JPH07191142A - All azimuth distance detecting device - Google Patents

All azimuth distance detecting device

Info

Publication number
JPH07191142A
JPH07191142A JP5353622A JP35362293A JPH07191142A JP H07191142 A JPH07191142 A JP H07191142A JP 5353622 A JP5353622 A JP 5353622A JP 35362293 A JP35362293 A JP 35362293A JP H07191142 A JPH07191142 A JP H07191142A
Authority
JP
Japan
Prior art keywords
rotor
casing
light
distance
rotational position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5353622A
Other languages
Japanese (ja)
Other versions
JP3137307B2 (en
Inventor
Takeshi Yamamoto
猛 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASTECS KK
Original Assignee
ASTECS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASTECS KK filed Critical ASTECS KK
Priority to JP05353622A priority Critical patent/JP3137307B2/en
Publication of JPH07191142A publication Critical patent/JPH07191142A/en
Application granted granted Critical
Publication of JP3137307B2 publication Critical patent/JP3137307B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To detect presence of an object and a distance to the object if the object is present over a region of nearly 360 degrees by projecting light to the object to accurately detect the distance to the object based on a phase difference and a time difference generated in reflected light thereof with a simple constitution, concentratingly arranging instruments for projecting/receiving the light, and rotating a whole device around these as a center. CONSTITUTION:This device is provided with a casing 10 with its peripheral wall being optically opened, a rotor 20 provided rotatably around a nearly vertical axis in the casing 10, and a drive mechanism 30 for rotating the rotor 20 relative to the casing 10. The casing 10 is provided with a light projector 15 and a light receiver 16 arranged oppositely on a rotor rotating axis, and a rotation position detector 17 for outputting a signal in accordance with a rotation position of the rotor 20 with respect to the casing 10. The rotor 20 is provided with an optical axis changing mechanism 27 for changing the optical axes of the projector 15 and the receiver 16 to be directed to a detection direction so as to respectively detects a rotation position of the rotor 20 based on an output signal of the rotation position detector 17 and a distance based on a difference between an input signal of the projector 15 and arm output signal of the receiver 16.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、周囲ほぼ360度にわ
たって物体の有無並びに物体が存在するときには物体ま
での距離を検出できる全方位距離検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an omnidirectional distance detecting device capable of detecting the presence or absence of an object and the distance to the object when the object is present over approximately 360 degrees around the circumference.

【0002】[0002]

【従来の技術】従来、ある物体までの距離を検出する距
離検出装置として、三角測量の原理を応用したものが知
られている。これは所定間隔だけ離して投光素子と、位
置検出が可能な受光素子とを設け、投光素子からの光を
物体に当て、その反射光を受光素子で受け、その受光位
置の基準位置からの「ずれ」を測定し、この「ずれ」量
に基づいて幾何学的に物体までの距離を検出するように
したものでる。
2. Description of the Related Art Conventionally, as a distance detecting device for detecting a distance to a certain object, a device to which the principle of triangulation is applied is known. This is provided with a light projecting element and a light receiving element capable of position detection, which are separated from each other by a predetermined distance. The light from the light projecting element is applied to an object, and the reflected light is received by the light receiving element. Is measured, and the distance to the object is geometrically detected based on the amount of “deviation”.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記従来のも
のでは幾何学的に距離を検出するから、投光素子及び受
光素子の取付位置が若干でもずれていると検出距離が実
際の距離から狂ってしまう。従って、装置全体の光学的
精度を高レベルに維持する必要があり、そのために装置
の製造及び管理に手間を要した。また、光軸の変動を問
題とするから、投光素子と受光素子との間でやりとりす
る光はスポット的な光であることが要求され、そのため
に光学系が複雑になったり、高価なレーザー光を必要と
する場合があった。
However, since the above-mentioned prior art geometrically detects the distance, if the mounting positions of the light projecting element and the light receiving element are slightly deviated, the detected distance is deviated from the actual distance. Will end up. Therefore, it is necessary to maintain the optical accuracy of the entire device at a high level, which requires time and effort for manufacturing and managing the device. Further, since the fluctuation of the optical axis is a problem, the light exchanged between the light projecting element and the light receiving element is required to be spot-like light, which complicates the optical system and makes the expensive laser expensive. Sometimes it needed light.

【0004】また、このような距離検出装置としては検
出範囲を所定角度内に限定した検出にとどまらず、広範
囲にわたって精度良く距離検出を行いたいという要望が
ある。
Further, there is a demand for such a distance detecting device to perform distance detection with high accuracy over a wide range, not limited to detection in which the detection range is limited to a predetermined angle.

