JPS60140553A - Optical pickup - Google Patents

Optical pickup

Info

Publication number
JPS60140553A
JPS60140553A JP58245193A JP24519383A JPS60140553A JP S60140553 A JPS60140553 A JP S60140553A JP 58245193 A JP58245193 A JP 58245193A JP 24519383 A JP24519383 A JP 24519383A JP S60140553 A JPS60140553 A JP S60140553A
Authority
JP
Japan
Prior art keywords
light
semiconductor laser
track
beam splitter
passes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58245193A
Other languages
Japanese (ja)
Inventor
Yoshinori Higuchi
義則 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58245193A priority Critical patent/JPS60140553A/en
Publication of JPS60140553A publication Critical patent/JPS60140553A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/123Integrated head arrangements, e.g. with source and detectors mounted on the same substrate

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Head (AREA)

Abstract

PURPOSE:To prevent the distribution of the quantity of incident light from changing considerably even if an objective is moved, by making the moving direction of the objective coincident with the direction of an exit angle theta of a semiconductor laser. CONSTITUTION:The p-n junction face of a semiconductor laser 11 as a light source which is arranged in the focus position of a collimation lens 3 approximately is provided orthogonally to an optical information recording carrier (disc) 7, and the exit light from the semiconductor laser 11 passes a non-polarizing beam splitter 12, where a dielectric multilayered film or a metallic thin film is formed on a diagonal face 121, and is converted to parallel light by the collimation lens 3 and passes a mirror 5 and is focused as a minute spot on a track 71 on the recording face of the optical information recording carrier 7. This minute spot is formed as a spot 13 which is narrow and long in the lengthwise direction of the track 71 and is indicated by oblique lines. A part of the reflected light from the track 71 is condenced by an objective 6 and passes the course of exit from the semiconductor laser 11 and is reflected on the non-polarizing beam splitter 12 and passes a detecting optical system 8 and is converted to an electric signal by a photoelectric transducer 9.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は光ピツクアップに係シ、特にコンパクトディス
ク(以下CDと云う)やビデオディスク(VD)等の光
学的な情報記録坦体上に記録された情報を光学的に読み
出すために使用される光ピツクアップの改良に関するも
のである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to optical pickup, and in particular to optical pickup of information recorded on optical information recording media such as compact discs (hereinafter referred to as CDs) and video discs (VDs). The present invention relates to improvements in optical pickups used to optically read out information obtained by optical pickup.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

次に従来の光ピツクアップの構造とその機能を第1図を
用いて説明する。
Next, the structure and function of a conventional optical pickup will be explained using FIG.

即ち、コリメーションレンズ(3)のほぼ焦点位置に配
設された光源としての半導体レーザ(1)から出射光は
偏向ビームスプリッタ(2)を通過しコリメーションレ
ンズ(3)によって平行光線に変換された後、1/4波
長板(4)、ミラー(5)を介して対物レンズ(6)に
よって光学的な情報記録坦体(ディスク)(力の記録上
のトラック(7,)に微少スポットとして結像される。
That is, the light emitted from the semiconductor laser (1) as a light source disposed approximately at the focal point of the collimation lens (3) passes through the deflection beam splitter (2) and is converted into parallel light by the collimation lens (3). , a quarter-wave plate (4), a mirror (5), and an objective lens (6) to form an image on an optical information recording medium (disc) (force recording track (7,) as a minute spot. be done.

この情報記録坦体(7)の記録面上のトラック(7,)
には、深さが約1/4波長のビットの有無によって情報
が記録されており、このピットによる回折のため、情報
記録坦体(力の記録面からの反射光の一部が対物レンズ
(6)によシ集光され、半導体レーザ(1)から出射さ
れた時とは直交する偏光方向を有する直線偏光となるた
め、偏光ビームスプリッタ(2)によって反射され、検
出光学素子(8)を介して光電変換器(9)によって電
気信号に変換される。
Tracks (7,) on the recording surface of this information recording carrier (7)
Information is recorded by the presence or absence of bits with a depth of approximately 1/4 wavelength, and due to diffraction by these pits, a portion of the reflected light from the recording surface of the information recording carrier (force) is reflected by the objective lens ( 6) Since the light is focused by the semiconductor laser (1) and becomes linearly polarized light with a polarization direction perpendicular to that emitted from the semiconductor laser (1), it is reflected by the polarizing beam splitter (2) and sent to the detection optical element (8). The signal is then converted into an electrical signal by a photoelectric converter (9).

この電気信号は対物レンズ(6)と記録面との間隔誤差
を示すフォーカスエラー信号と、記録面上のトラックと
微小スポットとのずれを示すトラッキングエラー信号及
び記録された内容を含む情報信号に分離される。
This electrical signal is separated into a focus error signal that indicates the distance error between the objective lens (6) and the recording surface, a tracking error signal that indicates the deviation between the track and the minute spot on the recording surface, and an information signal that includes the recorded content. be done.

このうち、フォーカスエラー信号と、トラッキングエラ
ー信号をアクチュエータ(1〔にワイードパックするこ
とによって対物レンズ(6)を駆動し、対物レンズ(6
)と記録面の位置及びトラック上の微小光スポットの位
置を正確に調整するようになっている。具体的には、前
者の調整は対物レンズ(6)を光軸方向に移動させ、後
者の調整は対物レンズ(6)をトラックの法線方向に移
動させる。
Of these, the focus error signal and the tracking error signal are wide packed into the actuator (1) to drive the objective lens (6).
) to accurately adjust the position of the recording surface and the position of the minute light spot on the track. Specifically, the former adjustment moves the objective lens (6) in the optical axis direction, and the latter adjustment moves the objective lens (6) in the normal direction of the track.

この対物レンズ(6)をトラックの法線方向の移動を許
容するには、対物レンズ(6)へ入射する光線の直径が
、対物レンズ(6)の入射瞳よシも大きいか、或いは小
さくなければならない。このようにしなければ、対物レ
ンズが記録トラックの法線方向に移動した時に対物レン
ズからの出射光は大きく変化することになる。
In order to allow this objective lens (6) to move in the normal direction of the track, the diameter of the light beam incident on the objective lens (6) must be larger or smaller than the entrance pupil of the objective lens (6). Must be. If this is not done, the light emitted from the objective lens will change significantly when the objective lens moves in the normal direction of the recording track.

ところが記録面上に充分小さな微小光スポットを形成す
るには、対物レンズの開口数(N、A)をいっばいに使
用しなければならず、このために対物レンズへ入射する
光線の直径は対物レンズの入射瞳に対物レンズの移動量
を加えた[G径以上でなければならない。これを避ける
ためには、少くとも光源とコリメーションレンズ及び対
物レンズを一体化して駆動する構造にすればよいが、こ
の構造にすると、当然のことながら質量が大きくなるた
め、アクチュエータに無理がかかることになり実現性に
乏しい。
However, in order to form a sufficiently small minute light spot on the recording surface, the numerical aperture (N, A) of the objective lens must be used at once, and for this reason the diameter of the light beam incident on the objective lens is The entrance pupil of the lens plus the amount of movement of the objective lens must be greater than or equal to the G diameter. In order to avoid this, at least a structure should be adopted in which the light source, collimation lens, and objective lens are integrated and driven, but this structure naturally increases the mass and puts strain on the actuator. Therefore, it is not very practical.

ここ迄は対物レンズのみを移動させる場合、入射光線の
1M径が大きくなければならない理由を述べたが、この
直径の範囲内における光量の分布は記録面上の微小光ス
ポットの品位を左右するため、できるだけ、中心対称で
あることが望ましい。
Up to this point, we have explained why the 1M diameter of the incident light beam must be large when only the objective lens is moved, but the distribution of the light amount within this diameter range affects the quality of the minute light spot on the recording surface. , it is desirable to be as centrally symmetrical as possible.

即ち、対物レンズの入射瞳面内において、入射光がガウ
ス分布であれば、微小光スポットもガラス分布となシ、
入射瞳面内において一様分布であればエアリ−分布とな
るが、現実的には両者の中間的な値をとることは、よく
知られている。
In other words, if the incident light has a Gaussian distribution in the entrance pupil plane of the objective lens, the minute light spot will also have a glass distribution.
If the distribution is uniform within the entrance pupil plane, it will be an Airy distribution, but it is well known that in reality it takes a value intermediate between the two.

一方、光源となる半導体レーザもその構造によって、特
有の出射光/!!ターンを持っており、そのpn接合面
に平行方向の出射角度θ〃は半値幅で5゜乃至10°程
度、pn接合面に垂直な方向の出射角度θ1は半値幅で
約30’程度の数値を持つものが一般的である。
On the other hand, the semiconductor laser that serves as the light source also has a unique emitted light /! depending on its structure. ! The output angle θ in the direction parallel to the pn junction surface is approximately 5° to 10° in half width, and the output angle θ1 in the direction perpendicular to the pn junction surface is approximately 30' in half width. It is common to have

またコリメーションレンズはその開口数(NA)0.1
〜0.2程度のものが使用されるため、光源としての半
導体レーザから出射した光のうち出射角度11°乃至2
2’以下の光を平行光線として対物レンズに入射させる
ことになる。そして、このような条件の下では平行光線
内の光量分布は、θ□方向では均一分布に近く、θヶ方
向では、ガウス分布に近くなりいずれも中心点に対して
対称の分布とはならない。
Also, the collimation lens has a numerical aperture (NA) of 0.1.
~0.2 is used, so the emission angle of the light emitted from the semiconductor laser as a light source is 11° to 2.
Light of 2' or less is made to enter the objective lens as parallel light. Under such conditions, the light quantity distribution within the parallel rays is close to a uniform distribution in the θ□ direction, and close to a Gaussian distribution in the θ direction, and neither distribution is symmetrical with respect to the center point.

そのためできるだけ、中心点に対して対称の分布になる
ようにするには、半導体レーザのθ〃 とθユとを近づ
けるか、コリメーションレンズの開口数をできるだけ小
さくする構造が考えられているが、前者は半導体レーザ
の構造そのものに関係しているため、あまシ変える事は
できないし、また後者は開口数を小さくすればする程、
半導体レーザからでた光を有効に利用できなくなるため
、あまり小さくするととはできずNA=0.12〜0.
15程度が現実的な値となる。
Therefore, in order to make the distribution as symmetrical as possible with respect to the center point, it is considered that the θ〃 and θU of the semiconductor laser should be brought close together, or the numerical aperture of the collimation lens should be made as small as possible. Since it is related to the structure of the semiconductor laser itself, it cannot be changed, and as for the latter, the smaller the numerical aperture, the more
Since the light emitted from the semiconductor laser cannot be used effectively, it cannot be made too small, and NA=0.12 to 0.
A realistic value is about 15.

以上述べたような光量分布の条件の下で対物レンズを、
どちら方向へ移動させるかは光ピツクアップにとって大
きな問題点となっている。
Under the light intensity distribution conditions described above, the objective lens is
Deciding in which direction to move is a major problem for optical pickups.

対物レンズを移動させても対物レンズへの入射光分布が
大きく変化する事を赴けるためには移動方向を半導体レ
ーザからの出射角度θ工方向に設定できる方が望ましい
In order to ensure that the distribution of light incident on the objective lens changes greatly even when the objective lens is moved, it is desirable that the direction of movement can be set in the direction of the emission angle θ from the semiconductor laser.

また光の偏光を考えると、半導体レーザの出射光はpn
接合方向がP偏向であり、半導体レーザの直後に置かれ
る偏光ビームスプリッタはP偏光成分を透過させ、S偏
光成分を反射する。従って光源からの光が偏光ビームス
プリッタを透過するような光学系であれば、半導体レー
ザの出射角度θl方向が対物レンズの移動方向になり、
先に述べた条件とは反対となる。半導体レーザの出射角
度θl方向を対物レンズに等しくするには、光電変換器
と光源との位置関係を入れかえて、半導体レーザのチッ
プを90″回転させれば良いが、この時、光源から対物
レンズへ向う光は、偏光ビームスプリッタの反射面によ
る反射で通過する事になる。
Also, considering the polarization of light, the emitted light from a semiconductor laser is pn
The junction direction is P polarization, and a polarization beam splitter placed immediately after the semiconductor laser transmits the P polarization component and reflects the S polarization component. Therefore, in an optical system in which light from a light source passes through a polarizing beam splitter, the emission angle θl direction of the semiconductor laser becomes the moving direction of the objective lens.
This is the opposite of the conditions stated above. In order to make the emission angle θl direction of the semiconductor laser equal to that of the objective lens, it is sufficient to change the positional relationship between the photoelectric converter and the light source and rotate the semiconductor laser chip by 90''. The light heading toward the polarizing beam splitter is reflected by the reflective surface of the polarizing beam splitter and passes through the polarizing beam splitter.

反射と、透過でビームスプリッタを通過する事の差異は
、もし、ビームスプリッタの反射面に凹凸があった場合
、反射の時凹凸の2倍と屈折率の積に比例して光の位相
が乱され、透過の場合は、凹凸と反射面の両側の屈折率
差の積に比例して光の位置が乱される。従って光源から
の光を反射によって偏光ビームスシリツタを通過させよ
うとすると、反射面の面精度を高く、凹凸を少くしなけ
ればならず、コスト高になる原因となる。この場合、面
精度は透過に比べて1/6程度でなければならないとさ
れている。
The difference between reflection and transmission through a beam splitter is that if the reflecting surface of the beam splitter is uneven, the phase of the light will be disrupted in proportion to the product of twice the unevenness and the refractive index. In the case of transmission, the position of the light is disturbed in proportion to the product of the unevenness and the difference in refractive index on both sides of the reflective surface. Therefore, if it is attempted to pass the light from the light source through the polarizing beam sinter by reflection, the surface precision of the reflecting surface must be high and the irregularities must be reduced, which causes an increase in cost. In this case, it is said that the surface accuracy should be about 1/6 of that for transmission.

このコスト高を避け、かつ、出射角度の 方向を対物レ
ンズの移動方向と等しくするにはアクチュエータを除く
光ピツクアップ全体を90’ 回転させるか、ミラーを
取り除いて光源、偏向ビームスプリッタ、コリメーショ
ンレンズ、1 / 4 波長板、対物レンズを同一直線
上に配設すること、即ち全表軸をディスクに対して垂直
に設定すればよいが、前者は最外周のトラックを読みだ
す時に光ピツクアップの大部分がディスクからはみだす
が、逆の場合にはディスクの回転軸にぶつかるようにな
るし、まだ後者の場合にはピックアップ全体の高さが高
くなってプレーヤへの組み込みに対して不利となる問題
点がある。
To avoid this high cost and make the direction of the output angle equal to the direction of movement of the objective lens, the entire optical pickup excluding the actuator must be rotated by 90', or the mirrors must be removed and the light source, deflection beam splitter, collimation lens, /4 The wave plate and the objective lens should be arranged on the same straight line, that is, the entire surface axis should be set perpendicular to the disk, but the former allows most of the optical pickup to occur when reading out the outermost track. It protrudes from the disc, but in the opposite case it hits the disc's rotational axis, and in the latter case there is still the problem that the overall height of the pickup becomes high, which is disadvantageous for incorporating it into the player. .

また、もう一つの構造としては光電変換器の検出光学系
の取付位置を第1図における光ピツクアップの上面また
は下面に変更し、光源、偏向ビームスプリッタを光軸を
中心90°回転させることが考えられるが、この場合に
は、検出光学系と光電変換器が光ピツクアップの上面ま
たは下面に突出することになり、ディスクに当らないよ
うにするためには光ピツクアップの高さが増加するとい
う問題点がある。
Another possible structure is to change the mounting position of the detection optical system of the photoelectric converter to the upper or lower surface of the optical pickup as shown in Figure 1, and rotate the light source and deflection beam splitter 90 degrees around the optical axis. However, in this case, the detection optical system and photoelectric converter protrude from the top or bottom of the optical pickup, resulting in the problem that the height of the optical pickup must be increased in order to avoid hitting the disk. There is.

以上述べてきたように様々の条件を満足させようとする
と、対物レンズの移動方向は半導体レーザのpn接合か
らの出射角度はθ〃力方向なり、対物レンズの移動によ
って入射光分布が大幅に変化することは避けられない現
状である。
As mentioned above, when trying to satisfy various conditions, the direction of movement of the objective lens is the output angle from the pn junction of the semiconductor laser is θ, and the force direction is the direction of the force, and the movement of the objective lens significantly changes the incident light distribution. This is an unavoidable situation.

〔発明の目的〕[Purpose of the invention]

本考案は、前述した諸問題点に鑑みなされたものであ如
対物レンズの移動方向を半導体レーザの出射角度θl方
向と一致させ、対物レンズが移動しても、入射光量分布
が大幅に変化することを防止可能な光学系を有する光ピ
ツクアップを提供することを目的としている。
The present invention was developed in view of the above-mentioned problems.The moving direction of the objective lens is made to match the emission angle θl direction of the semiconductor laser, so that even if the objective lens moves, the incident light amount distribution changes significantly. It is an object of the present invention to provide an optical pickup having an optical system capable of preventing such problems.

〔発明の概要〕[Summary of the invention]

即ち、本発明はpn接合面がディスクと直角になるよう
に設けられた光源として半導体レーザと、半導体レーザ
からの出射光を通知させる無偏光ビームスプリッタと、
無偏光ビームスプリッタからの光を平行光線にするコリ
メーションレンズと、コリメーションレンズからの平行
光線をミラーを介してディスクの記録面上のトラック上
に微小スポットとして結像させる対物レンズと、トラッ
クからの反射光をミラー、コリンXジョンレンズを介し
て無偏光ビームスプリッタで反射させた後通過させる検
出光学系と、検出光学系からの光を光電変換する光電変
換器とを少くとも具備し、微小スポットをトラックの長
手方向に細長い形状になし得るようになされていること
を特徴とする光ピツクアップである。
That is, the present invention includes a semiconductor laser as a light source provided so that the pn junction surface is perpendicular to the disk, a non-polarizing beam splitter that notifies the light emitted from the semiconductor laser, and
A collimation lens that converts the light from the non-polarizing beam splitter into parallel rays, an objective lens that focuses the parallel rays from the collimation lens through a mirror onto a track on the recording surface of the disk, and a reflection from the track. It is equipped with at least a detection optical system that reflects the light by a non-polarizing beam splitter via a mirror and a Colin X John lens, and then passes it through, and a photoelectric converter that photoelectrically converts the light from the detection optical system, and a microscopic spot. This optical pickup is characterized in that it can be formed into an elongated shape in the longitudinal direction of the track.

〔発明の実施例〕[Embodiments of the invention]

次に本発明の光ピツクアップの一実施例を第2図及び第
3図により説明する。図中従来と同一符号は同一部を゛
示す。
Next, an embodiment of the optical pickup of the present invention will be explained with reference to FIGS. 2 and 3. In the figure, the same reference numerals as in the prior art indicate the same parts.

即ち、コリメーションレンズ(3)のほぼ焦点位置に配
設された光源としての半導体レーザ(II)のpn接合
面は光学的な情報記録坦体(ディスク)(7)と直角に
なるように設けられており、こり半導体レーザQl)の
出射光は誘電体多層膜または金属薄膜が対角面(121
)形成された無偏光ビームスプリッタQりを通過したの
ち、コリメーションレンズ(3)により平行光線に変換
された後、ミラー(5)を介して対物レンズ(6)によ
って光学的な情報記録坦体(ディスク)(7)の記録面
上のトラック(7I)に微少スポットとして結像される
、この微小スポットは第3図に示すようにトラック(7
,)の長手方向に細長い斜11i&テ示すスポット(1
3)となる。
That is, the pn junction surface of the semiconductor laser (II) as a light source, which is disposed approximately at the focal point of the collimation lens (3), is provided so as to be perpendicular to the optical information recording medium (disc) (7). The emitted light of the semiconductor laser Ql) is emitted from the dielectric multilayer film or metal thin film on the diagonal surface (121
After passing through the non-polarizing beam splitter Q formed in This minute spot is imaged on the track (7I) on the recording surface of the disk (7) as shown in FIG.
The spot (1
3).

そしてトラック(7、)からの反射光の一部は対物レン
ズ(6)によシ集光され、半導体レーザa9から出射さ
れた経路を通)無偏光ビームスプリッタQ湯で反射され
、検出光学系(8)を介して光電変換器(9)によって
電気信号に変換されるようになっている。
Then, a part of the reflected light from the track (7) is focused by the objective lens (6), passes through the path emitted from the semiconductor laser a9, and is reflected by the non-polarizing beam splitter Q, and is reflected by the detection optical system. (8) and is converted into an electrical signal by a photoelectric converter (9).

前述した無偏光ビームスプリッタ(1乃は、光源として
の半導体レーザαl)からの出射光の偏向方向のp、s
を問わず、入射光の半分を透過、半分を反射させる機能
を有しているので従来の偏光ビームスプリッタ(2)を
この無偏光ビームスシリツタ住りに変え、かつ1/4波
長板を除去することによシ他の光学系の配置を変えるこ
となく、従来の半導体レーザ(1)を90°回転させる
ことができ、このため対物レンズの移動方向即ちディス
クの法線方向と半導体レーザullのpn接合面に直角
方向の出射角度θ上方向とを一致させることができる。
p, s of the polarization direction of the emitted light from the above-mentioned non-polarizing beam splitter (1 or 1 is the semiconductor laser αl as a light source)
Since it has the function of transmitting half of the incident light and reflecting the other half, it is possible to replace the conventional polarizing beam splitter (2) with this non-polarizing beam splitter and eliminate the 1/4 wavelength plate. By doing so, the conventional semiconductor laser (1) can be rotated by 90 degrees without changing the arrangement of other optical systems. The emission angle θ in the direction perpendicular to the pn junction surface can be made to coincide with the upward direction.

たyし、この場合、無偏光ビームスプリッタa2を設け
ることによシ往路で1/2の光量の損失が生じるが、こ
れは半導体レーザα1)での光量と光電変換器(9)を
含む光電変換回路の利得の増加によって補うことができ
るし、また対物レンズ(6)の移動方向と半導体レーザ
01)の出射角度θよ方向とが一致スるため、コリメー
ションレンズ(3)の開口数(NA)を無理に小さくす
る必要がなく、比較的大きく設定できる。この結果、平
行光線として利用できる効率は向上するため、無偏光ビ
ームスプリッタll’16による光電変換器に到達する
光量の減少も補うことができる。
However, in this case, by providing the non-polarizing beam splitter a2, a loss of 1/2 of the light intensity occurs on the outward path, but this is due to the difference between the light intensity of the semiconductor laser α1) and the photoelectric converter (9). This can be compensated for by increasing the gain of the conversion circuit, and since the moving direction of the objective lens (6) and the direction of the emission angle θ of the semiconductor laser 01) match, the numerical aperture (NA) of the collimation lens (3) ) can be set relatively large without having to forcefully reduce it. As a result, the efficiency with which parallel light beams can be used improves, so it is possible to compensate for the decrease in the amount of light reaching the photoelectric converter due to the non-polarizing beam splitter ll'16.

〔発明の効果〕〔Effect of the invention〕

上述のように本発明によれば対物レンズの移動方向は半
導体レーザの6I接合の出射角度θ〃とすることができ
るので対物レンズの移動による入射光分布の変化が極め
て少ない光ピツクアップを得ることが可能である。
As described above, according to the present invention, the moving direction of the objective lens can be set to the emission angle θ of the 6I junction of the semiconductor laser, so it is possible to obtain a light pickup with extremely little change in the incident light distribution due to the movement of the objective lens. It is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光ピツクアップの構造を示す斜視図、第
2図及び第3図は本発明の光ピツクアップの一実施例を
示す図であり、vJ2図は構造を示す斜視図、第3図は
トラックと微少スポットとの関係を示す説明図である。 1.11 半導体レーザ 2 ・・・偏向ビームスプリ
ッタ3 ・・コリメーションレンズ 4 ・・・1/4波長板 5・ ミラー6−・・・・・
・対物レンズ 7−・ディスク7m・・・・・・トラッ
ク 8 検出光学系9 ・・・ ・・光電変換器 10
 ・・アクチュエータ11 ・ −・無偏光ビームスプ
リッタ13 ・・・ 微小スポット 粋種人 弁理+ # 上 −男 第 1 図
FIG. 1 is a perspective view showing the structure of a conventional optical pickup, FIGS. 2 and 3 are views showing an embodiment of the optical pickup of the present invention, FIG. vJ2 is a perspective view showing the structure, and FIG. FIG. 2 is an explanatory diagram showing the relationship between tracks and minute spots. 1.11 Semiconductor laser 2 ... Deflection beam splitter 3 ... Collimation lens 4 ... 1/4 wavelength plate 5. Mirror 6 - ...
・Objective lens 7-・Disk 7m...Track 8 Detection optical system 9...Photoelectric converter 10
・・Actuator 11 ・ −・Non-polarizing beam splitter 13 ・・Minute spot smart person Patent attorney + # Top - Male Figure 1

Claims (1)

【特許請求の範囲】[Claims] pn接合面がディスクと直角になるように設けられた光
源としての半導体レーザと、前記半導体レーザからの出
射光を通過させる無偏光ビームスプリッタと、前記無偏
光ビームスプリッタからの光を平行光線にするコリメー
ションレンズと、前記コリメーションレンズからの平行
光線をミラーを介してディスクの記録面上のトラック上
に微小スポットとして結像させる対物レンズと、前記ト
ラックからの反射光を前記ミラー、前記コリメーション
レンズを介して前記無偏光ビームスプリッタで反射させ
たのち通過させる検出光学系と、前記検出光学系からの
光を光電変換する光電変換器とを少くとも具備し、前記
微小スポットを前記トラックの長手方向に細長い形状に
なし得るようになされていることを特徴とする光ピツク
アップ。
A semiconductor laser as a light source provided so that a pn junction surface is perpendicular to the disk, a non-polarizing beam splitter that passes the light emitted from the semiconductor laser, and converting the light from the non-polarizing beam splitter into parallel light. a collimation lens; an objective lens that images a parallel light beam from the collimation lens as a minute spot on a track on a recording surface of a disk via a mirror; and a collimation lens that focuses reflected light from the track via the mirror and the collimation lens. and a photoelectric converter that photoelectrically converts the light from the detection optical system, and the microspot is elongated in the longitudinal direction of the track. An optical pickup characterized by being shaped so that it can be shaped.
JP58245193A 1983-12-28 1983-12-28 Optical pickup Pending JPS60140553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58245193A JPS60140553A (en) 1983-12-28 1983-12-28 Optical pickup

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58245193A JPS60140553A (en) 1983-12-28 1983-12-28 Optical pickup

Publications (1)

Publication Number Publication Date
JPS60140553A true JPS60140553A (en) 1985-07-25

Family

ID=17129999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58245193A Pending JPS60140553A (en) 1983-12-28 1983-12-28 Optical pickup

Country Status (1)

Country Link
JP (1) JPS60140553A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63249946A (en) * 1987-04-07 1988-10-17 Canon Inc Optical pickup for optical card recording and/or reproducing device
JPS63268139A (en) * 1987-04-24 1988-11-04 Alps Electric Co Ltd Optical device for optical pickup

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63249946A (en) * 1987-04-07 1988-10-17 Canon Inc Optical pickup for optical card recording and/or reproducing device
JPS63268139A (en) * 1987-04-24 1988-11-04 Alps Electric Co Ltd Optical device for optical pickup

Similar Documents

Publication Publication Date Title
KR900006954B1 (en) Optical head apparatus
KR19980702610A (en) Stacked near-field optical head and optical information recording and reproducing apparatus
JPS6334532B2 (en)
JPS6227456B2 (en)
US4689479A (en) Optical focussing and tracking system using a polarization prism for dividing the reflected beam
JPS629537A (en) Optical pickup device
JPH02246030A (en) Optical information recording and reproducing device
US5745304A (en) Integrated optical pickup system capable of reading optical disks of different thickness
JPS6117103A (en) Polarizing beam splitter
JPS598145A (en) Optical pickup
JPS60140553A (en) Optical pickup
JPS59142758A (en) Optical head for optical memory
US5939710A (en) Optical pickup system incorporating therein a beam splitter having a phase layer
JPH08329516A (en) Optical head device
JPH0352132A (en) Optical head
JP2578203B2 (en) Light head
JPH10247338A (en) Optical pickup device
JPS58147821A (en) Optical head
JP2764752B2 (en) Information storage device
JPS6297148A (en) Optical information processor
JPH0242647A (en) Optical pick-up device
JPS6145419A (en) Optical pickup
JPS6111951A (en) Optical head device
JPS5933643A (en) Optical pickup
JPH0644353B2 (en) Optical pickup device