated by about 10 nm from the upper surface of the base 3 in one dimension or in two dimensions, the evanescent light is captured by the probe 4 through the aperture, and the captured light is detected by the photodetector 5. It is photoelectrically converted. That is, the information signal recorded on the upper surface of the base 3 in the form of unevenness or light and shade can be read. Since evanescent light is converted into a normal traveling wave in the optical fiber,
The probe 4 transmits light energy as a normal optical path.

【0009】情報信号を記録する場合は、プローブ4側
から光波を入射させる。プローブ4の先端部の開口付近
に生成したエヴァネッセント光を基台3の上面の微小領
域に集中させることによって、凹凸または濃淡のかたち
で信号ピットを記録することができる。
When recording an information signal, a light wave is made incident from the probe 4 side. By concentrating the evanescent light generated in the vicinity of the opening at the tip of the probe 4 in a minute area on the upper surface of the base 3, signal pits can be recorded in the form of unevenness or light and shade.

【0010】勿論、基台3の上面の偏光特性を情報信号
光によって部分的に変化させる光磁気的な記録も可能で
ある。プローブ4を二次元的に走査させると、エヴァネ
ッセント光の反射強度の分布をマップにすることができ
るので、表面形状を直接観察できる高分解能の顕微鏡と
しての利用法もある。また、光ファイバ自体にファブリ
・ペロー共振特性をもたせ、記録媒体の表面形状に応じ
て変化する共振周波数のシフトを光位相同期技術によっ
て検出する反射共振型フォトンSTM等も知られてい
る。
Of course, magneto-optical recording in which the polarization characteristic of the upper surface of the base 3 is partially changed by the information signal light is also possible. Since the distribution of the reflection intensity of the evanescent light can be made into a map by scanning the probe 4 two-dimensionally, there is also a method of use as a high-resolution microscope capable of directly observing the surface shape. There is also known a reflection resonance type photon STM or the like in which the optical fiber itself has Fabry-Perot resonance characteristics and the shift of the resonance frequency which changes according to the surface shape of the recording medium is detected by the optical phase synchronization technique.

【0011】[0011]

【発明が解決しようとする課題】このようなフォトンS
TMを用いて情報信号の再生を行う場合、記録媒体の目
的の記録ライン上または記録ピット上にプローブの開口
を追尾させるトラッキング制御が必要となるが、微細な
記録ラインまたは記録ピットに対してプローブの開口を
精度よく追尾させるのは容易でなかった。
[Problems to be Solved by the Invention]
When the information signal is reproduced using the TM, tracking control is required to track the opening of the probe on the target recording line or recording pit of the recording medium, but the probe is used for fine recording lines or recording pits. It was not easy to accurately track the aperture of.

【0012】したがって本発明の目的は、エヴァネッセ
ント光を利用した高密度の記録および再生を高精度で追
尾性よく行うことができ、しかも、ディスク状の記録媒
体を使用することができる近視野光走査記録再生装置を
提供することにある。
Therefore, it is an object of the present invention to perform high-density recording and reproduction using evanescent light with high accuracy and good trackability, and to use a disc-shaped recording medium in a near-field. An object is to provide an optical scanning recording / reproducing device.

【0013】[0013]

【課題を解決するための手段】本発明は上述した目的を
達成するために、所定波長のレーザ光を放射する半導体
レーザと、レーザ光を集束するレンズと、レンズで集束
されたレーザ光を導入する開口を有するとともに、先細
の先端部で走査ヘッドを形成し、かつ、レーザ光の波長
とほぼ同等かそれよりも小さい直径の開口を走査ヘッド
の突端面に有している光ファイバと、記録媒体の記録面
から走査ヘッドの開口を通じて取り出された反射光を検
出する光検出器と、走査ヘッドを移動させて走査ヘッド
の開口を記録面のトラック上に位置合わせするアクチュ
エータと、走査ヘッドに一体的に並設された光源、レン
ズ系および光電変換素子を有し、記録面を光走査してア
クチュエータの駆動に必要なトラッキングエラー検知信
号を発生する走査制御ヘッドとを備えてなることを特徴
とする近視野光走査記録再生装置が提供される。
In order to achieve the above-mentioned object, the present invention introduces a semiconductor laser that emits a laser beam of a predetermined wavelength, a lens that focuses the laser beam, and a laser beam that is focused by the lens. An optical fiber that has an opening for forming a scanning head with a tapered tip and has an opening on the tip end surface of the scanning head that has a diameter approximately equal to or smaller than the wavelength of the laser beam; A photodetector that detects the reflected light extracted from the recording surface of the medium through the opening of the scanning head, an actuator that moves the scanning head to align the opening of the scanning head with the track on the recording surface, and an integral part of the scanning head Scanning that has a light source, a lens system, and a photoelectric conversion element that are arranged side by side, and optically scans the recording surface to generate a tracking error detection signal necessary for driving the actuator. Near-field optical scanning recording reproducing apparatus characterized by comprising a control head is provided.