【0005】本発明は、このような点に着目してなされ
たものであり、その目的とするところは、発光ダイオー
ド等による光を物体に当て、その反射光に生じる位相差
又は時間差に基づいて物体までの距離を簡単な構成で精
度良く検出すると共に、投・受光用の機器を集中配置
し、これを中心にして装置全体を回転するようにして、
物体の有無並びに物体が存在するときには物体までの距
離をほぼ360度にわたって検出できるようにすること
にある。
The present invention has been made paying attention to such a point, and an object thereof is to apply light from a light emitting diode or the like to an object and to determine the phase difference or time difference generated in the reflected light. The distance to an object can be accurately detected with a simple configuration, and the light emitting and receiving devices are centrally arranged, and the entire device is rotated around this.
The object is to enable detection of the presence or absence of an object and the distance to the object over an approximately 360 degree when the object exists.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の全方位距離検出装置は、周壁が光学的に
開放されたケーシングと、このケーシング内にほぼ鉛直
軸まわりに回転可能に設けられたロータと、このロータ
をケーシングに対して回転させる駆動機構とを備えると
共に、上記ケーシングに、ロータ回転軸上で対向配置さ
れた投光器及び受光器と、ケーシングに対するロータの
回転位置に応じて信号を出力する回転位置検出器とを設
け、上記ロータに、投光器及び受光器の光軸を検出方向
に向くよう変換する光軸変換機構を設け、上記回転位置
検出器の出力信号からロータの回転位置を、投光器の入
力信号と受光器の出力信号との差から距離をそれぞれ検
出できるようにした。
In order to achieve the above object, an omnidirectional distance detecting apparatus according to a first aspect of the present invention includes a casing whose peripheral wall is optically opened, and a rotatable inside the casing about a vertical axis. In addition to the rotor provided and a drive mechanism for rotating the rotor with respect to the casing, the casing has a projector and a receiver arranged to face each other on a rotor rotation axis, and a rotor is rotated depending on a rotational position with respect to the casing. A rotational position detector that outputs a signal is provided, and an optical axis conversion mechanism that converts the optical axes of the light emitter and the light receiver so as to face the detection direction is provided in the rotor, and the rotor rotation is determined from the output signal of the rotational position detector. The position can be detected from the difference between the input signal of the projector and the output signal of the light receiver.

【0007】また、請求項2の全方位距離検出装置は、
上記構成において、駆動機構が、ケーシング及びロータ
の対向する水平面に一体に設けたモータであり、このモ
ータのコイルがケーシング側に、磁極がロータ側に設け
られている。
Further, the omnidirectional distance detection device according to claim 2 is
In the above structure, the drive mechanism is a motor integrally provided on the horizontal planes facing the casing and the rotor, the coil of the motor is provided on the casing side, and the magnetic pole is provided on the rotor side.

【0008】さらに、請求項3の全方位距離検出装置
は、請求項1の構成において、ロータが基準回転位置に
あるときに投光器と受光器とを一定の光路長さで光学的
に結合させる基準機構をケーシングに設け、ロータが基
準回転位置にきたときの出力により検出距離を補正でき
るようにした。
Further, in the omnidirectional distance detecting device according to a third aspect of the present invention, in the structure of the first aspect, when the rotor is at the reference rotational position, a reference for optically coupling the light emitter and the light receiver with a constant optical path length. A mechanism is provided in the casing so that the detection distance can be corrected by the output when the rotor reaches the reference rotation position.

【0009】[0009]

【作用】請求項1では、投光器の光は光軸変換機構を介
して物体に当たり、その反射光が光軸変換機構を介して
受光器に入る。そして投光器の入力信号と受光器の出力
信号との位相差又は時間差から物体までの距離が検出さ
れる。そして、駆動機構の作動によりロータがケーシン
グに対して回転するから、物体までの距離がほぼ360
度にわたって検出される。その場合、回転位置検出器の
出力に基づいてケーシングに対するロータの回転位置が
検出される。
According to the first aspect of the invention, the light of the projector hits the object through the optical axis conversion mechanism, and the reflected light enters the light receiver through the optical axis conversion mechanism. Then, the distance to the object is detected from the phase difference or time difference between the input signal of the light projector and the output signal of the light receiver. Since the rotor rotates with respect to the casing due to the operation of the drive mechanism, the distance to the object is approximately 360.
Detected over time. In that case, the rotational position of the rotor with respect to the casing is detected based on the output of the rotational position detector.

【0010】請求項2では、コイルに誘導電流を流せば
モータが機能してロータがケーシングに対して回動す
る。
According to the second aspect of the present invention, when an induced current is passed through the coil, the motor functions and the rotor rotates with respect to the casing.

【0011】請求項3では、ロータが基準回転位置にく
ると投光用レンズと受光用のレンズとが一定の光路長さ
で光学的に結合するから、そのときの投光器の入力信号
と受光器の出力信号との位相差又は時間差が上記光路長
さに応じた基準値として認識され、これを零距離とした
補正が可能になる。
In the third aspect, when the rotor reaches the reference rotational position, the light projecting lens and the light receiving lens are optically coupled with each other with a constant optical path length. The phase difference or time difference from the output signal of is recognized as a reference value according to the optical path length, and it becomes possible to perform correction with this as a zero distance.

【0012】[0012]

【実施例】以下、実施例を説明する。図1において10
は円柱形のケーシングであって、円盤形の上板11及び
下板12と、これら上板11と下板12とを連結する円
筒形の連結筒13とを備えており、この連結筒13を透
明樹脂で形成することによりケーシング10の周壁を光
学的に開放している。上記ケーシング10の上板11及
び下板12の中心において相対向する部位には互いに近
づくように立ち上がる突成部11a,12aが形成さ
れ、ここにラジアルベアリング14,14がその内輪に
おいて嵌合している。20はケーシング10の上板11
と下板12との間に配置された円柱形のロータであっ
て、このロータ20の上面及び下面の中心部には上記ラ
ジアルベアリング14,14の外輪に嵌合する嵌合穴2
1,22が形成され、この嵌合穴21と嵌合穴22との
間は開放されていて光路となる空間23になっている。
以上の構成によってロータ20がケーシング10内でほ
ぼ鉛直軸まわりに回転できるように構成されている。そ
して、30はロータ20をケーシング10に対して回転
させる駆動機構としてのモータであって、このモータ3
0はケーシング10及びロータ20の対向する水平面に
一体に設けられている。すなわち、ケーシング上板11
の下面には平面視で等角度間隔でコイル31が設けられ
ていると共に、ロータ20の上面には平面視で等角度間
隔で永久磁石よりなる磁極32が設けられており、各コ
イル31に流す誘導電流を制御することにより、ロータ
20が所定回転数で回転する。
EXAMPLES Examples will be described below. 1 in FIG.
Is a columnar casing, and includes a disk-shaped upper plate 11 and a lower plate 12, and a cylindrical connecting cylinder 13 that connects the upper plate 11 and the lower plate 12 to each other. By forming the casing 10 with a transparent resin, the peripheral wall of the casing 10 is optically opened. Protruding portions 11a and 12a that rise up toward each other are formed in the portions of the upper plate 11 and the lower plate 12 of the casing 10 that are opposed to each other in the center, and the radial bearings 14 and 14 are fitted in the inner rings of the protruding portions 11a and 12a. There is. 20 is an upper plate 11 of the casing 10.
Is a cylindrical rotor arranged between the lower plate 12 and the lower plate 12, and a fitting hole 2 for fitting the outer ring of the radial bearings 14 and 14 at the center of the upper and lower surfaces of the rotor 20.
1 and 22 are formed, and the space between the fitting hole 21 and the fitting hole 22 is open to form a space 23 which serves as an optical path.
With the above configuration, the rotor 20 is configured to be rotatable in the casing 10 about the vertical axis. Further, 30 is a motor as a drive mechanism for rotating the rotor 20 with respect to the casing 10, and this motor 3
Reference numeral 0 is integrally provided on the horizontal surfaces of the casing 10 and the rotor 20 which face each other. That is, the casing upper plate 11
Coils 31 are provided on the lower surface of the rotor 20 at equal angular intervals in a plan view, and magnetic poles 32 made of permanent magnets are provided on the upper surface of the rotor 20 at equal angular intervals in a plan view, and are fed to each coil 31. By controlling the induced current, the rotor 20 rotates at a predetermined rotation speed.

【0013】上記ケーシング上板11の突成部11aの
中心には投光器として発光ダイオード15が光軸を真下
に向けて装着されており、またケーシング下板12の突
成部12aの中心には受光器としてのフォトダイオード
16が光軸を真上に向けて装着されていて、発光ダイオ
ード15とフォトダイオード16とがロータ回転軸上で
対向配置されている。一方、上記ロータ20では上述し
た空間23が一側壁(図1では左側壁)において開放さ
れ、且つ隔壁によって上下2つの筒形空間23a,23
bに分割されており、この空間23a,23bに投光用
レンズ25及び受光用レンズ26が光軸を検出方向であ
る側方(図1では左方)に向けてそれぞれ配置されてい
る。また上記空間23の内方には光軸変換機構としての
ミラー27が設けられている。このミラー27は中心軸
がロータ回転軸に一致するように配置された円柱形の本
体の上下端面を約45度の角度で切除して得た形状であ
り、この切除面を反射面としたものである。このミラー
27の2つの反射面により上記発光ダイオード15及び
フォトダイオード16の光軸を投光用レンズ25及び受
光用レンズ25の光軸に変換するようにしている。従っ
て、発光ダイオード15の光はミラー27及び投光用レ
ンズ25を介して物体Xに当たり、その反射光が受光用
レンズ26及びミラー27介してフォトダイオード16
に入る。
A light emitting diode 15 as a light emitter is mounted at the center of the projecting portion 11a of the casing upper plate 11 with the optical axis directed right below, and a light is received at the center of the projecting portion 12a of the casing lower plate 12. A photodiode 16 as a container is mounted with its optical axis facing right above, and the light emitting diode 15 and the photodiode 16 are arranged to face each other on the rotor rotation axis. On the other hand, in the rotor 20, the above-mentioned space 23 is opened at one side wall (left side wall in FIG. 1), and two upper and lower cylindrical spaces 23a, 23 are formed by partition walls.
The light projecting lens 25 and the light receiving lens 26 are disposed in the spaces 23a and 23b, respectively, with their optical axes directed to the side (left side in FIG. 1) which is the detection direction. A mirror 27 as an optical axis converting mechanism is provided inside the space 23. The mirror 27 has a shape obtained by cutting the upper and lower end surfaces of a cylindrical main body arranged so that its central axis coincides with the rotor rotation axis at an angle of about 45 degrees, and the cut surface serves as a reflecting surface. Is. The two reflecting surfaces of the mirror 27 convert the optical axes of the light emitting diode 15 and the photodiode 16 into the optical axes of the light projecting lens 25 and the light receiving lens 25. Therefore, the light of the light emitting diode 15 strikes the object X via the mirror 27 and the light projecting lens 25, and the reflected light thereof passes through the light receiving lens 26 and the mirror 27.
to go into.

【0014】また上記ケーシング10の連結筒13にお
いて周方向の一箇所には基準機構40が固定されてい
る。この基準機構40は上下に対向する一対のプリズム
を有しており、上側のプリズムが投光用レンズ25の高
さで斜め下向きに、そして下側のプリズムが受光用レン
ズ26の高さで斜め上向きにそれぞれ設定されている。
従ってロータ20が図1の状態から180度回転して基
準回転位置にきたときに投光用レンズ25からの光が上
下のプリズムで180度角度を変えてから受光用レンズ
26に入り、これによってロータ20が基準回転位置に
あるときに投光用レンズ25と受光用のレンズ26とが
一定の光路長さで光学的に結合するようになっている。
ここで、上記基準機構40の外周側に遮光シールを貼る
などして遮光処理することによりプリズムを通過した検
査光が外部にもれないようにすることが望ましい。こう
すれば基準値に誤差が生じないので精度が上がる。また
遮光処理面の内面で反射した検査光も基準値の形成に寄
与する。
A reference mechanism 40 is fixed at one position in the circumferential direction of the connecting cylinder 13 of the casing 10. The reference mechanism 40 has a pair of vertically opposed prisms. The upper prism is diagonally downward at the height of the light projecting lens 25, and the lower prism is diagonally at the height of the light receiving lens 26. Each is set upward.
Therefore, when the rotor 20 rotates 180 degrees from the state of FIG. 1 and reaches the reference rotation position, the light from the light projecting lens 25 changes its angle by 180 degrees between the upper and lower prisms and then enters the light receiving lens 26, which causes When the rotor 20 is at the reference rotation position, the light projecting lens 25 and the light receiving lens 26 are optically coupled with a constant optical path length.
Here, it is desirable to prevent the inspection light passing through the prism from leaking to the outside by applying a light-shielding treatment such as attaching a light-shielding seal to the outer peripheral side of the reference mechanism 40. In this way, there is no error in the reference value, so accuracy is improved. The inspection light reflected on the inner surface of the light-shielding surface also contributes to the formation of the reference value.

【0015】また、図1において17及び18はケーシ
ング10に固定されてエンコーダとして機能する第1及
び第2の光学式の回転位置検出器であって、ロータ20
の下面に設けられた第1及び第2の遮光板28a,28
bをそれぞれ跨ぐようにケーシング下板12に固定され
ている。上記第1遮光板28aの内周縁には多数の切り
欠きが等間隔で設けられ、また第2遮光板28bの外周
縁には切り欠きが1箇所だけ設けられていて、これらの
切り欠きが回転位置検出器17,18の光の通過を許容
することに応じてパルス信号が出力される。ここで、第
2遮光板28bの切り欠きはロータ20が基準回転位置
にきたときに第2回転位置検出器18にくるよう位置調
整されている。図4のRはロータ20の回転に伴う第1
回転位置検出器17の出力信号であり、6は第2回転位
置検出器18の出力信号である。
In FIG. 1, reference numerals 17 and 18 denote first and second optical rotary position detectors fixed to the casing 10 and functioning as encoders.
First and second light shielding plates 28a, 28 provided on the lower surface of the
It is fixed to the lower casing plate 12 so as to straddle each of b. A large number of notches are provided at equal intervals on the inner peripheral edge of the first light shielding plate 28a, and only one notch is provided on the outer peripheral edge of the second light shielding plate 28b, and these notches rotate. A pulse signal is output in response to the light passing through the position detectors 17 and 18. Here, the position of the notch of the second light shielding plate 28b is adjusted so as to come to the second rotational position detector 18 when the rotor 20 reaches the reference rotational position. R in FIG. 4 indicates the first value due to the rotation of the rotor 20.
It is an output signal of the rotational position detector 17, and 6 is an output signal of the second rotational position detector 18.

【0016】さらに、図1において19a及び19bは
回路基板であって、この回路基板19a,19bに制御
回路50が組まれており、この制御回路50に上記発光
ダイオード15、フォトダイオード16及び第2回転位
置検出器18が電気的に接続されている。上記制御回路
50等の構成を図2及び図3で説明する。51は所定周
波数でクロック信号を出力する発振回路、52は発振回
路51のクロック信号に基づいて発光ダイオード15へ
送る信号を調整する投光回路である(その出力は図3の
1)。一方、53はフォトダイオード16の出力を増幅
するリミッタアンプ(その出力は図3の2)、54はス
イッチング回路である(その出力は図3の3)。また5
5は上記投光回路52の出力及びスイッチング回路の出
力の位相を比較する位相比較器(その出力は図3の
4)、56は積分回路(その出力は図3の5)、57は
次のトリガが入るまでは入力信号のレベルを維持するサ
ンプルホールド回路であって、その入力信号として積分
回路56が入り、またトリガとして第2回転位置検出器
18の信号が入っている。58は差動アンプであって、
積分回路56の出力からサンプルホールド回路57の出
力を差し引いた値を出力する。この差動アンプ58の出
力(距離出力)は発光ダイオード15の入力信号とフォ
トダイオード16の出力信号の位相差又は時間差に応じ
た値になっているから、この値から物体までの距離が検
出される。
Further, in FIG. 1, 19a and 19b are circuit boards, and a control circuit 50 is assembled on the circuit boards 19a and 19b, and the control circuit 50 includes the light emitting diode 15, the photodiode 16 and the second circuit. The rotational position detector 18 is electrically connected. The configuration of the control circuit 50 and the like will be described with reference to FIGS. Reference numeral 51 is an oscillating circuit that outputs a clock signal at a predetermined frequency, and 52 is a light projecting circuit that adjusts a signal sent to the light emitting diode 15 based on the clock signal of the oscillating circuit 51 (its output is 1 in FIG. 3). On the other hand, 53 is a limiter amplifier for amplifying the output of the photodiode 16 (the output thereof is 2 in FIG. 3), and 54 is a switching circuit (the output thereof is 3 in FIG. 3). Again 5
5 is a phase comparator (the output of which is 4 in FIG. 3) for comparing the phases of the outputs of the light projecting circuit 52 and the switching circuit, 56 is an integrating circuit (the output of which is 5 in FIG. 3), and 57 is the next It is a sample and hold circuit that maintains the level of the input signal until the trigger is input, and the integration circuit 56 is input as the input signal and the signal of the second rotational position detector 18 is input as the trigger. 58 is a differential amplifier,
A value obtained by subtracting the output of the sample hold circuit 57 from the output of the integration circuit 56 is output. Since the output (distance output) of the differential amplifier 58 has a value corresponding to the phase difference or time difference between the input signal of the light emitting diode 15 and the output signal of the photodiode 16, the distance from this value to the object is detected. It

【0017】そして、この状態でモータ30の作動によ
りロータ20がケーシング10に対して回転すると、差
動アンプ58の距離出力が光軸方向にある物体との距離
に応じて変動し、これを検出することによって物体の有
無並びに物体が存在するときには物体までの距離が周囲
ほぼ360度にわたって検出される。すなわち、図4の
5は積分回路56の出力、図4の7は第2回転位置検出
器18の信号を受けた時点で更新されるサンプルホール
ド回路57の出力であって、差動アンプ58からこれら
の差が出力される(図4の8)。従ってロータ20が基
準回転位置にきたときの積分回路56の出力を基準値と
して、これを零距離とした補正がされる。そして、別途
に第1回転位置検出器17の出力信号(角度信号)から
ロータ20の回転位置を検出する。なお、外部へ取り出
せる出力信号としては、差動アンプ58の距離出力と、
第1回転位置検出器17の角度信号と、第2回転位置検
出器18の基準位置信号とが設定されており、これらの
出力信号を適宜加工して用いることができる。
When the rotor 20 is rotated with respect to the casing 10 by the operation of the motor 30 in this state, the distance output of the differential amplifier 58 changes according to the distance to the object in the optical axis direction, and this is detected. By doing so, the presence or absence of an object and the distance to the object when the object exists are detected over the circumference of approximately 360 degrees. That is, 5 in FIG. 4 is the output of the integration circuit 56, 7 in FIG. 4 is the output of the sample hold circuit 57 that is updated when the signal of the second rotational position detector 18 is received, and is output from the differential amplifier 58. These differences are output (8 in FIG. 4). Therefore, the output of the integrator circuit 56 when the rotor 20 reaches the reference rotational position is used as a reference value, and the output is corrected to have a zero distance. Then, separately, the rotational position of the rotor 20 is detected from the output signal (angle signal) of the first rotational position detector 17. The output signals that can be output to the outside include the distance output of the differential amplifier 58,
The angle signal of the first rotational position detector 17 and the reference position signal of the second rotational position detector 18 are set, and these output signals can be appropriately processed and used.

【0018】従って、上記実施例においては、光の位相
差に基づいて物体Xまでの距離を簡単な構成で精度良く
検出できると共に、装置全体を回転させて物体Xの有無
並びに物体Xが存在するときには物体までの距離をほぼ
360度にわたって検出することができる。また駆動機
構30をケーシング10及びロータ20に一体に設けた
モータで構成したので、全体の構成をコンパクト化でき
る上、回転騒音を低減できる上、ブラシレスタイプなの
でブラシの摩耗による寿命の低下がない。さらに基準機
構40を設けたので、ロータ20が基準回転位置にきた
ときの出力により検出距離を補正して常に物体Xまでの
距離を正確に検出することができる。
Therefore, in the above embodiment, the distance to the object X can be accurately detected with a simple structure based on the phase difference of the light, and the entire apparatus is rotated to detect the presence or absence of the object X and the object X. Sometimes the distance to an object can be detected over almost 360 degrees. Further, since the drive mechanism 30 is composed of a motor provided integrally with the casing 10 and the rotor 20, the entire structure can be made compact, the rotation noise can be reduced, and the brushless type does not reduce the service life due to abrasion of the brush. Further, since the reference mechanism 40 is provided, the detection distance can be corrected by the output when the rotor 20 reaches the reference rotation position, and the distance to the object X can always be detected accurately.

【0019】なお、上記実施例ではケーシング10に透
明な連結筒13を設けたが、連結筒を設けずに完全に開
放する構成であってもよく、要は周壁が光学的に開放さ
れておればよい。また駆動機構としてはロータの周壁に
ギヤを刻設し、これをピニオンで駆動する構成、ロータ
の周壁に駆動用アイドラを当接させる構成、その他種々
の構成が考えられる。また投光器及び受光器の位置は上
下に逆転してもよい。上記実施例では投光レンズ及び受
光レンズを投光器及び受光器と別に設けたが、レンズ付
きの投光器及び受光器を使用してもよいし、投光レンズ
及び受光レンズを使用しなくてもよい。さらに光軸変換
機構はミラー以外にプリズムが使用できる。
Although the casing 10 is provided with the transparent connecting cylinder 13 in the above embodiment, it may be completely opened without providing the connecting cylinder, that is, the peripheral wall is optically opened. Good. As the driving mechanism, various structures such as a structure in which a gear is engraved on the peripheral wall of the rotor and driven by a pinion, a structure in which a driving idler is brought into contact with the peripheral wall of the rotor, and the like are conceivable. The positions of the light projector and the light receiver may be reversed up and down. Although the light projecting lens and the light receiving lens are provided separately from the light projecting device and the light receiving device in the above-described embodiment, the light projecting lens and the light receiving device with the lens may be used, or the light projecting lens and the light receiving lens may not be used. In addition to the mirror, a prism can be used as the optical axis conversion mechanism.

【0020】[0020]

【発明の効果】以上説明したように、請求項1の全方位
距離検出装置は、ロータをケーシングに対して回動さ
せ、このケーシングに投光器及び受光器をロータ回転軸
上で対向するよう配置し、ロータに投光器及び受光器の
光軸を検出方向に向くよう変換する光軸変換機構を設
け、回転位置検出器の出力信号からロータの回転位置
を、投光器への入力信号と受光器からの出力信号との差
から距離をそれぞれ検出できるようにしたので、光の位
相差又は時間差に基づいて物体までの距離を簡単な構成
で精度良く検出できると共に、装置全体を回転させて物
体の有無並びに物体が存在するときには物体までの距離
をほぼ360度にわたって検出することができるもので
あり、例えば自走式ロボット等において障害物を認識す
るために搭載する距離検出装置として好適である。
As described above, according to the omnidirectional distance detecting device of the first aspect, the rotor is rotated with respect to the casing, and the projector and the light receiver are arranged so as to face each other on the rotor rotation shaft. , The rotor is equipped with an optical axis conversion mechanism that converts the optical axes of the sender and the receiver so that they are oriented in the detection direction, and the rotation position of the rotor is determined from the output signal of the rotation position detector, and the input signal to the sender and the output from the receiver. Since the distance can be detected from the difference with the signal, the distance to the object can be accurately detected with a simple configuration based on the phase difference or the time difference of the light, and the entire device can be rotated to determine the presence or absence of the object and the object. When an object is present, the distance to the object can be detected over almost 360 degrees. For example, a self-propelled robot or the like is equipped with a distance detection device for recognizing an obstacle. It is suitable as a device.

【0021】また請求項2の全方位距離検出装置は、駆
動機構をケーシングに設けたコイルとロータに設けた磁
極とからなるモータで構成したので、ロータをケーシン
グに対して回動させる駆動機構の具体的な例を示すこと
ができた。
Further, in the omnidirectional distance detecting device according to the second aspect of the present invention, since the drive mechanism is composed of the motor including the coil provided in the casing and the magnetic poles provided in the rotor, the drive mechanism for rotating the rotor with respect to the casing. I was able to show a concrete example.

【0022】さらに請求項3の全方位距離検出装置は、
ロータが基準回転位置にあるときに投光器と受光器とを
一定の光路長さで光学的に結合させる基準機構をケーシ
ングに設けたので、ロータが基準回転位置にきたときの
出力により検出距離を補正して常に物体までの距離を正
確に検出することができる。
Further, the omnidirectional distance detecting device according to claim 3 is
Since the casing has a reference mechanism that optically connects the light emitter and the light receiver with a fixed optical path length when the rotor is in the reference rotation position, the detected distance is corrected by the output when the rotor reaches the reference rotation position. Therefore, the distance to the object can always be detected accurately.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の縦断側面図、FIG. 1 is a vertical sectional side view of an embodiment,

【図2】実施例の制御回路のブロック図、FIG. 2 is a block diagram of a control circuit according to an embodiment,

【図3】実施例の制御回路の基本作動を示す図、FIG. 3 is a diagram showing a basic operation of a control circuit of the embodiment,

【図4】同じくロータ回転時の制御回路の作動を示す図
である。
FIG. 4 is a diagram showing the operation of the control circuit when the rotor is rotating.

【符号の説明】[Explanation of symbols]

10 ケーシング 15 発光ダイオード(投光器) 16 フォトダイオード(受光器) 17 回転位置検出器 20 ロータ 27 光軸変換機構 30 モータ(駆動機構) 40 基準機構 10 Casing 15 Light Emitting Diode (Emitter) 16 Photodiode (Light Receiver) 17 Rotation Position Detector 20 Rotor 27 Optical Axis Conversion Mechanism 30 Motor (Drive Mechanism) 40 Reference Mechanism

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】周壁が光学的に開放されたケーシングと、
このケーシング内にほぼ鉛直軸まわりに回転可能に設け
られたロータと、このロータをケーシングに対して回転
させる駆動機構とを備えると共に、上記ケーシングに、
ロータ回転軸上で対向配置された投光器及び受光器と、
ケーシングに対するロータの回転位置に応じて信号を出
力する回転位置検出器とを設け、上記ロータに投光器及
び受光器の光軸を検出方向に向くよう変換する光軸変換
機構を設け、上記回転位置検出器の出力信号からロータ
の回転位置を、投光器の入力信号と受光器の出力信号と
の差から距離をそれぞれ検出できるようにしたことを特
徴とする全方位距離検出装置。
1. A casing whose peripheral wall is optically opened,
A rotor provided rotatably around a vertical axis in the casing, and a drive mechanism for rotating the rotor with respect to the casing, and in the casing,
A light emitter and a light receiver arranged to face each other on the rotor rotation axis,
A rotational position detector that outputs a signal according to the rotational position of the rotor with respect to the casing is provided, and an optical axis conversion mechanism that converts the optical axes of the projector and the light receiver so as to face the detection direction is provided in the rotor, and the rotational position detection is performed. An omnidirectional distance detecting device characterized in that the rotational position of the rotor can be detected from the output signal of the detector, and the distance can be detected from the difference between the input signal of the light emitter and the output signal of the light receiver.
【請求項2】駆動機構が、ケーシング及びロータの対向
する水平面に一体に設けたモータであり、このモータの
コイルがケーシング側に、磁極がロータ側に設けられて
いる請求項1記載の全方位距離検出装置。
2. The omnidirectional drive according to claim 1, wherein the drive mechanism is a motor integrally provided on the horizontal planes of the casing and the rotor facing each other, and the coil of the motor is provided on the casing side and the magnetic poles are provided on the rotor side. Distance detection device.
【請求項3】ロータが基準回転位置にあるときに投光器
と受光器とを一定の光路長さで光学的に結合させる基準
機構をケーシングに設け、ロータが基準回転位置にきた
ときの出力により検出距離を補正できるようにした請求
項1記載の全方位距離検出装置。
3. A casing is provided with a reference mechanism for optically coupling the light emitter and the light receiver with a constant optical path length when the rotor is at the reference rotation position, and is detected by the output when the rotor is at the reference rotation position. The omnidirectional distance detection device according to claim 1, wherein the distance can be corrected.
JP05353622A 1993-12-27 1993-12-27 Omnidirectional distance detector Expired - Fee Related JP3137307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05353622A JP3137307B2 (en) 1993-12-27 1993-12-27 Omnidirectional distance detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05353622A JP3137307B2 (en) 1993-12-27 1993-12-27 Omnidirectional distance detector

Publications (2)

Publication Number Publication Date
JPH07191142A true JPH07191142A (en) 1995-07-28
JP3137307B2 JP3137307B2 (en) 2001-02-19

Family

ID=18432095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05353622A Expired - Fee Related JP3137307B2 (en) 1993-12-27 1993-12-27 Omnidirectional distance detector

Country Status (1)

Country Link
JP (1) JP3137307B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000031498A1 (en) * 1998-11-24 2000-06-02 Hamamatsu Photonics K.K. Projection/reception unit and omnidirectional range finding device
US6204916B1 (en) 1998-02-03 2001-03-20 Minolta Co., Ltd. Three dimensional information measurement method and apparatus
JP2004061143A (en) * 2002-07-25 2004-02-26 Kyosan Electric Mfg Co Ltd Distance detection device, pedestrian detection device and traffic signal control device
US6788807B1 (en) 1998-02-13 2004-09-07 Minolta Co., Ltd. Three dimensional information measurement method and apparatus
EP1503221A1 (en) * 2003-07-31 2005-02-02 Nidec Corporation Scanning range sensor
EP1562055A2 (en) * 2004-02-04 2005-08-10 Nidec Corporation Scanning rangefinder
WO2006132060A1 (en) * 2005-06-06 2006-12-14 Kabushiki Kaisha Topcon Distance measuring device
JP2007101404A (en) * 2005-10-05 2007-04-19 Hokuyo Automatic Co Wave transmitting/receiving apparatus and ranging apparatus
JP2008111855A (en) * 2008-01-31 2008-05-15 Hokuyo Automatic Co Scanning range finder
JP2009047695A (en) * 2007-08-13 2009-03-05 Honeywell Internatl Inc Range measuring device
JP2009063339A (en) * 2007-09-05 2009-03-26 Hokuyo Automatic Co Scanning type range finder
WO2018225172A1 (en) * 2017-06-07 2018-12-13 学校法人千葉工業大学 Self-propelled vacuum cleaner
WO2019048148A1 (en) * 2017-09-06 2019-03-14 Robert Bosch Gmbh Scanning system and transmitting and receiving device for a scanning system
CN111375908A (en) * 2018-12-28 2020-07-07 株式会社基恩士 Laser processing apparatus
JP2021007051A (en) * 2020-10-12 2021-01-21 学校法人千葉工業大学 Autonomous cleaner
JP2021010761A (en) * 2020-10-12 2021-02-04 学校法人千葉工業大学 Autonomous cleaner

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6204916B1 (en) 1998-02-03 2001-03-20 Minolta Co., Ltd. Three dimensional information measurement method and apparatus
US6788807B1 (en) 1998-02-13 2004-09-07 Minolta Co., Ltd. Three dimensional information measurement method and apparatus
US6411374B2 (en) 1998-11-24 2002-06-25 Hamamatsu Photonics K.K. Light-projecting/receiving unit and omnidirectional distance detecting apparatus
WO2000031498A1 (en) * 1998-11-24 2000-06-02 Hamamatsu Photonics K.K. Projection/reception unit and omnidirectional range finding device
JP2004061143A (en) * 2002-07-25 2004-02-26 Kyosan Electric Mfg Co Ltd Distance detection device, pedestrian detection device and traffic signal control device
EP1503221A1 (en) * 2003-07-31 2005-02-02 Nidec Corporation Scanning range sensor
US7136153B2 (en) 2003-07-31 2006-11-14 Nidec Corporation Scanning range sensor
EP1562055A3 (en) * 2004-02-04 2007-05-23 Nidec Corporation Scanning rangefinder
EP1562055A2 (en) * 2004-02-04 2005-08-10 Nidec Corporation Scanning rangefinder
JP2005221336A (en) * 2004-02-04 2005-08-18 Nippon Densan Corp Scanning-type range sensor
US7403269B2 (en) 2004-02-04 2008-07-22 Nidec Corporation Scanning rangefinder
CN100365433C (en) * 2004-02-04 2008-01-30 日本电产株式会社 Scanning rangefinder
US7474388B2 (en) 2005-06-06 2009-01-06 Kabushiki Kaisha Topcon Distance measuring device
JP2006337302A (en) * 2005-06-06 2006-12-14 Topcon Corp Distance-measuring device
WO2006132060A1 (en) * 2005-06-06 2006-12-14 Kabushiki Kaisha Topcon Distance measuring device
JP2007101404A (en) * 2005-10-05 2007-04-19 Hokuyo Automatic Co Wave transmitting/receiving apparatus and ranging apparatus
JP2009047695A (en) * 2007-08-13 2009-03-05 Honeywell Internatl Inc Range measuring device
JP2009063339A (en) * 2007-09-05 2009-03-26 Hokuyo Automatic Co Scanning type range finder
JP2008111855A (en) * 2008-01-31 2008-05-15 Hokuyo Automatic Co Scanning range finder
JPWO2018225172A1 (en) * 2017-06-07 2019-11-07 学校法人千葉工業大学 Self-propelled vacuum cleaner
WO2018225172A1 (en) * 2017-06-07 2018-12-13 学校法人千葉工業大学 Self-propelled vacuum cleaner
CN110520027A (en) * 2017-06-07 2019-11-29 千叶工业大学 Self-propelled sweeper
CN110520027B (en) * 2017-06-07 2021-05-07 千叶工业大学 Self-propelled sweeper
WO2019048148A1 (en) * 2017-09-06 2019-03-14 Robert Bosch Gmbh Scanning system and transmitting and receiving device for a scanning system
CN111095019A (en) * 2017-09-06 2020-05-01 罗伯特·博世有限公司 Scanning system and transmitting and receiving device for scanning system
US11619711B2 (en) 2017-09-06 2023-04-04 Robert Bosch Gmbh Scanning system and transmitting and receiving device for a scanning system
CN111095019B (en) * 2017-09-06 2024-02-06 罗伯特·博世有限公司 Scanning system and transmitting and receiving device for scanning system
CN111375908A (en) * 2018-12-28 2020-07-07 株式会社基恩士 Laser processing apparatus
JP2020104155A (en) * 2018-12-28 2020-07-09 株式会社キーエンス Laser processing device
CN111375908B (en) * 2018-12-28 2023-10-20 株式会社基恩士 Laser processing apparatus
JP2021007051A (en) * 2020-10-12 2021-01-21 学校法人千葉工業大学 Autonomous cleaner
JP2021010761A (en) * 2020-10-12 2021-02-04 学校法人千葉工業大学 Autonomous cleaner

Also Published As

Publication number Publication date
JP3137307B2 (en) 2001-02-19

Similar Documents

Publication Publication Date Title
JPH07191142A (en) All azimuth distance detecting device
JP3875665B2 (en) Scanning range sensor
EP1039263B1 (en) Surveying system
US7492444B2 (en) Electric optical distance meter
US7403269B2 (en) Scanning rangefinder
KR100914097B1 (en) Laser scanning and sensing device for detection around automatic doors
US6452668B1 (en) Rotating head optical transmitter for position measurement system
US8567229B2 (en) Method for calibrating a rotational angle sensor
JPH03175390A (en) Laser radar scanning apparatus
JP2002168625A (en) Run-out detecting device, rotating laser device having the same and position-measuring/setting system having the same
JP2002162252A (en) Rotary position detector
US6360449B1 (en) Incremental encoder having absolute reference marks
JP2007170917A (en) Light scanning device and device for detecting object to be measured
US8045182B2 (en) Location detection apparatus
JPH1038902A (en) Detector for rotational speed
WO2021117527A1 (en) Electromagnetic motor, optical deflection device, and ranging device
US3360655A (en) Angular motion sensor
JPH07239242A (en) Rotational angle detecting device
JPS60102520A (en) Rotary encoder
JPS63238419A (en) Reflection type photoelectric sensor
WO2024071288A1 (en) Light transmitter and surveying system, and method for automatically resuming tracking
CN116125437B (en) Safety laser scanner and optical window detection method thereof
JPH11295020A (en) Rotational angle detector
WO2024114786A1 (en) Method for determining state of code disc, angle measurement method and lidar
JPS6159442B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees