JPH07189656A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine

Info

Publication number
JPH07189656A
JPH07189656A JP5350254A JP35025493A JPH07189656A JP H07189656 A JPH07189656 A JP H07189656A JP 5350254 A JP5350254 A JP 5350254A JP 35025493 A JP35025493 A JP 35025493A JP H07189656 A JPH07189656 A JP H07189656A
Authority
JP
Japan
Prior art keywords
particulates
internal combustion
combustion engine
exhaust
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5350254A
Other languages
Japanese (ja)
Other versions
JP3303495B2 (en
Inventor
Tsukasa Kuboshima
司 窪島
Hajime Suguro
肇 勝呂
Kanehito Nakamura
兼仁 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP35025493A priority Critical patent/JP3303495B2/en
Publication of JPH07189656A publication Critical patent/JPH07189656A/en
Application granted granted Critical
Publication of JP3303495B2 publication Critical patent/JP3303495B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/0233Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles periodically cleaning filter by blowing a gas through the filter in a direction opposite to exhaust flow, e.g. exposing filter to engine air intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/031Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters having means for by-passing filters, e.g. when clogged or during cold engine start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

PURPOSE:To carry out regenerating treatment accurately by detecting engine operating condition when particulates are collected. CONSTITUTION:An exhaust emission control device 1 for an internal combustion engine 51 is provided with the trapper 11 of particulates, a condition detecting means 21 for detecting collecting condition of the particulates, an operation detecting means 22 for detecting operating condition of the internal combustion engine 51, a temperature raising means 15 for carrying out combustion of the particulates, and a controller 40. In the controller 40, the temperature raising means 15 is operated on the basis of the operation hysteresis of the internal combustion engine 51 during collecting the particulates and present operating condition. The particulates may preferably be separately collected according to operating condition of the internal combustion engine 51.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,排気中に含まれるパテ
ィキュレートを捕集,除去する内燃機関の排気浄化装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus for an internal combustion engine which collects and removes particulates contained in exhaust gas.

【0002】[0002]

【従来技術】自動車等の内燃機関,特にディーゼル機関
の排気中には,カーボンを主成分とする排気微粒子(パ
ティキュレート)が含まれており,排気黒煙の原因とな
っている。そのため,ディーゼル機関の排気通路に,ハ
ニカム状セラミックあるいはワイヤメッシュ等によるパ
ティキュレートフィルタを配設し,パティキュレートを
このフィルタによって除去する排気浄化装置が設けられ
る。
2. Description of the Related Art Exhaust gas from internal combustion engines such as automobiles, particularly diesel engines, contains exhaust particulates (particulates) containing carbon as a main component, which is a cause of exhaust black smoke. Therefore, a particulate filter made of honeycomb ceramic, wire mesh, or the like is provided in the exhaust passage of the diesel engine, and an exhaust purification device for removing particulates by this filter is provided.

【0003】しかしながら,時間の経過と共に,フィル
タに付着したパティキュレートによってフィルタが目詰
まりし,その結果,排気管内の圧力が上昇し,機関の出
力低下と燃費率の悪化をもたらすことになる。このた
め,フィルタの目詰まりを自動的に検知し,捕集された
パティキュレートを燃焼してフィルタを再生させる方法
が提案されている。例えば,機関の上流に吸気を絞る弁
などを設け,吸気量を絞りこむことにより機関の排気温
度を上昇させ,これによってパティキュレートを燃焼さ
せる方法が提案されている(特開昭57−179348
号公報参照)。
However, with the passage of time, the particulates adhering to the filter cause the filter to become clogged, and as a result, the pressure in the exhaust pipe rises, resulting in a reduction in the output of the engine and a deterioration in the fuel consumption rate. For this reason, a method has been proposed in which clogging of the filter is automatically detected and the collected particulates are burned to regenerate the filter. For example, a method has been proposed in which a valve for restricting intake air is provided upstream of the engine, and the exhaust gas temperature of the engine is raised by restricting the intake air amount, thereby burning particulates (Japanese Patent Laid-Open No. 57-179348).
(See the official gazette).

【0004】更に,パティキュレートフィルタに供給さ
れる排気の温度を上昇させるためにフィルタ上流の排気
通路にウォームアップ用の触媒コンバータ(貴金属酸化
触媒コンバータ)を配設する方法も提案されている(特
開昭61−112716号公報参照)。また,フィルタ
を排気通路から切り離し,電気式ヒータ等により,パテ
ィキュレートを燃焼してフィルタを再生させる方法もあ
る。
Further, there has been proposed a method of disposing a warm-up catalytic converter (noble metal oxidation catalytic converter) in the exhaust passage upstream of the filter in order to raise the temperature of the exhaust gas supplied to the particulate filter. (See Japanese Unexamined Patent Publication No. 61-112716). There is also a method in which the filter is separated from the exhaust passage and the particulate is burned by an electric heater or the like to regenerate the filter.

【0005】[0005]

【解決しようとする課題】しかしながら,上記従来の排
気浄化装置におけるフィルタの再生方法には次のような
問題点がある。従来の排気浄化装置は,エンジンの運転
状況や捕集されたパティキュレートの性状を把握し,エ
ンジン状況とパティキュレートの性状に合わせた適切な
燃焼制御を行なっていないことである。
However, the method of regenerating the filter in the conventional exhaust gas purification device has the following problems. The conventional exhaust emission control device does not perform proper combustion control according to the engine condition and the properties of the particulates by grasping the operating condition of the engine and the properties of the collected particulates.

【0006】パティキュレートには,着火温度の高い難
燃性のパティキュレートがあり,また着火温度の比較的
低い良燃性のパティキュレートがある。しかし一律に再
生処理を行なっているため,必要以上にパティキュレー
トの着火温度を上昇させたり,着火温度に達しない無駄
な昇温操作を行なったりする。
The particulates include flame-retardant particulates having a high ignition temperature and good-flammability particulates having a relatively low ignition temperature. However, since the regeneration process is performed uniformly, the ignition temperature of the particulates is raised more than necessary, and unnecessary temperature rising operation that does not reach the ignition temperature is performed.

【0007】そして,機関の上流において吸気を絞りこ
み排気を昇温する方法は,過度に機関の吸気を絞るとエ
ンジンの出力が低下し,燃費率が悪化し,また,排出さ
れるパティキュレートが大幅に上昇するという問題もあ
り,不適切な昇温操作はこのような不具合を発生させ
る。
In the method of narrowing the intake air upstream of the engine to raise the temperature of the exhaust gas, if the intake air of the engine is excessively throttled, the output of the engine is lowered, the fuel consumption rate is deteriorated, and the particulate matter discharged is reduced. There is also the problem that the temperature will rise significantly, and improper temperature raising operations cause such problems.

【0008】一方,吸気の絞りが過小である場合には,
排気の温度上昇が不足し,フィルタの再生が不可能とな
り,無駄な昇温操作をしたことになる。また,フィルタ
の上流にウォームアップ用の触媒コンバータを設ける方
法では,ウォームアップ触媒を活性化するためには一定
値以上に温度を上昇させる必要があり,そのため,同様
に機関の吸気を絞り込み,排気を昇温させる必要があ
り,この場合も運転状況に合った制御を行なわないとエ
ンジンの出力低下等を招くこととなる。
On the other hand, when the intake throttle is too small,
The exhaust gas temperature rise is insufficient, and the filter cannot be regenerated. In addition, in the method of providing a warm-up catalytic converter upstream of the filter, it is necessary to raise the temperature above a certain value in order to activate the warm-up catalyst. It is necessary to raise the temperature of the engine. In this case as well, unless the control is performed according to the driving situation, the output of the engine will be reduced.

【0009】本発明は,かかる従来の問題点に鑑みて,
捕集されたパティキュレートの性状とエンジンの運転状
態に適合した効果的な再生処理を行ない,徒にエンジン
の出力を低下させるようなことがない内燃機関の排気浄
化装置を提供しようとするものである。
In view of such conventional problems, the present invention is
It is an object of the present invention to provide an exhaust gas purification device for an internal combustion engine, which performs an effective regeneration process suitable for the properties of the collected particulates and the operating condition of the engine and does not reduce the output of the engine. is there.

【0010】[0010]

【課題の解決手段】本発明は,内燃機関の排気通路に介
装され排気中のパティキュレートを捕集する酸化触媒付
きのトラッパと,該トラッパに捕集されたパティキュレ
ートの捕集状態を検出する状況検出手段と,内燃機関の
運転状態を検知する運転検出手段と,パティキュレート
を燃焼させるための昇温手段と,該昇温手段を操作し,
トラッパを再生させるコントローラとを有する内燃機関
の排気浄化装置であって,上記コントローラは,上記運
転検出手段に接続されており,パティキュレート捕集中
における内燃機関の運転履歴に応じて排出された難燃性
パティキュレートと良燃性パティキュレートとの割合や
現在の内燃機関の運転状態により上記昇温手段を操作す
ることを特徴とする内燃機関の排気浄化装置にある。
According to the present invention, a trapper with an oxidation catalyst for trapping particulates in exhaust gas, which is provided in an exhaust passage of an internal combustion engine, and a trapped state of particulates trapped by the trapper are detected. Operating means for detecting the operating state of the internal combustion engine, temperature raising means for burning particulates, and operating the temperature raising means,
An exhaust gas purifying apparatus for an internal combustion engine, comprising: a controller for regenerating a trapper, wherein the controller is connected to the operation detecting means, and the flame retardant discharged according to the operation history of the internal combustion engine during particulate collection and concentration. An exhaust gas purifying apparatus for an internal combustion engine, characterized in that the temperature raising means is operated depending on the ratio of the characteristic particulates to the good-burning particulates and the current operating state of the internal combustion engine.

【0011】本発明において最も注目すべきことは,内
燃機関の運転状態を検知する運転検出手段が設けられて
おり,コントローラに接続されていることである。そし
て,コントローラは,パティキュレート捕集中における
内燃機関の運転履歴に応じて排出された難燃性パティキ
ュレートと良燃性パティキュレートとの割合や現在の内
燃機関の運転状態により昇温手段を操作し,トラッパの
再生を行なう。
What is most noticeable in the present invention is that the operation detecting means for detecting the operation state of the internal combustion engine is provided and is connected to the controller. Then, the controller operates the temperature raising means according to the ratio of the flame-retardant particulates and the good-burning particulates discharged according to the operation history of the internal combustion engine in the particulate trap concentration and the current operating state of the internal combustion engine. , Play the trapper.

【0012】なお,上記において,トラッパは単一のパ
ティキュレートフィルタで構成されるものの他,複数の
パティキュレートフィルタからなるものがある。また,
上記状況検出手段には,例えば,パティキュレートフィ
ルタの入口と出口の差圧と通気流量とからパティキュレ
ートフィルタの通気抵抗を求めてパティキュレートの捕
集状況を検知するものがある。
In the above description, the trapper may be composed of a single particulate filter or may be composed of a plurality of particulate filters. Also,
The status detecting means includes, for example, a means for detecting the particulate trapping status by obtaining the ventilation resistance of the particulate filter from the differential pressure between the inlet and outlet of the particulate filter and the ventilation flow rate.

【0013】また,昇温手段は,例えば,前記のように
内燃機関の吸気を絞って排気温を昇温させるものがあ
り,その他,排気の絞りこみによって昇温させるもの,
燃料の噴射遅角を変えるもの,燃料噴射量を変えるも
の,電気式ヒータによって昇温させるものなどがある。
As the temperature raising means, for example, there is one that throttles the intake air of the internal combustion engine to raise the exhaust gas temperature as described above, and the other that raises the temperature by narrowing the exhaust gas,
There are those that change the fuel injection delay angle, those that change the fuel injection amount, and those that raise the temperature by an electric heater.

【0014】なお,トラッパは,難燃性のパティキュレ
ートと良燃性のパティキュレートとを分離捕集するため
の複数のパティキュレート捕集部を設け,排気を上記複
数の捕集部の中の異なった捕集部に導くことのできる切
換手段を設けると共に,再生時においては難燃性パティ
キュレートの捕集部が良燃性パティキュレートの下流に
位置するよう流路を形成すると好適である。
The trapper is provided with a plurality of particulate collecting portions for separating and collecting the flame-retardant particulates and the good-flammable particulates, and the exhaust gas is exhausted from the plurality of trapping portions. It is preferable to provide a switching means that can lead to different collecting portions, and to form the flow path so that the collecting portion for the flame-retardant particulates is located downstream of the good-burning particulates during regeneration.

【0015】即ち,良燃性パティキュレートは低い着火
温度で燃焼させることが可能であるから,昇温手段を過
度に操作する必要がない。一方,難燃性パティキュレー
トの捕集部は,良燃性パティキュレートの捕集部の下流
に位置させることができるから,これによって良燃性パ
ティキュレートの燃焼熱が下流に伝えられ,難燃性パテ
ィキュレートの着火が容易となるからである。
That is, since the good-burning particulates can be burned at a low ignition temperature, it is not necessary to operate the temperature raising means excessively. On the other hand, the collection part of the flame-retardant particulates can be located downstream of the collection part of the good-flammable particulates, so that the heat of combustion of the good-flammable particulates is transferred to the downstream side, and the flame-retardant particulates are transferred. This is because it becomes easy to ignite the particulate matter.

【0016】なお,難燃性パティキュレートが排出され
るか,あるいは良燃性パティキュレートが排出されるか
は,内燃機関の運転状態から判断することができるか
ら,コントローラは運転検出手段の出力信号によりパテ
ィキュレートの性状を判断し,切換手段を操作してパテ
ィキュレートを別個の捕集部に分離捕集させることがで
きる。
Whether the flame-retardant particulates are discharged or the good-burning particulates are discharged can be judged from the operating state of the internal combustion engine. Therefore, the controller outputs the output signal of the operation detecting means. Thus, it is possible to judge the property of the particulates and operate the switching means to separate and collect the particulates in separate collecting portions.

【0017】なお,異なった性状のパティキュレートを
分離し捕集するための複数の捕集部は,例えば,単一の
パティキュレートフィルタの相対する排気口側に形成す
ることができる。即ち,難燃性パティキュレートをパテ
ィキュレートフィルタの第1の排気口から流入させ,良
燃性パティキュレートをパティキュレートフィルタの第
2の排気口(上記第1の排気口の反対側)から流入させ
る。そうすると,難燃性パティキュレートは第1の排気
口側に堆積し,良燃性パティキュレートは第2の排気口
側に堆積し,分離して捕集される。そして,再生時に
は,第2の排気口側から第1の排気口側に向けて通気を
流通させるようにすれば,難燃性パティキュレートの捕
集部は良燃性パティキュレートの捕集部の下流側とする
ことができる。
A plurality of collecting portions for separating and collecting particulates having different properties can be formed, for example, on the side of the exhaust ports facing each other of a single particulate filter. That is, the flame-retardant particulates are made to flow in from the first exhaust port of the particulate filter, and the good-flammable particulates are made to flow in from the second exhaust port of the particulate filter (the opposite side of the first exhaust port). . Then, the flame-retardant particulates are deposited on the first exhaust port side, and the good-flammable particulates are deposited on the second exhaust port side, separated and collected. Then, at the time of regeneration, if the ventilation is made to flow from the second exhaust port side toward the first exhaust port side, the collection part of the flame-retardant particulates becomes the collection part of the good-flammable particulates. It can be downstream.

【0018】また,異なった性状のパティキュレートを
分離捕集する複数の捕集部の他の方法として,例えば別
体のパティキュレートフィルタを用いる方法がある。そ
して,切換手段は,排気を上記別個のパティキュレート
フィルタに別個に導くことができるよう配置した管路と
切換え弁等により構成する。そして,再生時には,難燃
性パティキュレートが捕集されたパティキュレートフィ
ルタを良燃性パティキュレートが捕集されたパティキュ
レートフィルタの下流となるよう切換え弁などにより管
路等を切換える。
Further, as another method of the plurality of collecting portions for separating and collecting the particulates of different properties, there is a method of using a separate particulate filter, for example. The switching means is composed of a pipe line and a switching valve arranged so that the exhaust gas can be separately guided to the separate particulate filter. Then, at the time of regeneration, the conduit and the like are switched by a switching valve or the like so that the particulate filter in which the flame-retardant particulates are collected is located downstream of the particulate filter in which the good-burning particulates are collected.

【0019】[0019]

【作用及び効果】内燃機関から排出されるパティキュレ
ートの性状は,内燃機関の運転条件によって異なったも
のとなる。例えば,ディーゼルエンジンの高負荷時に排
出されるパティキュレートは,SOOT分が多く高温で
ないと燃焼しないが,中・低負荷時に排出されるパティ
キュレートは,SOF分が多く低温で燃焼する。
[Operation and effect] The properties of the particulates discharged from the internal combustion engine differ depending on the operating conditions of the internal combustion engine. For example, the particulate matter discharged when the diesel engine has a high load does not burn unless the SOOT content is high and the temperature is high, but the particulate matter discharged when the medium / low load has a high SOF content and burns at a low temperature.

【0020】本発明のコントローラは,運転検出手段の
出力信号によってパティキュレート捕集時における内燃
機関の運転履歴を知ることができるから,トラッパに捕
集されたパティキュレートの性状を判断することができ
る。従って,パティキュレートの性状に適合した効果的
なパティキュレートの燃焼制御を行なうことができる。
Since the controller of the present invention can know the operation history of the internal combustion engine at the time of collecting particulates by the output signal of the operation detecting means, it is possible to judge the property of the particulates collected by the trapper. . Therefore, it is possible to perform effective particulate combustion control that is suitable for the properties of the particulates.

【0021】また,コントローラは内燃機関の現在の運
転状態によって,現在の排気の温度等を判断することが
できる。例えば,内燃機関が低負荷,低速回転で運転さ
れる場合には,排気温度は低く,高負荷・高速回転で運
転される場合には排気温度は上昇する。従って,コント
ローラは,例えば機関の排気温度の上昇によってパティ
キュレートを燃焼させようとする場合,再生に適当な内
燃機関の運転状態であるか否かを判断し,これによって
適切な再生処理を行なうことができる。
Further, the controller can determine the current exhaust gas temperature and the like based on the current operating state of the internal combustion engine. For example, when the internal combustion engine is operated at low load and low speed rotation, the exhaust gas temperature is low, and when it is operated at high load and high speed rotation, the exhaust gas temperature rises. Therefore, for example, when trying to burn the particulates by increasing the exhaust gas temperature of the engine, the controller determines whether or not the operating state of the internal combustion engine is appropriate for regeneration, and performs appropriate regeneration processing accordingly. You can

【0022】なお,本発明の排気浄化装置におけるトラ
ッパは,酸化触媒を担持しているから,パティキュレー
トの燃焼を促進する作用も有している。上記のように本
発明によれば,捕集されたパティキュレートの性状とエ
ンジンの運転状況に適合した効果的な再生処理を行な
い,徒にエンジンの出力を低下させるようなことがない
内燃機関の排気浄化装置を提供することができる。
Since the trapper in the exhaust gas purifying apparatus of the present invention carries the oxidation catalyst, it also has the function of promoting the combustion of particulates. As described above, according to the present invention, an effective regeneration process suitable for the properties of the collected particulates and the operating condition of the engine is performed, and the internal combustion engine of the internal combustion engine that does not reduce the output of the engine unnecessarily An exhaust emission control device can be provided.

【0023】[0023]

【実施例】【Example】

実施例1 本発明の実施例にかかる排気浄化装置につき図1〜図7
を用いて説明する。本例は,図1に示すように,内燃機
関51であるディーゼルエンジンの排気通路31に介装
され排気81中のパティキュレートを捕集する酸化触媒
付きのトラッパ11と,トラッパ11に捕集されたパテ
ィキュレートの捕集状態を検出する状況検出手段21
と,内燃機関51の運転状態を検知する運転検出手段2
2と,パティキュレートを燃焼させるための昇温手段1
5と,昇温手段15を操作し,トラッパ11を再生させ
るコントローラ40とを有する内燃機関51の排気浄化
装置1である。
Embodiment 1 An exhaust emission control device according to an embodiment of the present invention will be described with reference to FIGS.
Will be explained. In this example, as shown in FIG. 1, a trapper 11 with an oxidation catalyst for trapping particulates in the exhaust 81, which is interposed in an exhaust passage 31 of a diesel engine which is an internal combustion engine 51, is trapped by the trapper 11. Situation detecting means 21 for detecting the collected state of particulates
And the operation detecting means 2 for detecting the operation state of the internal combustion engine 51.
2 and temperature raising means 1 for burning particulates
5, an exhaust gas purification device 1 for an internal combustion engine 51 having a controller 40 for operating the temperature raising means 15 and regenerating the trapper 11.

【0024】コントローラ40は,運転検出手段22に
接続されており,パティキュレート捕集中における内燃
機関51の運転履歴や現在の内燃機関51の運転状態に
基づいて昇温手段15を操作する。そして,昇温手段1
5は,内燃機関51の吸気通路32に設けた吸気の絞り
弁150である。
The controller 40 is connected to the operation detecting means 22 and operates the temperature raising means 15 based on the operation history of the internal combustion engine 51 in particulate collection and concentration and the current operating state of the internal combustion engine 51. And the temperature raising means 1
Reference numeral 5 denotes an intake throttle valve 150 provided in the intake passage 32 of the internal combustion engine 51.

【0025】以下,それぞれについて詳説する。ディー
ゼルエンジンの排気通路31に設けられたトラッパ11
には,酸化触媒を担持したパティキュレートフィルタ1
10が装着されている。上記パティキュレートフィルタ
110は,セラミック等の多孔質部材からなるハニカム
状格子により多数の排気流路111が形成されている。
Each of these will be described in detail below. The trapper 11 provided in the exhaust passage 31 of the diesel engine
Is a particulate filter 1 carrying an oxidation catalyst.
10 is installed. The particulate filter 110 has a large number of exhaust passages 111 formed by a honeycomb lattice made of a porous material such as ceramic.

【0026】そして,上記多数の流路111は,入口又
は出口のいずれかが封鎖されており,入口が封鎖された
ものと出口が封鎖されたものとが交互に配置され市松模
様になっている。そのため,パティキュレートフィルタ
110を通る通気はジグザクの経路を経て流出する。
Each of the plurality of flow channels 111 has either an inlet or an outlet closed, and a closed inlet and an outlet are alternately arranged in a checkered pattern. . Therefore, the ventilation through the particulate filter 110 flows out through the zigzag path.

【0027】また,流路111の表面には,γ−アルミ
ナ等のコート層が設けられ,その表面にはPt,Pd,
Cuなどの酸化触媒が担持されている。パティキュレー
トの捕集状況を検出する状況検出手段21は,トラッパ
11の入口と出口との圧力差を検出する差圧検出器21
1とエンジン制御用ECU4とECU4内に設けられた
パティキュレート捕集検知プログラムにより構成されて
いる。
A coating layer of γ-alumina or the like is provided on the surface of the channel 111, and Pt, Pd,
An oxidation catalyst such as Cu is supported. The status detection means 21 for detecting the particulate collection status is a differential pressure detector 21 for detecting the pressure difference between the inlet and the outlet of the trapper 11.
1, an engine control ECU 4, and a particulate collection detection program provided in the ECU 4.

【0028】パティキュレート捕集検知プログラムは,
トラッパ11の差圧とエンジンの回転数と負荷状況とを
もとにパティキュレートの捕集量を判定するプログラム
である。なお,上記エンジンの回転数と負荷状況とは,
運転検出手段22から知ることができる。また,コント
ローラ40は,上記ECU4とECU内に設けられた再
生処理プログラムによって構成される。
The particulate collection detection program is
It is a program that determines the amount of particulates trapped based on the differential pressure of the trapper 11, the engine speed, and the load condition. The engine speed and load status are
It can be known from the driving detecting means 22. The controller 40 is composed of the ECU 4 and a reproduction processing program provided in the ECU.

【0029】次に本例の排気浄化装置における再生制御
の概要について説明する。初めにパティキュレートの組
成と性状について説明する。パティキュレートフィルタ
に捕集されるパティキュレートの燃焼温度は,その組成
によって変化し,その大部分はSOF分とSOOT分で
ある。そして,SOF分(有機溶媒に溶解可能な成分)
が多いほどパティキュレートの燃焼温度が低く,SOO
T分が多いほどパティキュレートの燃焼温度が高い。
Next, an outline of regeneration control in the exhaust emission control system of this example will be described. First, the composition and properties of particulates will be described. The combustion temperature of the particulates collected by the particulate filter changes depending on its composition, and most of them are SOF and SOT. And SOF component (component soluble in organic solvent)
The higher the number, the lower the combustion temperature of particulates,
The larger the T content, the higher the particulate combustion temperature.

【0030】一方,パティキュレートに含まれるSOF
分の割合は,図2の斜線ゾーンに示すように,一般にエ
ンジン負荷が低いほど大きくなる。その理由は,低負荷
時では排気温度が低く,未燃焼の燃料成分等が多く排出
されるものと考えられる。
On the other hand, SOF contained in the particulates
The percentage of minutes generally increases as the engine load decreases, as indicated by the shaded zone in FIG. The reason for this is considered to be that the exhaust temperature is low at low load and a large amount of unburned fuel components are discharged.

【0031】本例の排気浄化装置は,パティキュレート
捕集中におけるエンジンの運転状態からパティキュレー
トの性状(SOF分の含有率の大小)を判定し,これに
よって再生処理時における絞り弁150の絞り量を変え
る制御を行なう。絞り量の大小によりエンジンの排気温
度が増減するからである。
The exhaust emission control system of the present embodiment determines the property of particulates (the size of the SOF content) from the operating state of the engine during particulate collection and concentration, and the throttle amount of the throttle valve 150 during regeneration processing is determined by this. Control to change. This is because the exhaust temperature of the engine increases or decreases depending on the size of the throttle.

【0032】次に上記制御の流れを,図3を用いて詳細
に説明する。初めに,ステップ601において,一定の
サンプリング時間毎に,運転検出手段22からエンジン
の負荷状況を読み込む。そして,ステップ602におい
てエンジン負荷Tが図4に示す所定値T0 以上の領域1
ならば,ECU4内の第1カウンタを歩進させ,所定T
0 に達しない領域2の場合には,第2カウンタを歩進さ
せる。図4において領域1は,難燃性のパティキュレー
トを生ずる高負荷領域,領域2は良燃性のパティキュレ
ートを生ずる低負荷領域である。
Next, the flow of the above control will be described in detail with reference to FIG. First, in step 601, the engine load status is read from the operation detecting means 22 at regular sampling intervals. Then, in step 602, the region 1 in which the engine load T is equal to or greater than the predetermined value T 0 shown in FIG.
If so, the first counter in the ECU 4 is incremented to a predetermined T
In the case of area 2 which does not reach 0 , the second counter is incremented. In FIG. 4, a region 1 is a high load region where flame-retardant particulates are produced, and a region 2 is a low load region where flame-retardant particulates are produced.

【0033】次にステップ603において,差圧検出器
211からトラッパ11の前後の差圧を読み込み,状況
検出手段21によって前記のようにパティキュレートの
捕集量mを算出する。そして,ステップ604におい
て,上記捕集量mが予め設定された設定値m0(例えば
10g)に達したか否かを判定する。そしてm0 に達し
ない場合には,m0 に達するまで上記ステップ601〜
604を繰り返し,m0 に達した場合にはステップ60
5に進む。
Next, at step 603, the differential pressure before and after the trapper 11 is read from the differential pressure detector 211, and the situation detection means 21 calculates the particulate collection amount m as described above. Then, in step 604, it is determined whether or not the collection amount m has reached a preset set value m 0 (for example, 10 g). When m 0 is not reached, the above steps 601 to 601 are performed until m 0 is reached.
604 is repeated, and if m 0 is reached, step 60
Go to 5.

【0034】なお,上記において,第2カウンタのカウ
ント数t2 が大きく第1カウンタのカウント数t1 が少
ないほどSOF分が多く,パティキュレートは良燃性で
あり,逆である場合にはパティキュレートは難燃性であ
る。続くステップ605において,運転検出手段22に
よって再びエンジンの負荷状況を読み込み,負荷状況が
図5に示すA〜Cいずれの領域にあるかを検知する。
In the above, as the count number t 2 of the second counter is large and the count number t 1 of the first counter is small, the SOF component is large and the particulates have a good flammability. Curates are flame retardant. In the following step 605, the operation detecting means 22 reads the load condition of the engine again to detect which of the regions A to C shown in FIG.

【0035】図5において,領域Aは,エンジンの吸気
を絞って再生処理を行なうのには適さない領域,領域B
は吸気を絞って再生処理を行なうことのできる領域,領
域Cは吸気を絞ることなく再生処理が実行できる領域を
表す。なお,同図における指標1はエンジン最高回転数
及び最大負荷を示すものである。
In FIG. 5, a region A is a region not suitable for performing regeneration processing by restricting the intake air of the engine, and a region B.
Indicates a region in which the regeneration process can be performed by restricting the intake air, and a region C indicates a region in which the regeneration process can be executed without restricting the intake air. In addition, the index 1 in the figure shows the maximum engine speed and the maximum load.

【0036】上記A〜C領域が持つ意味についてより詳
しく説明する。エンジンが低負荷で低回転(領域A)で
ある場合には,エンジンの排気温度が低く(例えば25
0℃以下),吸気を大幅に絞ってもパティキュレートの
燃焼温度まで上昇させるのは困難であり,またこの運転
領域では排出されるパティキュレート量も少ない。従っ
て,この場合には,再生処理を行なわない。
The meaning of the areas A to C will be described in more detail. When the engine has a low load and low rotation (area A), the exhaust temperature of the engine is low (for example, 25
(0 ° C. or less), it is difficult to raise the combustion temperature of the particulates even if the intake air is greatly reduced, and the amount of particulates discharged in this operating region is small. Therefore, in this case, the reproduction process is not performed.

【0037】この状況において,エンジンの吸気を絞る
と,図6に示すようにエンジンの排気温度Tが上昇する
が,一方燃料の消費量Uも増加し,それに伴ってパティ
キュレートの排出量も増大し,フィルタを良好に再生す
ることは困難である。一方,エンジンが高負荷で高回転
(図5,領域C)である場合には,排気温度が高く(例
えば400℃以上),パティキュレートの燃焼温度以上
となるから,あえて吸気を絞らなくても再生処理が可能
である。
In this situation, if the intake air of the engine is throttled, the exhaust temperature T of the engine rises as shown in FIG. 6, but on the other hand, the fuel consumption amount U also increases and the particulate emission amount increases accordingly. However, it is difficult to reproduce the filter well. On the other hand, when the engine is under high load and high rotation (region C in FIG. 5,), the exhaust temperature is high (for example, 400 ° C. or higher) and the combustion temperature of the particulates or higher, so it is not necessary to throttle intake air. Reproduction processing is possible.

【0038】そして,エンジンが中負荷,中回転(図
5,領域B)の場合には,吸気の量を絞ることにより,
パティキュレートを燃焼させ,再生処理が可能である。
それ故,ステップ606において,領域Aと判定された
場合には,ステップ607において吸気の絞りを行なわ
ずステップ605に戻り条件が満たされるのを待つ。
When the engine has a medium load and a medium rotation (region B in FIG. 5), the amount of intake air is reduced to
It is possible to regenerate by burning particulates.
Therefore, if it is determined that the region is A in step 606, the intake is not throttled in step 607 and the process returns to step 605 to wait for the condition to be satisfied.

【0039】ここで領域Cである場合には,ステップ6
09に進み吸気の絞りをゼロとして再生処理を行なう。
ステップ606において,領域Bにあると判定された場
合には,ステップ608に進み,適切な絞り量fを算出
する。ステップ608における絞り量fの決定方法につ
いて説明する。
If it is the region C, step 6
In step 09, the throttle is closed and the regeneration process is performed.
If it is determined in step 606 that it is in the region B, the process proceeds to step 608 to calculate an appropriate aperture amount f. A method of determining the aperture amount f in step 608 will be described.

【0040】ここで,注目すべきことは,第1に,図7
に示すように,パティキュレートの性状によって絞り量
の大きさを変えることである。前記のように,第1カウ
ンタのカウント数t1 のウエイトが大きいほどパティキ
ュレートの燃焼温度は高く,第1カウンタのカウント数
1 のウエイトが小さいほどパティキュレートの燃焼温
度は低い。
Here, it should be noted that, firstly, as shown in FIG.
As shown in, the size of the aperture is changed according to the characteristics of the particulates. As described above, the combustion temperature of about particulates Waits count t 1 of the first counter is large high combustion temperature of the particulate as the weights of the count number t 1 of the first counter is smaller low.

【0041】そこで本例においては,第1,第2カウン
タの合計カウント数(t1 +t2 )に対する第1カウン
タのカウント数t1 の比率Rを算出し,図7の実線f3
に示すように,比率Rが大きいほど絞り量を増加させて
いる。従来は,同図破線f4に示すように,このような
絞り量の変化は行なっていない。
Therefore, in this example, the ratio R of the count number t 1 of the first counter to the total count number (t 1 + t 2 ) of the first and second counters is calculated, and the solid line f 3 in FIG.
As shown in (3), the larger the ratio R, the larger the aperture amount. Conventionally, such a change in the aperture amount has not been performed as shown by a broken line f 4 in FIG.

【0042】そして,ステップ610において,上記絞
り量fに基づいて,絞り弁150を操作する。そしてス
テップ611において,ステップ603と同様の方法で
パティキュレートの捕集量mを算出する。そして,ステ
ップ612において,上記捕集量mが所定値m1 (例え
ば0.5g)以下に低下した場合には,ステップ613
において再生を完了させ,ECUのカウンタをリセット
する。捕集量mが上記m1 以上である場合にはステップ
605に戻り,上記完了条件(m<m1 )が満たされる
まで再生を継続する。
Then, in step 610, the throttle valve 150 is operated based on the throttle amount f. Then, in step 611, the trapped amount m of particulates is calculated by the same method as in step 603. Then, in step 612, when the collection amount m is reduced to a predetermined value m 1 (for example, 0.5 g) or less, step 613
At, the regeneration is completed and the ECU counter is reset. When the collected amount m is m 1 or more, the process returns to step 605, and the regeneration is continued until the completion condition (m <m 1 ) is satisfied.

【0043】上記のように,本例では,捕集されたパテ
ィキュレートの性状と現在のエンジンの運転状況に適応
させて適切な再生処理を行なう。従って,不適切な吸気
絞り操作や過大な吸気絞り操作を行なうことなく排気浄
化装置の再生を行なうことができる。そして,燃費率も
良好に維持し,不適切にエンジンの出力低下を招くこと
もない。上記のように,本例によれば,捕集されたパテ
ィキュレートの性状に適合させ,また現在のエンジン状
態に適合した効果的な再生処理を行ない,徒にエンジン
の出力を低下させるようなことのない内燃機関の排気浄
化装置を提供することができる。
As described above, in this example, the proper regeneration process is performed in accordance with the characteristics of the collected particulates and the current operating condition of the engine. Therefore, the exhaust gas purification device can be regenerated without performing an inappropriate intake throttling operation or an excessive intake throttling operation. It also maintains a good fuel economy and does not inappropriately reduce engine output. As described above, according to this example, it is possible to reduce the output of the engine by adapting to the properties of the collected particulates and performing effective regeneration processing that is compatible with the current engine condition. It is possible to provide an exhaust emission control device for an internal combustion engine that does not have the above.

【0044】実施例2 本例は,図8に示すように,実施例1において,エンジ
ンが低負荷で長時間運転した場合に再生処理の方法を若
干変更したもう1つの実施例である。即ち,図8に示す
ように,長時間にわたって低負荷でエンジンを作動させ
た場合には,再生処理の初めの一定時間(例えば5分
間)だけ,通常の絞り量f1 から絞り量f2 に増大さ
せ,排気を高温(例えば600℃位)にし,その後に実
施例1と同様の絞り量f1 に復元させる。
Embodiment 2 As shown in FIG. 8, this embodiment is another embodiment in which the regeneration treatment method is slightly changed in Embodiment 1 when the engine is operated at a low load for a long time. That is, as shown in FIG. 8, when the engine is operated with a low load for a long time, the normal throttle amount f 1 is changed to the throttle amount f 2 for a fixed time (for example, 5 minutes) at the beginning of the regeneration process. The exhaust gas is increased to a high temperature (for example, about 600 ° C.), and thereafter, the throttle amount f 1 is restored to the same as in the first embodiment.

【0045】エンジンを低負荷で運転するとSOF分を
多く含んだパティキュレートが発生し,このSOF分に
よって酸化触媒の表面が覆われてしまい,触媒性能が低
下するという問題がある。このため,パティキュレート
の燃焼が困難になるが,本例のように再生の最初の一定
時間だけ排気温度を上げる操作をすることにより,触媒
表面のSOF分を燃焼させて触媒の能力を回復すること
ができる。その他については,実施例1と同様である。
When the engine is operated under a low load, particulates containing a large amount of SOF are generated, and the surface of the oxidation catalyst is covered with this SOF, which causes a problem of deterioration of catalytic performance. For this reason, it becomes difficult to burn the particulates, but the SOF component on the catalyst surface is burned to restore the catalyst ability by raising the exhaust temperature for the first fixed time as in this example. be able to. Others are the same as those in the first embodiment.

【0046】実施例3 本例は,図9に示すように,実施例1又は実施例2にお
いて,図4に示した領域1,2を4つの領域3〜6に分
けると共に,図3の制御フローにおけるステップ602
におけるECU4のカウンタを2個から4個に増加し,
絞り量fを計算するステップ608のアルゴリズムを変
更したもう1つの実施例である。
Third Embodiment In this embodiment, as shown in FIG. 9, in the first or second embodiment, the regions 1 and 2 shown in FIG. 4 are divided into four regions 3 to 6 and the control shown in FIG. Step 602 in the flow
The counter of the ECU4 in 2 was increased from 2 to 4,
This is another embodiment in which the algorithm of step 608 for calculating the aperture amount f is changed.

【0047】即ち,本例においては,パティキュレート
捕集時におけるエンジンの運転状況を図9の4区分と
し,これをECU4の4つのカウンタで別個にカウント
させる(図3ステップ602)。これによってパティキ
ュレート捕集時におけるエンジンの運転履歴をよりきめ
細かく把握する。
That is, in this example, the operating conditions of the engine at the time of particulate collection are divided into four sections in FIG. 9, and these are individually counted by the four counters of the ECU 4 (step 602 in FIG. 3). In this way, the operating history of the engine at the time of particulate collection can be grasped in more detail.

【0048】そして,再生時における絞り量f(図3,
ステップ608)を次式により算出する。 f=at3 +bt4 +ct5 +dt6 ・・・・・(1) 上記においては,a,b,c,dは,a<b<c<dな
る定数であり,t3 〜t6 は,それぞれの添字3〜6が
示す図9の領域に対応するカウンタにカウントされたカ
ウント数である。即ち,添字の大きい領域ほどパティキ
ュレートの難燃性がより強いから,絞り量算出のための
重み(a〜d)を大きくする。
Then, the aperture amount f during reproduction (see FIG. 3,
Step 608) is calculated by the following equation. f = at 3 + bt 4 + ct 5 + dt 6 (1) In the above, a, b, c and d are constants such that a <b <c <d, and t 3 to t 6 are It is the count number counted by the counter corresponding to the area of FIG. 9 indicated by each subscript 3 to 6. That is, since the larger the subscript is, the stronger the flame retardancy of the particulates is, the weights (a to d) for calculating the aperture amount are increased.

【0049】上記のように,パティキュレート捕集時に
おける運転履歴をよりきめ細かく把握することにより,
パティキュレートの性状をより正確に把握し,これによ
ってより適切な再生処理が可能となる。なお,上記
(1)式のアルゴリズムは1例であり,データの蓄積に
より,より適切な式にブラッシュアップすることができ
る。その他については,実施例1,実施例2と同様であ
る。
As described above, by more finely grasping the operation history at the time of collecting particulates,
The properties of the particulates can be grasped more accurately, which enables more appropriate regeneration processing. The algorithm of the above formula (1) is only an example, and it is possible to brush up to a more appropriate formula by accumulating data. Others are the same as those in the first and second embodiments.

【0050】実施例4 本例は,図10に示すように,実施例1,実施例2又は
実施例3において,昇温手段15の吸気絞り弁を排気絞
り弁160に変更したもう1つの実施例である。即ち,
本例においては,エンジンの排気量をトラッパ11の下
流の排気絞り弁160で絞ることにより排気温度を上昇
させる。その他については実施例1,実施例2と同様で
ある。
Embodiment 4 As shown in FIG. 10, this embodiment is another embodiment in which the intake throttle valve of the temperature raising means 15 is changed to the exhaust throttle valve 160 in the first, second or third embodiment. Here is an example. That is,
In the present example, the exhaust gas temperature is raised by throttling the engine displacement with the exhaust throttle valve 160 downstream of the trapper 11. Others are the same as those in the first and second embodiments.

【0051】実施例5 本例は,図11,図12に示すように,実施例1,実施
例2又は実施例3において,昇温手段を燃料噴射増量装
置17とし(図11),吸気の絞り量fに替えて燃料噴
射の増加量fとした(図12)もう1つの実施例であ
る。即ち,本例においては,燃料噴射増量装置17によ
って,燃料噴射量を変えることによりエンジンの排気温
度を変化させる。そして,図12の制御フロー図のステ
ップ614〜617に示すように,実施例1,実施例2
の絞り量f(図3,ステップ607〜610)に替えて
燃料噴射の増加量を制御する。その他については,実施
例1,実施例2又は実施例3と同様である。
Fifth Embodiment In this embodiment, as shown in FIGS. 11 and 12, in the first, second or third embodiment, the temperature raising means is the fuel injection increasing device 17 (FIG. 11) and the intake air intake This is another embodiment in which the throttle amount f is replaced with the fuel injection increase amount f (FIG. 12). That is, in this example, the exhaust temperature of the engine is changed by changing the fuel injection amount by the fuel injection increasing device 17. Then, as shown in steps 614 to 617 of the control flow chart of FIG.
The amount of increase in fuel injection is controlled instead of the throttle amount f (steps 607 to 610 in FIG. 3). Others are the same as those in the first, second or third embodiment.

【0052】実施例6 本例は,図13,図14に示すように,実施例1,実施
例2又は実施例3において,図1の昇温手段を燃料噴射
時期の遅角装置18とし(図13),図3の絞り量に替
えて噴射遅角量とした(図14)もう1つの実施例であ
る。即ち,本例においては,図14のステップ621〜
624に示すように,実施例1〜実施例3における絞り
量(図3,ステップ607〜610,図12,ステップ
614〜617)に替えて燃料噴射遅角量を制御する。
その他については,実施例1又は実施例2と同様であ
る。
Embodiment 6 In this embodiment, as shown in FIG. 13 and FIG. 14, in the embodiment 1, embodiment 2 or embodiment 3, the temperature raising means of FIG. FIG. 13) is another embodiment in which the injection retard angle amount is used instead of the throttle amount in FIG. 3 (FIG. 14). That is, in this example, steps 621 to 621 in FIG.
As indicated by 624, the fuel injection delay amount is controlled in place of the throttle amount (FIG. 3, steps 607 to 610, FIG. 12, steps 614 to 617) in the first to third embodiments.
Others are the same as those in the first or second embodiment.

【0053】実施例7 本例は,図15に示すように,実施例1,実施例2又は
実施例3において,昇温手段15をエンジンの吸気絞り
弁150と燃料噴射遅角装置17との複数としたもう1
つの実施例である。そして,図5に替えて図16に示す
ように,現在のエンジンの運転状態をD,E,E′,F
の4つの領域に区分し,それぞれの領域D〜Fに対応し
て制御の態様を変化させる。
Embodiment 7 In this embodiment, as shown in FIG. 15, in the embodiment 1, embodiment 2 or embodiment 3, the temperature raising means 15 is constituted by the intake throttle valve 150 of the engine and the fuel injection retardation device 17. One more
Two examples. As shown in FIG. 16 instead of FIG. 5, the current engine operating conditions are D, E, E ′, F.
Are divided into four areas, and the control mode is changed corresponding to each of the areas D to F.

【0054】即ち,図19に示すように,ステップ62
6においてエンジンの運転状態を領域D〜Fのいずれか
であるかを判定し,それに応じて次のように制御する。
領域Dにある場合は,前記領域C(図5)と同様に再生
処理に不適当と判断し,ステップ627に進み,昇温手
段15を操作しない(図13,ステップ607に相
当)。領域Fにある場合には,ステップ630に進み,
この場合は,前記領域C(図5)と同様に昇温手段15
を作動させなくても再生可能であるから同様に昇温手段
15を作動させない(図3,ステップ609に相当)。
That is, as shown in FIG.
At 6, it is determined whether the operating state of the engine is in any one of the regions D to F, and the control is performed as follows according to the determination.
If it is in the region D, it is judged to be unsuitable for the regeneration process as in the region C (FIG. 5), the process proceeds to step 627, and the temperature raising means 15 is not operated (corresponding to step 607 in FIG. 13). If it is in region F, go to step 630,
In this case, as in the area C (FIG. 5), the temperature raising means 15
Similarly, the temperature raising means 15 is not operated because it can be regenerated even if it is not operated (corresponding to step 609 in FIG. 3).

【0055】そして,領域E,E′にある場合には,昇
温手段15を作動させて再生処理を行なう。まず比較的
中高負荷のE′領域の場合には,ステップ632に進
み,燃料噴射遅角装置17を作動させて昇温する。燃料
噴射を遅角した場合の昇温量は,吸気絞り時より小さい
が,燃費等の悪化も小さいため,比較的高温の領域E′
では,噴射遅角のみを行なう。
Then, in the areas E and E ', the temperature raising means 15 is operated to perform the regeneration process. First, in the case of the E'region where the load is relatively medium and high, the routine proceeds to step 632, where the fuel injection retardation device 17 is operated to raise the temperature. The amount of temperature rise when the fuel injection is retarded is smaller than that at the time of throttle reduction of the intake air, but the deterioration of fuel consumption and the like is small, so that the region E'of relatively high temperature is
Then, only the injection retardation is performed.

【0056】そして,中低負荷のE領域の場合には,昇
温量を大きくする必要があるため,ステップ633に進
み,燃料噴射遅角装置17と絞り弁150の両方を作動
させて昇温する。その他の制御フローについては,実施
例1の図3と同様である。その他に,ついては,実施例
1,実施例2,実施例3と同様である。
In the case of the medium and low load E region, since it is necessary to increase the temperature rise amount, the routine proceeds to step 633, where both the fuel injection retardation device 17 and the throttle valve 150 are operated to raise the temperature. To do. Other control flows are the same as those in FIG. 3 of the first embodiment. Other than that, it is the same as the first, second, and third embodiments.

【0057】実施例8 本例は,図17,図18に示すように,実施例7におい
て,燃料噴射遅角装置に替えて,燃料噴射増量装置18
としたもう1つの実施例である。即ち,図17に示すよ
うに,図19の昇温手段の操作(ステップ632,63
3)における遅角装置(遅角量)を増量装置18(噴射
量増量)に変更する(ステップ628,629)。 そ
の他については,実施例7と同様である。
Embodiment 8 In this embodiment, as shown in FIGS. 17 and 18, the fuel injection retardation device is replaced with the fuel injection increasing device 18 in the seventh embodiment.
Is another example. That is, as shown in FIG. 17, the operation of the temperature raising means of FIG. 19 (steps 632, 63
The retarding device (retarding amount) in 3) is changed to the increasing device 18 (injection amount increasing) (steps 628, 629). Others are the same as in the seventh embodiment.

【0058】実施例9 本例は,実施例1又は実施例2において,難燃性パティ
キュレートと良燃性パティキュレートとを分離捕集し,
難燃性パティキュレートの捕集部を良燃性パティキュレ
ートの捕集部の下流に位置させて再生処理するようにし
たもう1つの実施例である。
Example 9 In this example, the flame-retardant particulates and the good-burning particulates are separated and collected as in Example 1 or Example 2,
This is another embodiment in which the flame-retardant particulate trap portion is located downstream of the good-flammable particulate trap portion for regeneration treatment.

【0059】即ち,図20に示すように,トラッパ11
は難燃性パティキュレートと良燃性パティキュレートと
を分離捕集するめたの複数の捕集部115,116を有
しており,排気81を上記異なる捕集部115,116
へ導く排気通路31の切換手段32を有すると共に,ト
ラッパ11の再生時においては上記切換手段32を操作
することにより難燃性パティキュレートの捕集部115
が良燃性パティキュレートの捕集部116の下流に位置
することができるよう構成されており,コントローラ4
0は内燃機関51の運転状態に応じて排気81を別個の
捕集部115,116に導入するよう上記切換手段32
を操作し,再生時においては難燃性パティキュレートの
捕集部115が良燃性パティキュレートの捕集部116
の下流に位置するよう流通路を形成する。
That is, as shown in FIG. 20, the trapper 11
Has a plurality of traps 115, 116 for separately collecting the flame-retardant particulates and the good-flammable particulates, and the exhaust 81 is provided with the different traps 115, 116.
Has a switching means 32 for the exhaust passage 31 leading to the exhaust passage 31 and operates the switching means 32 at the time of regeneration of the trapper 11 to collect the flame-retardant particulates 115.
Can be located downstream of the good flammable particulate collecting portion 116.
0 is the switching means 32 so that the exhaust gas 81 is introduced into the separate collecting portions 115 and 116 according to the operating state of the internal combustion engine 51.
Is operated to collect the flame-retardant particulate collecting portion 115 and the good-flame particulate collecting portion 116.
A flow passage is formed so as to be located downstream of the.

【0060】そして,上記2つの捕集部115,116
は,単一のパティキュレートフィルタ110における相
対する排気口117,118側に形成されており,上記
切換手段32は,上記パティキュレートフィルタ110
に対する排気81の流入口を反転させる切換え弁320
である。
Then, the two collecting parts 115, 116
Is formed on the side of the exhaust ports 117 and 118 facing each other in the single particulate filter 110, and the switching means 32 is provided with the particulate filter 110.
Valve 320 for reversing the inlet of the exhaust 81 to the
Is.

【0061】以下上記について補足説明を付加する。図
20に示すように,内燃機関51(ディーゼルエンジ
ン)の下流には,エンジンに連結された第1排気管31
1と,切換え弁320と,第1排気管311からパティ
キュレートフィルタ110の相対する排気口117,1
18に連結される第2,第3排気管312,313と,
該第2,第3排気管312,313に連結された排出管
314とが配設されている。
A supplementary explanation will be added to the above. As shown in FIG. 20, a first exhaust pipe 31 connected to the engine is provided downstream of the internal combustion engine 51 (diesel engine).
1, the switching valve 320, the first exhaust pipe 311 to the opposite exhaust ports 117, 1 of the particulate filter 110.
Second and third exhaust pipes 312, 313 connected to 18, and
An exhaust pipe 314 connected to the second and third exhaust pipes 312 and 313 is provided.

【0062】上記切換え弁320は,例えばバタフライ
型の切換え弁であり,第1ポジションにある場合には,
排気81はエンジン−第1排気管311−第2排気管3
12−フィルタ110−第3排気管313−排出管31
4の順に流れる。また,切換え弁320が,図20に示
す第2ポジションにある場合には,排気81は,エンジ
ン−第1排気管311−第3排気管313−フィルタ1
10−第2排気管312−排出管314の順に流れる。
The switching valve 320 is, for example, a butterfly type switching valve, and when it is in the first position,
Exhaust gas 81 is engine-first exhaust pipe 311 -second exhaust pipe 3
12-filter 110-third exhaust pipe 313-exhaust pipe 31
It flows in order of 4. Further, when the switching valve 320 is in the second position shown in FIG. 20, the exhaust gas 81 is the engine-first exhaust pipe 311-third exhaust pipe 313-filter 1
It flows in the order of 10-second exhaust pipe 312-exhaust pipe 314.

【0063】即ち,切換え弁320のポジションを切換
えることにより,排気81が流入するフィルタ110の
排気口117,118を切換えることができる。そして
コントローラ40は,図4に示す領域1(高負荷)の場
合に,切換え弁320を第1ポジションとし,領域2
(低負荷)の場合に第2ポジションとする。
That is, by switching the position of the switching valve 320, the exhaust ports 117, 118 of the filter 110 into which the exhaust 81 flows can be switched. Then, the controller 40 sets the switching valve 320 to the first position in the case of the region 1 (high load) shown in FIG.
In case of (low load), the second position is set.

【0064】そして,パティキュレートフィルタ110
は,ハニカム状格子により,多数の流路が形成され,そ
の入口又は出口が交互に封止されているため,排気81
の流入方向を切換えることにより,フィルタ110内の
相異なる通路壁側に捕集される(捕集部115,116
の形成)。即ち,図22に示すように,フィルタ110
の通路壁119の片側にエンジン低負荷時の良燃性パテ
ィキュレート821(SOF分大)が,他方に高負荷時
の難燃性パティキュレート822(SOOT分大)が補
足される。
Then, the particulate filter 110
Since a large number of channels are formed by the honeycomb lattice and the inlets or outlets are alternately sealed, the exhaust gas 81
By changing the inflow direction of the traps, the trapping portions 115, 116 are trapped on the different passage wall sides in the filter 110.
Formation). That is, as shown in FIG.
The one side of the passage wall 119 is supplemented with the good-burning particulates 821 at the time of low engine load (SOF amount is large) and the other side is provided with the flame-retardant particulates 822 at high load (SOOT amount).

【0065】次に,図21を用いて,本例の排気浄化装
置1の制御の流れを説明する。初めにステップ641に
おいて,一定のサンプリング時間毎に運転検出手段22
からエンジンの負荷状態を読込む。そして,ステップ6
42において,上記運転状態が図4の領域1(負荷T≧
0 )にあるか否かを判定する。
Next, the control flow of the exhaust purification system 1 of this example will be described with reference to FIG. First, in step 641, the operation detecting means 22 is set at a constant sampling time.
Read the engine load status from. And step 6
42, the operating state is in the region 1 of FIG. 4 (load T ≧
T 0 ).

【0066】そして,是(YES)であれば,ステップ
643に進み,切換え弁320を第1ポジションに切換
えると共に,ECU4内の第1カウンタのカウント値を
歩進させる。そして,ステップ642の判定結果が否
(NO)であれば,ステップ644に進み,切換え弁3
20を第2ポジションに切換えると共にECU4内の第
2カウンタのカウント値を歩進させる。
If YES (YES), the process proceeds to step 643, the switching valve 320 is switched to the first position, and the count value of the first counter in the ECU 4 is incremented. If the determination result of step 642 is negative (NO), the process proceeds to step 644, and the switching valve 3
20 is switched to the second position and the count value of the second counter in the ECU 4 is advanced.

【0067】そして,図3と同様にステップ604,6
05でパティキュレート捕集量mが予め設定された設定
値m0 以上である(YES)と判定されたら,次のステ
ップ645以下の再生プロセスに進行し,そうでない場
合(NO)はステップ641に戻る。ステップ605で
是(YES)の場合は,ステップ645に進み,上記切
換え弁320を第2ポジションに切換える。
Then, as in FIG. 3, steps 604, 6
If it is determined in 05 that the particulate collection amount m is equal to or greater than the preset set value m 0 (YES), the process proceeds to the next step 645 and subsequent regeneration processes, and if not (NO), the process proceeds to step 641. Return. If YES in step 605, the flow advances to step 645 to switch the switching valve 320 to the second position.

【0068】そして,実施例1と同様にステップ60
5,606にて絞り弁150を絞って再生のために昇温
する。そうすると,第2ポジションにおいて上流に位置
する良燃性パティキュレート(捕集部116)が低温で
燃焼し,その際に発生する燃焼熱によって下流側の難燃
性パティキュレート(捕集部115)も極めて良好に燃
焼する。
Then, as in the first embodiment, step 60
At 5,606, the throttle valve 150 is throttled to raise the temperature for regeneration. Then, in the second position, the upstream flammable particulate matter (collecting portion 116) burns at a low temperature, and the combustion heat generated at that time also causes the downstream flame-retardant particulate matter (collecting portion 115). Burns very well.

【0069】その他の制御フローについては,実施例1
又は実施例2と同様である。なお,上記において,パテ
ィキュレート捕集時における切換え弁320の切換え操
作は,切換えの頻発やハンチングを回避するために,図
4における領域間の移行状態が一定時間(例えば10秒
間)以上継続した場合に行なう。
The other control flow is described in the first embodiment.
Alternatively, it is similar to the second embodiment. In the above, the switching operation of the switching valve 320 at the time of collecting particulates is performed when the transition state between regions in FIG. 4 continues for a certain time (for example, 10 seconds) or more in order to avoid frequent switching and hunting. To do.

【0070】また,本例によれば,フィルタ110の壁
の両面(図22)を有効利用するため,排気81を一方
向に流通させフィルタ110の壁の片面だけを利用する
場合(実施例1〜実施例8)に比べるとパティキュレー
トと酸化触媒との接触面積も倍増し,結果的にパティキ
ュレートの燃焼時間が大幅に短縮される。また,フィル
タ110の作動面積が倍になるから,同量のパティキュ
レートの燃焼に対する触媒の使用度が半減し,触媒の耐
久時間が大幅に向上するという効果がある。
Further, according to the present example, in order to effectively utilize both sides of the wall of the filter 110 (FIG. 22), the exhaust 81 is circulated in one direction and only one side of the wall of the filter 110 is utilized (Example 1). As compared with Example 8), the contact area between the particulate and the oxidation catalyst is doubled, and as a result, the burning time of the particulate is greatly shortened. Further, since the operating area of the filter 110 is doubled, the usage of the catalyst for burning the same amount of particulates is halved, and the durability time of the catalyst is significantly improved.

【0071】実施例10 本例は,図23に示すように,実施例9においてトラッ
パ11の複数の捕集部を2つの異なるパティキュレート
フィルタ110,120とし,差圧検出器211を下流
に配設した難燃性パティキュレート用のフィルタ120
に設けたもう1つの実施例である。
Embodiment 10 In this embodiment, as shown in FIG. 23, a plurality of trapping parts of the trapper 11 in Embodiment 9 are two different particulate filters 110 and 120, and a differential pressure detector 211 is arranged downstream. Installed filter 120 for flame retardant particulates
It is another embodiment provided in.

【0072】即ち,エンジン51に連結された第1排気
管311から,第4,第5排気管315,316を分岐
させ,一方の第4排気管315には第1フィルタ110
が配設されている。そして,第4,第5排気管315,
316が下流で再び合体した第6排気管317に第2フ
ィルタ120が配設されている。
That is, the fourth and fifth exhaust pipes 315 and 316 are branched from the first exhaust pipe 311 connected to the engine 51, and the first filter 110 is connected to one of the fourth exhaust pipes 315.
Is provided. Then, the fourth and fifth exhaust pipes 315,
The second filter 120 is disposed in the sixth exhaust pipe 317, where the 316 is merged again downstream.

【0073】そして切換え弁321は,その第2ポジシ
ョンにおいて第1排気管311と第4排気管315とを
連結し,図23に示す第1ポジションにおいて第1排気
管311と第5排気管316とを連結する。そして,パ
ティキュレート捕集中におけるエンジンの運転状態が図
4の領域2にある場合には,切換え弁321を第2ポジ
ションに切換えて,第1フィルタ110に良燃性のパテ
ィキュレートを捕集する。
The switching valve 321 connects the first exhaust pipe 311 and the fourth exhaust pipe 315 in the second position, and connects the first exhaust pipe 311 and the fifth exhaust pipe 316 in the first position shown in FIG. To connect. When the operating state of the engine in the particulate trapping and concentration is in the area 2 in FIG. 4, the switching valve 321 is switched to the second position, and the first filter 110 traps the good-burning particulates.

【0074】一方,エンジンの運転状態が図4の領域1
にある場合には,切換え弁321を第1ポジションに切
換えて,第2フィルタ120に難燃性パティキュレート
を捕集する。そして,再生時には,切換え弁321を第
2ポジションに切換えて,第1フィルタ110を第2フ
ィルタ120の上流に位置させる。その結果,低温で着
火する第1フィルタ110のパティキュレートの燃焼熱
の作用により,第2フィルタ120の難燃性パティキュ
レートも容易に着火,燃焼する。その他については,実
施例9と同様である。
On the other hand, the operating condition of the engine is the area 1 in FIG.
In the case of, the switching valve 321 is switched to the first position, and the second filter 120 collects the flame-retardant particulates. Then, at the time of regeneration, the switching valve 321 is switched to the second position and the first filter 110 is positioned upstream of the second filter 120. As a result, the flame-retardant particulates of the second filter 120 are easily ignited and burned by the action of the combustion heat of the particulates of the first filter 110 that ignites at a low temperature. Others are the same as in the ninth embodiment.

【0075】実施例11 本例は,図24に示すように,実施例1,実施例2又は
実施例3において内燃機関51の下流のトラッパ11の
上流に排気温度センサ33を設けたもう1つの実施例で
ある。そして,上記排気温度センサ33で検出した排気
温度tに応じて,昇温手段15(絞り弁150)を作動
させて再生処理を行なうかどうか,あるいは再生処理を
行なわないかどうかを決定する。
Embodiment 11 As shown in FIG. 24, this embodiment is another embodiment in which an exhaust gas temperature sensor 33 is provided upstream of the trapper 11 downstream of the internal combustion engine 51 in Embodiment 1, Embodiment 2 or Embodiment 3. This is an example. Then, according to the exhaust gas temperature t detected by the exhaust gas temperature sensor 33, it is determined whether the temperature raising means 15 (throttle valve 150) is operated to perform the regeneration process or not.

【0076】即ち,実施例1〜実施例3においては,エ
ンジンの現在の運転状況が図5に示すA〜Cいずれの領
域にあるかに対応して再生処理のあり方を決めていた
が,本例においては,それを排気温度tによって行な
う。即ち,再生の制御フローは,図25に示すように,
ステップ651において,排気温度センサ33によって
排気温度tを測定し,ステップ652で低温(t<
1 )か,高温(t>t2 )か,中温(t1 ≦t≦
2 )かを判定する(例えば,t1 =250℃,t2
400℃)。
That is, in the first to third embodiments, the regeneration process should be determined in accordance with which of the areas A to C shown in FIG. 5 the engine is currently operating. In the example, it is done by the exhaust temperature t. That is, the playback control flow is as shown in FIG.
In step 651, the exhaust gas temperature sensor 33 measures the exhaust gas temperature t, and in step 652, the low temperature (t <
t 1 ), high temperature (t> t 2 ), medium temperature (t 1 ≦ t ≦
t 2 ), for example, t 1 = 250 ° C., t 2 =
400 ° C).

【0077】そして,低温の場合には,再生処理を行な
わず(ステップ653),高温の場合は昇温手段15
(絞り弁150)を使用せず再生処理を行ない(ステッ
プ655),中温の場合のみステップ654に進み,昇
温手段15を用いて再生処理を行なう。上記のように,
本例は,排気温度tを直接測定して再生の制御方法を決
めるから,より的確に再生処理を行なうことができる。
If the temperature is low, the regeneration process is not performed (step 653). If the temperature is high, the temperature raising means 15 is used.
The regeneration process is performed without using the (throttle valve 150) (step 655), the process proceeds to step 654 only when the temperature is medium, and the temperature raising means 15 is used to perform the regeneration process. as mentioned above,
In this example, since the exhaust gas temperature t is directly measured to determine the control method of regeneration, the regeneration process can be performed more accurately.

【0078】即ち,図5における領域区分(A〜C)に
よれば,同一領域であってもエンジン始動直後の低温時
や,高負荷運転後の高温時などにおいて,排気温度が通
常と異なり,若干制御の的確性に欠ける場合があるが,
本例においては,そのような問題はない。その他につい
ては,実施例1,実施例2又は実施例3と同様である。
That is, according to the area divisions (A to C) in FIG. 5, even in the same area, when the engine temperature is low immediately after the engine is started or when the temperature is high after the high load operation, the exhaust temperature is different from the normal one, There may be some lack of control accuracy,
In this example, there is no such problem. Others are the same as those in the first, second or third embodiment.

【0079】実施例12 本例は,図26に示すように,実施例11において,排
気温度センサ33をトラッパ11の下流側に設けるよう
にしたもう1つの実施例である。本例においては,排気
温度センサ33を実施例11と同様の用途に用いること
ができるほか,再生処理開始後におけるトラッパ11下
流の排気温度t′を監視し,これを制御に反映させるこ
とができる。
Twelfth Embodiment This embodiment is another embodiment of the eleventh embodiment in which the exhaust temperature sensor 33 is provided on the downstream side of the trapper 11, as shown in FIG. In this example, the exhaust temperature sensor 33 can be used for the same purpose as in Example 11, and the exhaust temperature t'downstream of the trapper 11 after the regeneration process is started can be monitored and reflected in the control. .

【0080】例えば,エンジンを最大負荷運転し,再生
処理を行なうと,エンジンの排気が高温な上,パティキ
ュレートの燃焼熱によりフィルタ110が異常高温とな
ることがある。そうするとフィルタ110及び触媒の耐
久性が大幅に低下するという不具合が生ずる。本例では
このような状態を,トラッパ11の下流の排気温度t′
から知ることができる。
For example, when the engine is operated at maximum load and a regeneration process is performed, the exhaust gas of the engine becomes hot and the heat of particulate combustion may cause the filter 110 to reach an abnormally high temperature. This causes a problem that durability of the filter 110 and the catalyst is significantly reduced. In this example, such a state is set as the exhaust temperature t ′ downstream of the trapper 11.
You can learn from

【0081】即ち,図27に示すように,トラッパ11
下流の排気温度がt′予め設定した限界温度tL (例え
ば800℃)を越えた場合には,絞り弁150の絞り量
を増大させる。そうすると,エンジンの最大負荷運転時
の排気中の酸素濃度(通常3%程度)が更に低下し,そ
の結果酸素不足状態となり,パティキュレートの燃焼を
抑制する。
That is, as shown in FIG. 27, the trapper 11
When the downstream exhaust gas temperature exceeds a preset limit temperature t L (eg, 800 ° C.), the throttle amount of the throttle valve 150 is increased. Then, the oxygen concentration in the exhaust gas at the time of maximum load operation of the engine (usually about 3%) further decreases, resulting in an oxygen deficiency state and suppressing the combustion of particulates.

【0082】その結果,図27に示すように,トラッパ
11下流の排気温度t′は再び低下し,フィルタ110
の寿命低下などを回避することができる。その他につい
ては,実施例11と同様である。
As a result, as shown in FIG. 27, the exhaust temperature t'downstream of the trapper 11 drops again and the filter 110
It is possible to avoid shortening the life of the device. Others are the same as in the eleventh embodiment.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の排気浄化装置のシステム構成図。FIG. 1 is a system configuration diagram of an exhaust emission control device according to a first embodiment.

【図2】エンジン負荷状態と排出パティキュレートとの
相関図。
FIG. 2 is a correlation diagram between an engine load state and exhaust particulates.

【図3】実施例1の排気浄化装置の制御フロー図。FIG. 3 is a control flowchart of the exhaust emission control device of the first embodiment.

【図4】実施例1の排気浄化装置におけるパティキュレ
ート捕集中におけるエンジン運転状態の区分図。
FIG. 4 is a sectional view of an engine operating state during particulate collection and concentration in the exhaust emission control device of the first embodiment.

【図5】実施例1の排気浄化装置における操作条件を決
めるエンジンの運転状態の区分図。
FIG. 5 is a sectional view of the operating state of the engine that determines the operating conditions in the exhaust emission control device of the first embodiment.

【図6】吸気絞り量と排気温度T及び燃料消費量Uとの
相関図。
FIG. 6 is a correlation diagram of the intake throttle amount, the exhaust temperature T, and the fuel consumption amount U.

【図7】実施例1の排気浄化装置における昇温手段の操
作態様と従来装置の操作態様との比較図。
FIG. 7 is a comparison diagram of the operation mode of the temperature raising means and the operation mode of the conventional device in the exhaust emission control device of the first embodiment.

【図8】実施例2の排気浄化装置の制御モードの推移
図。
FIG. 8 is a transition diagram of a control mode of the exhaust emission control device according to the second embodiment.

【図9】実施例3の排気浄化装置におけるパティキュレ
ート捕集中におけるエンジン運転状態の区分図。
FIG. 9 is a sectional view of an engine operating state during particulate collection and concentration in the exhaust emission control device of the third embodiment.

【図10】実施例4の排気浄化装置のシステム構成図。FIG. 10 is a system configuration diagram of an exhaust emission control device according to a fourth embodiment.

【図11】実施例5の排気浄化装置のシステム構成図。FIG. 11 is a system configuration diagram of an exhaust emission control device according to a fifth embodiment.

【図12】実施例5の排気浄化装置の制御フロー図。FIG. 12 is a control flowchart of the exhaust emission control device of the fifth embodiment.

【図13】実施例6の排気浄化装置のシステム構成図。FIG. 13 is a system configuration diagram of an exhaust emission control device according to a sixth embodiment.

【図14】実施例6の排気浄化装置の制御フロー図。FIG. 14 is a control flow chart of the exhaust purification system of the sixth embodiment.

【図15】実施例7の排気浄化装置のシステム構成図。FIG. 15 is a system configuration diagram of an exhaust emission control device according to a seventh embodiment.

【図16】実施例7の排気浄化装置の操作条件を決める
エンジンの運転状態の区分図。
FIG. 16 is a sectional view of the operating state of the engine that determines the operating conditions of the exhaust emission control device of the seventh embodiment.

【図17】実施例8の排気浄化装置の制御フロー図。FIG. 17 is a control flow chart of the exhaust purification system of the eighth embodiment.

【図18】実施例8の排気浄化装置のシステム構成図。FIG. 18 is a system configuration diagram of an exhaust emission control device according to an eighth embodiment.

【図19】実施例7の排気浄化装置の制御フロー図。FIG. 19 is a control flow chart of the exhaust purification system of the seventh embodiment.

【図20】実施例9の排気浄化装置のシステム構成図。FIG. 20 is a system configuration diagram of an exhaust emission control device according to a ninth embodiment.

【図21】実施例9の排気浄化装置の制御フロー図。FIG. 21 is a control flow chart of the exhaust purification system of the ninth embodiment.

【図22】実施例9のパティキュレートフィルタの通路
壁へのパティキュレートの付着状態図。
FIG. 22 is a diagram showing how particulates adhere to the passage walls of the particulate filter of the ninth embodiment.

【図23】実施例10の排気浄化装置のシステム構成
図。
FIG. 23 is a system configuration diagram of an exhaust emission control device according to a tenth embodiment.

【図24】実施例11の排気浄化装置のシステム構成
図。
FIG. 24 is a system configuration diagram of an exhaust emission control device according to an eleventh embodiment.

【図25】実施例11の排気浄化装置の制御フロー図。FIG. 25 is a control flow chart of the exhaust purification system of the eleventh embodiment.

【図26】実施例12の排気浄化装置のシステム構成
図。
FIG. 26 is a system configuration diagram of an exhaust emission control device according to a twelfth embodiment.

【図27】実施例12の排気浄化装置におけるトラッパ
下流の排気温度t′及び吸気絞り量fの推移図。
FIG. 27 is a transition diagram of the exhaust temperature t ′ downstream of the trapper and the intake throttle amount f in the exhaust purification system of the twelfth embodiment.

【符号の説明】[Explanation of symbols]

1...排気浄化装置, 11...トラッパ, 15...昇温手段, 21...状況検出手段, 22...運転検出手段, 40...コントローラ, 51...内燃機関, 1. . . Exhaust gas purification device, 11. . . Trapper, 15. . . Temperature raising means, 21. . . Status detection means, 22. . . Operation detection means, 40. . . Controller, 51. . . Internal combustion engine,

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 46/42 B 7446−4D ZAB A 7446−4D ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B01D 46/42 B 7446-4D ZAB A 7446-4D

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の排気通路に介装され排気中の
パティキュレートを捕集する酸化触媒付きのトラッパ
と,該トラッパに捕集されたパティキュレートの捕集状
態を検出する状況検出手段と,内燃機関の運転状態を検
知する運転検出手段と,パティキュレートを燃焼させる
ための昇温手段と,該昇温手段を操作し,トラッパを再
生させるコントローラとを有する内燃機関の排気浄化装
置であって,上記コントローラは,上記運転検出手段に
接続されており,パティキュレート捕集中における内燃
機関の運転履歴に応じて排出された難燃性パティキュレ
ートと良燃性パティキュレートとの割合や現在の内燃機
関の運転状態により上記昇温手段を操作することを特徴
とする内燃機関の排気浄化装置。
1. A trapper with an oxidation catalyst for trapping particulates in exhaust gas, which is interposed in an exhaust passage of an internal combustion engine, and a condition detecting means for detecting a trapped state of particulates trapped by the trapper. An exhaust gas purification apparatus for an internal combustion engine, comprising: an operation detecting means for detecting an operating state of the internal combustion engine; a temperature raising means for burning particulates; and a controller for operating the temperature raising means to regenerate a trapper. The controller is connected to the operation detecting means, and the ratio of the flame-retardant particulates and the good-burning particulates discharged according to the operation history of the internal combustion engine in the particulate trapping concentration and the current internal combustion An exhaust emission control device for an internal combustion engine, characterized in that the temperature raising means is operated according to the operating state of the engine.
【請求項2】 請求項1において,上記トラッパは難燃
性パティキュレートと良燃性パティキュレートを分離捕
集するための複数のパティキュレート捕集部を有してお
り,また,排気を上記の異なる捕集部に導く排気通路の
切換手段を有すると共に,トラッパの再生時においては
難燃性パティキュレートの捕集部が良燃性パティキュレ
ートの捕集部の下流に位置することができるよう流通路
が構成されており,上記コントローラは,内燃機関の運
転状態に応じて排気を別個の捕集部に導入するよう上記
切換手段を操作し,再生時においては難燃性パティキュ
レートの捕集部が良燃性パティキュレートの下流に位置
するよう流通路を形成することを特徴とする内燃機関の
排気浄化装置。
2. The trapper according to claim 1, wherein the trapper has a plurality of particulate collecting portions for separating and collecting the flame-retardant particulates and the good-burning particulates, and the exhaust gas is exhausted as described above. It has a means for switching the exhaust passages leading to different traps and distributes it so that the trap for the flame-retardant particulates can be located downstream of the trap for the good-burning particulates when the trapper is regenerated. The controller operates the switching means so as to introduce the exhaust gas into a separate collecting portion in accordance with the operating state of the internal combustion engine, and at the time of regeneration, the collecting portion for the flame-retardant particulates. The exhaust gas purifying apparatus for an internal combustion engine, wherein the flow passage is formed so as to be located downstream of the good-burning particulates.
【請求項3】 請求項2において,難燃性パティキュレ
ートの捕集部と良燃性パティキュレートの捕集部とは,
単一のパティキュレートフィルタにおける相対する排気
口側に形成されていると共に,パティキュレートフィル
タに対する排気の流入口を反転させる排気通路の切換手
段が設けられており,コントローラは内燃機関の運転状
態に応じてパティキュレートフィルタに対する排気の流
入口を反転させることを特徴とする内燃機関の排気浄化
装置。
3. The flame-retardant particulate trap portion and the good-flammability particulate trap portion according to claim 2,
A single particulate filter is formed on the opposite exhaust port side, and an exhaust passage switching means for reversing the exhaust gas inlet to the particulate filter is provided, and the controller responds to the operating state of the internal combustion engine. The exhaust gas purifying apparatus for an internal combustion engine, wherein the exhaust gas inlet to the particulate filter is reversed.
【請求項4】 請求項2において,難燃性パティキュレ
ートの捕集部と良燃性パティキュレートの捕集部とは,
別体のパティキュレートフィルタであることを特徴とす
る内燃機関の排気浄化装置。
4. The collecting part for flame-retardant particulates and the collecting part for good-burning particulates according to claim 2,
An exhaust gas purification device for an internal combustion engine, which is a separate particulate filter.
【請求項5】 請求項1〜請求項3又は請求項4におい
て,昇温手段は,内燃機関の吸気通路に設けた吸気の絞
り手段であることを特徴とする内燃機関の排気浄化装
置。
5. The exhaust gas purifying apparatus for an internal combustion engine as claimed in claim 1, wherein the temperature raising means is an intake throttle means provided in an intake passage of the internal combustion engine.
JP35025493A 1993-12-28 1993-12-28 Exhaust gas purification device for internal combustion engine Expired - Lifetime JP3303495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35025493A JP3303495B2 (en) 1993-12-28 1993-12-28 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35025493A JP3303495B2 (en) 1993-12-28 1993-12-28 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH07189656A true JPH07189656A (en) 1995-07-28
JP3303495B2 JP3303495B2 (en) 2002-07-22

Family

ID=18409259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35025493A Expired - Lifetime JP3303495B2 (en) 1993-12-28 1993-12-28 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3303495B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000018026A (en) * 1998-04-28 2000-01-18 Toyota Motor Corp Exhaust emission control device for internal combustion engine
WO2001061159A1 (en) * 2000-02-16 2001-08-23 Toyota Jidosha Kabushiki Kaisha Method and device for cleaning exhaust gases
WO2001073271A1 (en) * 2000-03-27 2001-10-04 Toyota Jidosha Kabushiki Kaisha Exhaust gas cleaning device
WO2001073273A1 (en) * 2000-03-29 2001-10-04 Toyota Jidosha Kabushiki Kaisha Exhaust gas cleaning device for internal combustion engines
FR2808302A1 (en) * 2000-04-28 2001-11-02 Toyota Motor Co Ltd EXHAUST GAS CLEANER FOR INTERNAL COMBUSTION ENGINE AND METHOD FOR PURIFYING EXHAUST GAS
JP2002013411A (en) * 2000-04-25 2002-01-18 Toyota Motor Corp Exhaust emission control device for internal combustion engine
EP1281842A2 (en) 2001-07-31 2003-02-05 Toyota Jidosha Kabushiki Kaisha Emission control apparatus
US6568178B2 (en) 2000-03-28 2003-05-27 Toyota Jidosha Kabushiki Kaisha Device for purifying the exhaust gas of an internal combustion engine
JP2003155921A (en) * 2001-11-21 2003-05-30 Toyota Motor Corp Exhaust emission control device of internal combustion engine
US6588204B2 (en) 2000-03-27 2003-07-08 Toyota Jidosha Kabushiki Kaisha Device for purifying the exhaust gas of an internal combustion engine
US6655133B2 (en) 2001-03-29 2003-12-02 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifier for internal combustion engine
WO2004104383A1 (en) * 2003-05-20 2004-12-02 Tokudaiji Institute Of Automotive Culture Inc. Diesel engine exhaust gas-purifying device and control means
EP1138890B1 (en) * 2000-03-27 2005-05-18 Toyota Jidosha Kabushiki Kaisha Exhaust purifying method and apparatus for an internal combustion engine
EP1138889B1 (en) * 2000-03-27 2005-06-01 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifier for internal combustion engine and method for purifying exhaust gas
US6916450B2 (en) 2000-09-08 2005-07-12 Nissan Motor Co., Ltd. Exhaust gas purifying system and method
JP2006170092A (en) * 2004-12-16 2006-06-29 Nissan Motor Co Ltd Control device for internal combustion engine
US7069721B2 (en) 2004-02-02 2006-07-04 Toyota Jidosha Kabushiki Kaisha Exhaust emission control system for internal combustion engine and exhaust emission control method
JP2006522277A (en) * 2003-04-02 2006-09-28 ボルボ ラストバグナー アーベー Cars that perform exhaust gas purification
US7296401B2 (en) 2000-07-21 2007-11-20 Toyota Jidosha Kabushiki Kaisha Device for purifying the exhaust gas of an internal combustion engine
US7370474B2 (en) 2002-11-15 2008-05-13 Isuzu Motors Limited Exhaust gas purifying equipment for a diesel engine
JP2009228644A (en) * 2008-03-25 2009-10-08 Nissan Motor Co Ltd Exhaust emission control system and method therof
JP2013515206A (en) * 2009-12-22 2013-05-02 パーキンズ エンジンズ カンパニー リミテッド Playback support calibration
JP2015209838A (en) * 2014-04-30 2015-11-24 株式会社クボタ Diesel engine exhaust treatment device
JP2021001592A (en) * 2019-06-24 2021-01-07 トヨタ自動車株式会社 Exhaust emission control device of internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61112716A (en) * 1984-11-08 1986-05-30 Mitsubishi Motors Corp Diesel particulate collector
JPH01159029A (en) * 1987-12-16 1989-06-22 Toyota Motor Corp Exhaust gas purification apparatus of diesel engines
JPH03210011A (en) * 1990-01-10 1991-09-13 Mazda Motor Corp Exhaust gas particulate purification device of diesel engine
JPH03233119A (en) * 1990-02-09 1991-10-17 Nissan Motor Co Ltd Exhaust gas purifier of engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61112716A (en) * 1984-11-08 1986-05-30 Mitsubishi Motors Corp Diesel particulate collector
JPH01159029A (en) * 1987-12-16 1989-06-22 Toyota Motor Corp Exhaust gas purification apparatus of diesel engines
JPH03210011A (en) * 1990-01-10 1991-09-13 Mazda Motor Corp Exhaust gas particulate purification device of diesel engine
JPH03233119A (en) * 1990-02-09 1991-10-17 Nissan Motor Co Ltd Exhaust gas purifier of engine

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000018026A (en) * 1998-04-28 2000-01-18 Toyota Motor Corp Exhaust emission control device for internal combustion engine
WO2001061159A1 (en) * 2000-02-16 2001-08-23 Toyota Jidosha Kabushiki Kaisha Method and device for cleaning exhaust gases
AU753460B2 (en) * 2000-02-16 2002-10-17 Toyota Jidosha Kabushiki Kaisha Method and device for cleaning exhaust gases
US6786041B2 (en) 2000-02-16 2004-09-07 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification method and exhaust gas purification apparatus
US6588204B2 (en) 2000-03-27 2003-07-08 Toyota Jidosha Kabushiki Kaisha Device for purifying the exhaust gas of an internal combustion engine
WO2001073271A1 (en) * 2000-03-27 2001-10-04 Toyota Jidosha Kabushiki Kaisha Exhaust gas cleaning device
CN1325773C (en) * 2000-03-27 2007-07-11 丰田自动车株式会社 Exhaust gas cleaning device
EP1138889B1 (en) * 2000-03-27 2005-06-01 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifier for internal combustion engine and method for purifying exhaust gas
EP1138890B1 (en) * 2000-03-27 2005-05-18 Toyota Jidosha Kabushiki Kaisha Exhaust purifying method and apparatus for an internal combustion engine
US6874315B2 (en) 2000-03-27 2005-04-05 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device
US6568178B2 (en) 2000-03-28 2003-05-27 Toyota Jidosha Kabushiki Kaisha Device for purifying the exhaust gas of an internal combustion engine
WO2001073273A1 (en) * 2000-03-29 2001-10-04 Toyota Jidosha Kabushiki Kaisha Exhaust gas cleaning device for internal combustion engines
US6644022B2 (en) 2000-03-29 2003-11-11 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device of internal combustion engine
JP2002013411A (en) * 2000-04-25 2002-01-18 Toyota Motor Corp Exhaust emission control device for internal combustion engine
FR2808302A1 (en) * 2000-04-28 2001-11-02 Toyota Motor Co Ltd EXHAUST GAS CLEANER FOR INTERNAL COMBUSTION ENGINE AND METHOD FOR PURIFYING EXHAUST GAS
US7296401B2 (en) 2000-07-21 2007-11-20 Toyota Jidosha Kabushiki Kaisha Device for purifying the exhaust gas of an internal combustion engine
US6916450B2 (en) 2000-09-08 2005-07-12 Nissan Motor Co., Ltd. Exhaust gas purifying system and method
US6655133B2 (en) 2001-03-29 2003-12-02 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifier for internal combustion engine
US6679052B2 (en) 2001-07-31 2004-01-20 Toyota Jidosha Kaisha Emission control apparatus
EP1281842A2 (en) 2001-07-31 2003-02-05 Toyota Jidosha Kabushiki Kaisha Emission control apparatus
EP1281842A3 (en) * 2001-07-31 2003-11-19 Toyota Jidosha Kabushiki Kaisha Emission control apparatus
JP2003155921A (en) * 2001-11-21 2003-05-30 Toyota Motor Corp Exhaust emission control device of internal combustion engine
US7370474B2 (en) 2002-11-15 2008-05-13 Isuzu Motors Limited Exhaust gas purifying equipment for a diesel engine
JP2006522277A (en) * 2003-04-02 2006-09-28 ボルボ ラストバグナー アーベー Cars that perform exhaust gas purification
WO2004104383A1 (en) * 2003-05-20 2004-12-02 Tokudaiji Institute Of Automotive Culture Inc. Diesel engine exhaust gas-purifying device and control means
US7069721B2 (en) 2004-02-02 2006-07-04 Toyota Jidosha Kabushiki Kaisha Exhaust emission control system for internal combustion engine and exhaust emission control method
JP2006170092A (en) * 2004-12-16 2006-06-29 Nissan Motor Co Ltd Control device for internal combustion engine
JP4609061B2 (en) * 2004-12-16 2011-01-12 日産自動車株式会社 Control device for internal combustion engine
JP2009228644A (en) * 2008-03-25 2009-10-08 Nissan Motor Co Ltd Exhaust emission control system and method therof
JP2013515206A (en) * 2009-12-22 2013-05-02 パーキンズ エンジンズ カンパニー リミテッド Playback support calibration
JP2015209838A (en) * 2014-04-30 2015-11-24 株式会社クボタ Diesel engine exhaust treatment device
JP2021001592A (en) * 2019-06-24 2021-01-07 トヨタ自動車株式会社 Exhaust emission control device of internal combustion engine

Also Published As

Publication number Publication date
JP3303495B2 (en) 2002-07-22

Similar Documents

Publication Publication Date Title
JPH07189656A (en) Exhaust emission control device for internal combustion engine
US7086220B2 (en) Regeneration control method for continuously regenerating diesel particulate filter device
JP4506539B2 (en) Exhaust gas purification device for internal combustion engine
JP4007085B2 (en) Exhaust gas purification device for internal combustion engine
JP3303722B2 (en) Exhaust particulate removal device for internal combustion engine
JPH07189655A (en) Exhaust emission control device for engine
JP2008261287A (en) Filter clogging determination device of diesel engine
JP2004036454A (en) Exhaust emission control device of engine for vehicle
JP3938865B2 (en) Exhaust purification device control method
JP4320586B2 (en) Exhaust gas purification device for internal combustion engine
JPH08177463A (en) Exhaust emission control device
JP4008866B2 (en) Exhaust purification equipment
JP4008867B2 (en) Exhaust purification equipment
JP3778016B2 (en) Exhaust gas purification device for internal combustion engine
JP3901526B2 (en) Particulate filter regeneration method
JP3246151B2 (en) Diesel engine exhaust purification system
JP4070687B2 (en) Exhaust purification device
JP4081419B2 (en) Exhaust purification device
JP4070681B2 (en) Exhaust purification device
JP3116549B2 (en) Engine exhaust purification device
JP6642199B2 (en) Exhaust gas purification device
JPH1089048A (en) Exhaust fine particle purifying device
WO2022039265A1 (en) Vehicle control device, vehicle, and control method
JP2004068806A (en) Exhaust emission control device of internal combustion engine
JP2003155919A (en) Exhaust emission control device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110510

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120510

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120510

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130510

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140510

Year of fee payment: 12

EXPY Cancellation because of completion of term