【0014】[0014]

【作用】本発明によると、集束レーザ光を導入する光フ
ァイバが先細の先端部に走査ヘッドを有し、この走査ヘ
ッドの突端面にレーザ光の波長とほぼ同等かそれよりも
小さい直径の開口を有するので、情報信号をエヴァネッ
セント光によって高い分解能で記録・再生することがで
きる。また、走査ヘッドに一体的に並設された走査制御
ヘッドが走査ヘッドとともに移動し、走査ヘッドの走査
に必要なトラッキングエラー検知信号を発生するので、
走査ヘッドを追尾性よく常に所定の記録トラック上に位
置させることができ、微細な記録トラックを高密度で配
列することが可能となる。そのうえ、記録および再生の
いずれにおいてもエヴァネッセント光は記録面側から与
えられるので、記録媒体にディスク状のものを使用する
ことができる。
According to the present invention, the optical fiber for introducing the focused laser beam has the scanning head at the tapered tip end, and the projection end face of the scanning head has an opening having a diameter substantially equal to or smaller than the wavelength of the laser beam. Therefore, the information signal can be recorded / reproduced with high resolution by the evanescent light. Further, since the scanning control head that is integrally arranged in parallel with the scanning head moves together with the scanning head and generates the tracking error detection signal necessary for scanning the scanning head,
The scanning head can be always positioned on a predetermined recording track with good trackability, and fine recording tracks can be arranged at high density. In addition, since the evanescent light is applied from the recording surface side in both recording and reproduction, a disc-shaped recording medium can be used.

【0015】[0015]

【実施例】つぎに、本発明の実施例を図1ないし図4を
用いて説明する。
EXAMPLE An example of the present invention will be described below with reference to FIGS.

【0016】図1に示す構成において、半導体レーザ1
から放射された情報信号光は、カップリングレンズ6で
集束されて光ファイバ7に開口8を通じて入射する。光
ファイバ7はその先端部に走査ヘッド9を有し、走査ヘ
ッド9における光ファイバ部分は先細に絞り込まれてい
る。そして、突端面での開口10の直径(コア径)は数
10nmに設定されている。また、開口10は記録媒体
の記録面11に約10nmの微小空隙を介して向き合っ
ている。
In the configuration shown in FIG. 1, the semiconductor laser 1
The information signal light emitted from the optical system is focused by the coupling lens 6 and enters the optical fiber 7 through the opening 8. The optical fiber 7 has a scanning head 9 at its tip, and the optical fiber portion of the scanning head 9 is narrowed down in a tapered manner. Then, the diameter (core diameter) of the opening 10 at the projecting end face is set to several tens nm. The opening 10 faces the recording surface 11 of the recording medium with a minute gap of about 10 nm.

【0017】使用するレーザ光の波長は700nm前後
であるので、これに比較した開口10の直径は非常に小
さい。このため、通常観察される進行波は開口10を通
過し得ないが、開口10の近傍に局在するエヴァネッセ
ント光だけが開口10を通じて記録面11に達し、その
光エネルギーを記録面11に伝達して情報信号を記録す
ることができる。
Since the wavelength of the laser light used is around 700 nm, the diameter of the opening 10 is very small compared to this. Therefore, the traveling wave that is normally observed cannot pass through the opening 10, but only the evanescent light localized near the opening 10 reaches the recording surface 11 through the opening 10 and its optical energy is transmitted to the recording surface 11. The information signal can be transmitted and recorded.

【0018】情報信号を再生する場合は、集束レーザ光
が光ファイバ7に開口8を通じて与えられる。走査ヘッ
ド9の開口10を通じて記録面11を照射したエヴァネ
ッセント光は、記録面11で回折または吸収の作用を受
けて開口10に戻り、光ファイバ7中で進行波に変換さ
れる。そして、光ファイバ7の途中に設けられたスプリ
ッタ12を経て光検出器13に導かれる。光検出器13
で光電変換された電気信号は、モニタ・出力器14また
はその他の信号処理機器に入力される。
When reproducing the information signal, the focused laser light is applied to the optical fiber 7 through the opening 8. The evanescent light that irradiates the recording surface 11 through the opening 10 of the scanning head 9 is diffracted or absorbed by the recording surface 11 and returns to the opening 10 to be converted into a traveling wave in the optical fiber 7. Then, it is guided to the photodetector 13 via the splitter 12 provided in the middle of the optical fiber 7. Photodetector 13
The electric signal photoelectrically converted by is input to the monitor / output device 14 or other signal processing device.

【0019】走査ヘッド9には、半導体レーザ15、第
1・第2の反射面16、17、対物レンズ18および光
電変換素子19からなる走査制御ヘッド20が一体的に
並設されている。走査制御ヘッド20はコンパクトに構
成されており、走査ヘッド9とともに移動して走査に必
要なトラッキングエラー検知信号等を発生する。
A scanning control head 20 including a semiconductor laser 15, first and second reflecting surfaces 16 and 17, an objective lens 18 and a photoelectric conversion element 19 is integrally arranged in parallel with the scanning head 9. The scanning control head 20 has a compact structure and moves together with the scanning head 9 to generate a tracking error detection signal or the like necessary for scanning.

【0020】半導体レーザ15から放射された光は、第
1の反射面(双曲面)16で反射したのち第2の反射面
(放物面)17で並行光線に変換される。そして、マイ
クロフレネルレンズからなる対物レンズ18で集束され
て記録面11に結像する。
The light emitted from the semiconductor laser 15 is reflected by the first reflecting surface (hyperbolic surface) 16 and then converted into parallel rays by the second reflecting surface (parabolic surface) 17. Then, the light is focused by the objective lens 18 formed of a micro Fresnel lens to form an image on the recording surface 11.

【0021】この結像で生じた結像スポットは、トラッ
キング用プリグループ(図示せず)によって後述するよ
うな±1次回折光を発生する。正反射の0次回折光およ
び±1次回折光は、対物レンズ18および第2の反射面
17を経て第1の反射面16に回帰する。第1の反射面
16の全域または一部分には入射光に対して偏向作用を
与えるグレーティングまたはホログラムが形成されてい
るので、戻り光の一部が光電変換素子19に入射する。
The imaging spot generated by this imaging produces ± first-order diffracted light as described later by a tracking pregroup (not shown). The 0th-order diffracted light and the ± 1st-order diffracted light of regular reflection return to the first reflecting surface 16 via the objective lens 18 and the second reflecting surface 17. Since a grating or a hologram that gives a deflecting action to the incident light is formed on the whole or a part of the first reflecting surface 16, a part of the returning light is incident on the photoelectric conversion element 19.

【0022】光電変換素子19は図2に示すように、4
区分されたセンサエリアS1、S2、S3、S4を有
し、各センサエリアを形成するフォトダイオードの出力
が各別にとり出せるようになっている。そして、各出力
を演算して前記結像スポットのパターンを分析し、走査
ヘッド9のフォーカスおよびトラッキングの各制御に必
要なエラー検知信号を得る。4つのセンサエリアS1、
S2、S3、S4の各出力をP1、P2、P3、P4と
すると、フォーカスエラー検知信号FEは、両サイドの
センサエリアS1、S4の各出力P1、P4の和(P1
+P4)と、残余のセンサエリアS2、S3の各出力P
2、P3の和(P2+P3)との差をとる。すなわち、
結像スポットの大きさをセンサ上で検出してデフォーカ
スの大小を検出するビームサイズ法の適用でフォーカス
エラー検知信号FEを得る。
As shown in FIG. 2, the photoelectric conversion element 19 has four elements.
It has divided sensor areas S1, S2, S3, S4, and the output of the photodiode forming each sensor area can be taken out separately. Then, each output is calculated to analyze the pattern of the imaging spot, and an error detection signal necessary for each control of focus and tracking of the scanning head 9 is obtained. Four sensor areas S1,
When the outputs of S2, S3, S4 are P1, P2, P3, P4, the focus error detection signal FE is the sum (P1) of the outputs P1, P4 of the sensor areas S1, S4 on both sides.
+ P4) and the outputs P of the remaining sensor areas S2 and S3
2. Take the difference from the sum of P3 and (P2 + P3). That is,
The focus error detection signal FE is obtained by applying the beam size method in which the size of the imaging spot is detected on the sensor to detect the magnitude of defocus.

【0023】トラッキングエラー検知信号TEについて
は、左半分の2センサエリアS1、S2の各出力の和
(P1+P2)と右半分の2センサエリアS3、S4の
各出力の和(P3+P4)との差をとる。すなわち、記
録面11のプリグループで発生した±1次回折光と0次
回折光との干渉強度のバランスを比較するプッシュプル
法の適用でトラッキングエラー検知信号TEを得る。
Regarding the tracking error detection signal TE, the difference between the sum (P1 + P2) of the outputs of the two sensor areas S1 and S2 in the left half and the sum (P3 + P4) of the outputs of the two sensor areas S3 and S4 in the right half is calculated. To take. That is, the tracking error detection signal TE is obtained by applying the push-pull method for comparing the balance of the interference intensities of the ± 1st-order diffracted light and the 0th-order diffracted light generated in the pregroup of the recording surface 11.

【0024】このような光電的処理で得られた信号を用
いてアクチュエータ21を駆動制御すると、走査ヘッド
9および走査制御ヘッド20をともに記録面11のプリ
グループに沿った水平方向(トラック方向)および垂直
方向(フォーカス方向)にそれぞれ安定に移動させるこ
とができる。
When the actuator 21 is drive-controlled using the signal obtained by such photoelectric processing, both the scanning head 9 and the scanning control head 20 are moved in the horizontal direction (track direction) along the pregroup of the recording surface 11. It can be moved stably in the vertical direction (focus direction).

【0025】信号ピットは記録面11に直径約50nm
のスポットで記録されるが、その精度を高めるために緩
衝器23を設けている。この緩衝器23は走査ヘッド9
を走査制御ヘッド20とともに駆動させるときに生じる
フォーカス方向への不所望な動き(上下振動)を吸収す
る役割を果たす。
The signal pit has a diameter of about 50 nm on the recording surface 11.
However, a buffer 23 is provided to increase the accuracy. This buffer 23 is used for the scanning head 9
Plays a role of absorbing an undesired movement (vertical vibration) in the focus direction that occurs when the scanning control head 20 is driven.

【0026】つぎに、トラッキング駆動および緩衝器2
3の動作について図3を参照しつつ説明する。走査制御
ヘッド20の光源たる半導体レーザ15から放射された
光はレンズ系で集束作用を受けて記録面11に達し、記
録面11で反射または回折して+1次光A、−1次光B
および0次光Cとなる。そして、走査制御ヘッド20に
戻って前述のような光電的処理を受け、フォーカスエラ
ー検知信号FEおよびトラッキングエラー検知信号TE
を発生する。
Next, the tracking drive and buffer 2
The operation of No. 3 will be described with reference to FIG. The light emitted from the semiconductor laser 15 which is the light source of the scanning control head 20 is focused by the lens system to reach the recording surface 11, and is reflected or diffracted by the recording surface 11 to be the + 1st order light A and the −1st order light B.
And 0th order light C. Then, it returns to the scan control head 20 and undergoes the photoelectric processing as described above, and the focus error detection signal FE and the tracking error detection signal TE are received.
To occur.

【0027】走査ヘッド9はエアースライダ22に固定
されており、記録面11が高速で移動することによって
わずかに浮上し、その高さを一定に保つ。また、走査ヘ
ッド9とこれに連なる本体部分との間に、不本意な揺れ
を吸収させるための緩衝器23を設けている。すなわ
ち、前記本体部分の垂直方向への揺らぎのダイナミック
レンジは走査ヘッド9のそれと大きく異なるので、その
差による歪みを緩衝器23で吸収させている。
The scanning head 9 is fixed to the air slider 22, and the recording surface 11 moves slightly at a high speed so that the recording surface 11 slightly floats and its height is kept constant. Further, a shock absorber 23 is provided between the scanning head 9 and the main body portion connected to the scanning head 9 for absorbing undesired shaking. That is, since the dynamic range of fluctuation of the main body portion in the vertical direction is greatly different from that of the scanning head 9, the distortion due to the difference is absorbed by the buffer 23.

【0028】緩衝器23は図示したようなコイル状のば
ねや、ハードディスク等に用いられている板ばねなどで
構成できるが、垂直方向にのみクッション作用を与える
ものでなければならず、トラック方向に揺れを生じさせ
ないことが重要である。このように構成すると、前記本
体部分において垂直方向の揺れが生じても、走査ヘッド
9の開口10と記録面11との間隔を常に所定値に安定
に保持させることができる。
The shock absorber 23 can be constituted by a coiled spring as shown in the figure, a leaf spring used in a hard disk or the like, but it must provide a cushioning action only in the vertical direction, and it must be in the track direction. It is important not to cause shaking. According to this structure, even if the main body portion shakes in the vertical direction, the distance between the opening 10 of the scanning head 9 and the recording surface 11 can be constantly maintained at a predetermined value.

【0029】複数の信号ピット24は記録面11の一つ
のランド部分(トラック上)に並ぶので、トラッキング
エラー検知信号(TE信号)と走査ヘッド9の偏位量と
を図4に示す特性曲線に沿うように設定しておくと、走
査ヘッド9はTE信号によってトラックに直角な方向に
軌道修正を受けつつ目的とするトラック上の部位(レベ
ル)を追尾性よく走査する。
Since the plurality of signal pits 24 are lined up in one land portion (on the track) of the recording surface 11, the tracking error detection signal (TE signal) and the deviation amount of the scanning head 9 are represented by the characteristic curve shown in FIG. If set so as to follow, the scanning head 9 scans the target portion (level) on the track with good tracking performance while the trajectory is corrected by the TE signal in the direction perpendicular to the track.

【0030】このようにトラッキングエラー検知信号に
よるオフセット作用で、走査ヘッド9をトラックに直角
な方向に微小量偏位させることができるので、微小の開
口10をもつ走査ヘッド9によって従来の光学系では得
ることのできなかった高密度の記録・再生動作を達成す
ることが可能となる。
As described above, since the scanning head 9 can be displaced by a slight amount in the direction perpendicular to the track by the offset action by the tracking error detection signal, the scanning head 9 having the minute aperture 10 is used in the conventional optical system. It is possible to achieve a high-density recording / reproducing operation that could not be obtained.

【0031】[0031]

【発明の効果】以上のように本発明によると、微小の開
口をもつ走査ヘッドを用いてエヴアネッセント光を利用
した高分解能の記録・再生動作を得るのであるが、通常
の光学系からなる走査制御ヘッドを走査ヘッドに一体的
に並設して発生させたトラッキングエラー検知信号でア
クチュエータを駆動させるので、走査ヘッドを所定のト
ラック上に精度よく位置させることが可能となる。ま
た、記録媒体にディスク状のものを使用することが可能
となる。
As described above, according to the present invention, a high-resolution recording / reproducing operation utilizing an evanescent light is obtained by using a scanning head having a minute aperture. Since the actuator is driven by the tracking error detection signal generated by arranging the scanning control head in parallel with the scanning head, the scanning head can be accurately positioned on a predetermined track. Further, it becomes possible to use a disc-shaped recording medium.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の近視野光走査記録再生装置
の構成図。
FIG. 1 is a configuration diagram of a near-field optical scanning recording / reproducing apparatus according to an embodiment of the present invention.

【図2】本発明の一実施例における光電変換素子の信号
発生回路図。
FIG. 2 is a signal generation circuit diagram of a photoelectric conversion element according to an embodiment of the present invention.

【図3】本発明の一実施例の近視野光走査記録再生装置
の要部の斜視図。
FIG. 3 is a perspective view of a main part of a near-field optical scanning recording / reproducing apparatus according to an embodiment of the present invention.

【図4】本発明の一実施例の近視野光走査記録再生装置
のTE信号−偏位量特性図。
FIG. 4 is a TE signal-deviation amount characteristic diagram of a near-field optical scanning recording / reproducing apparatus according to an embodiment of the present invention.

【図5】透過型フォトンSTMの構成図。FIG. 5 is a configuration diagram of a transmissive photon STM.

【符号の説明】[Explanation of symbols]

1 半導体レーザ 7 光ファイバ 9 走査ヘッド 10 開口 11 記録面 20 走査制御ヘッド 21 アクチュエータ 1 Semiconductor Laser 7 Optical Fiber 9 Scanning Head 10 Opening 11 Recording Surface 20 Scanning Control Head 21 Actuator

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 所定波長のレーザ光を放射する半導体レ
ーザと、 レーザ光を集束するレンズと、 レンズで集束されたレーザ光を導入する開口を有すると
ともに、先細の先端部で走査ヘッドを形成し、かつ、レ
ーザ光の波長とほぼ同等かそれよりも小さい直径の開口
を走査ヘッドの突端面に有している光ファイバと、 記録媒体の記録面から走査ヘッドの開口を通じて取り出
された反射光を検出する光検出器と、 走査ヘッドを移動させて走査ヘッドの開口を記録面のト
ラック上に位置合わせするアクチュエータと、 走査ヘッドに一体的に並設された光源、レンズ系および
光電変換素子を有し、記録面を光走査してアクチュエー
タの駆動に必要なトラッキングエラー検知信号を発生す
る走査制御ヘッドとを備えてなることを特徴とする近視
野光走査記録再生装置。
1. A semiconductor laser that emits a laser beam of a predetermined wavelength, a lens that focuses the laser beam, an opening that introduces the laser beam focused by the lens, and a scanning head is formed by a tapered tip portion. And the reflected light extracted from the recording surface of the recording medium through the opening of the scanning head, and the optical fiber that has an opening with a diameter that is approximately equal to or smaller than the wavelength of the laser light on the projecting end surface of the scanning head. It has a photodetector for detection, an actuator that moves the scanning head to align the aperture of the scanning head with the track on the recording surface, and a light source, a lens system, and a photoelectric conversion element that are installed in parallel with the scanning head. And a scanning control head that optically scans the recording surface to generate a tracking error detection signal necessary for driving the actuator. Recording and reproducing apparatus.
【請求項2】 走査ヘッドが記録面に直角な方向の偏位
を吸収する緩衝器に装着されている請求項1記載の近視
野光走査記録再生装置。
2. A near-field optical scanning recording / reproducing apparatus according to claim 1, wherein the scanning head is mounted on a buffer which absorbs deviation in a direction perpendicular to the recording surface.
JP33663693A 1993-12-28 1993-12-28 Near-field optical scanning recording / reproducing device Expired - Fee Related JP3229475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33663693A JP3229475B2 (en) 1993-12-28 1993-12-28 Near-field optical scanning recording / reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33663693A JP3229475B2 (en) 1993-12-28 1993-12-28 Near-field optical scanning recording / reproducing device

Publications (2)

Publication Number Publication Date
JPH07192280A true JPH07192280A (en) 1995-07-28
JP3229475B2 JP3229475B2 (en) 2001-11-19

Family

ID=18301216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33663693A Expired - Fee Related JP3229475B2 (en) 1993-12-28 1993-12-28 Near-field optical scanning recording / reproducing device

Country Status (1)

Country Link
JP (1) JP3229475B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0762566A1 (en) * 1995-09-06 1997-03-12 AT&T Corp. Near-field optical apparatus with laser source
EP0938012A1 (en) * 1998-02-23 1999-08-25 Seiko Instruments Inc. Probe for near-field optical microscope, method for manufacturing the same and scanning near-field optical microscope
EP1049080A1 (en) * 1998-10-19 2000-11-02 Seiko Instruments Inc. Device and method for information recording/reproducing using near-field light
KR100339354B1 (en) * 1999-10-26 2002-06-03 구자홍 apparatus and method for optical-disk writing/reading using polymer
KR100324268B1 (en) * 1998-10-02 2002-06-26 구자홍 Reproductive Apparatus OF High Density Recording Medium
US6584062B1 (en) * 1999-02-08 2003-06-24 Fuji Photo Film Co., Ltd. Near-field optical recording apparatus assistively heating recording medium
US6665239B1 (en) 1998-12-10 2003-12-16 Ricoh Company, Ltd. Optical information recording and reproducing apparatus
US6792021B1 (en) 1999-06-14 2004-09-14 Minolta Co., Ltd. Near field light generating device
US6791935B2 (en) 2000-02-17 2004-09-14 Minolta Co., Ltd. Optical head, and optical recording and reproducing apparatus
US6940803B2 (en) 1999-12-15 2005-09-06 Minolta Co., Ltd. Optical head, recording and reproducing apparatus and solid immersion lens
KR100549445B1 (en) * 1999-07-30 2006-02-07 한국전자통신연구원 High density and high speed data storage device
KR100607944B1 (en) * 1999-11-18 2006-08-03 삼성전자주식회사 Optical head for recording and/or reproducing and optical recording and/or reproducing apparatus by adapting it
KR100683130B1 (en) * 2004-10-25 2007-02-15 주식회사 아이캔텍 Apparatus for image focusing using optical fiber

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0762566A1 (en) * 1995-09-06 1997-03-12 AT&T Corp. Near-field optical apparatus with laser source
EP0938012A1 (en) * 1998-02-23 1999-08-25 Seiko Instruments Inc. Probe for near-field optical microscope, method for manufacturing the same and scanning near-field optical microscope
KR100324268B1 (en) * 1998-10-02 2002-06-26 구자홍 Reproductive Apparatus OF High Density Recording Medium
EP1049080A1 (en) * 1998-10-19 2000-11-02 Seiko Instruments Inc. Device and method for information recording/reproducing using near-field light
EP1049080A4 (en) * 1998-10-19 2006-02-08 Seiko Instr Inc Device and method for information recording/reproducing using near-field light
US6665239B1 (en) 1998-12-10 2003-12-16 Ricoh Company, Ltd. Optical information recording and reproducing apparatus
US6584062B1 (en) * 1999-02-08 2003-06-24 Fuji Photo Film Co., Ltd. Near-field optical recording apparatus assistively heating recording medium
US6792021B1 (en) 1999-06-14 2004-09-14 Minolta Co., Ltd. Near field light generating device
KR100549445B1 (en) * 1999-07-30 2006-02-07 한국전자통신연구원 High density and high speed data storage device
KR100339354B1 (en) * 1999-10-26 2002-06-03 구자홍 apparatus and method for optical-disk writing/reading using polymer
KR100607944B1 (en) * 1999-11-18 2006-08-03 삼성전자주식회사 Optical head for recording and/or reproducing and optical recording and/or reproducing apparatus by adapting it
US6940803B2 (en) 1999-12-15 2005-09-06 Minolta Co., Ltd. Optical head, recording and reproducing apparatus and solid immersion lens
US6791935B2 (en) 2000-02-17 2004-09-14 Minolta Co., Ltd. Optical head, and optical recording and reproducing apparatus
KR100683130B1 (en) * 2004-10-25 2007-02-15 주식회사 아이캔텍 Apparatus for image focusing using optical fiber

Also Published As

Publication number Publication date
JP3229475B2 (en) 2001-11-19

Similar Documents

Publication Publication Date Title
KR100318159B1 (en) Stacked near-field optical head and optical information recording and reproducing apparatus
US4507766A (en) Optical device for optically recording and reproducing information signals on an information carrier
US5105407A (en) Optical information-processing apparatus
KR20070050482A (en) Optical scanning device
JPH05159316A (en) Optical pickup device and hologram element
JP3229475B2 (en) Near-field optical scanning recording / reproducing device
US6992968B2 (en) Optical head and disk unit
EP0164687B1 (en) Optical head for focusing a light beam on an optical disk
EP0581597B1 (en) An optical information reproducing device
US5249167A (en) Optical pickup apparatus which includes a plate-like element for splitting a returning light beam into different light beams having different focussing point
US6680893B2 (en) Optical element supporting device in an apparatus for recording reproducing information
US5293372A (en) Apparatus for optically recording and reproducing information from an optical recording medium
US5153860A (en) Optical pickup apparatus for detecting and correcting focusing and tracking errors in detected recorded signals
US5444689A (en) Detection of phase and amplitude modulation information on optical medium with a waveguide
US7483345B2 (en) Optical pickup apparatus capable of compensating thickness deviation of optical recording media
JP2001236685A (en) Optical head, magneto-optical head, disk device, and manufacturing method of optical head
JP2629838B2 (en) Optical head
JPH0619847B2 (en) Optical information processing device
JPH0460931A (en) Optical pickup
JPH0793797A (en) Optical head and disk device using the same
JPH09138987A (en) Device for reproducing signal of magnetic recording medium and method therefor
JP2513237B2 (en) Optical head device
JP2000207765A (en) Optical head, optical part and optical memory
JPH0369032A (en) Optical head
JPS60140553A (en) Optical pickup

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees