JPH03233119A - Exhaust gas purifier of engine - Google Patents

Exhaust gas purifier of engine

Info

Publication number
JPH03233119A
JPH03233119A JP2029985A JP2998590A JPH03233119A JP H03233119 A JPH03233119 A JP H03233119A JP 2029985 A JP2029985 A JP 2029985A JP 2998590 A JP2998590 A JP 2998590A JP H03233119 A JPH03233119 A JP H03233119A
Authority
JP
Japan
Prior art keywords
trap
exhaust gas
regeneration
speed
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2029985A
Other languages
Japanese (ja)
Inventor
Nobukazu Kanesaki
兼先 伸和
Yoshiki Sekiya
関谷 芳樹
Motohiro Niizawa
元啓 新沢
Shunichi Aoyama
俊一 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2029985A priority Critical patent/JPH03233119A/en
Publication of JPH03233119A publication Critical patent/JPH03233119A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/0235Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using exhaust gas throttling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

PURPOSE:To prevent a trap from being clogged by enlarging an operating area which introduces exhaust gas into a trap at regeneration timing, and regenerate the trap by a temperature raising device in the operating area. CONSTITUTION:A control unit 21 estimates the accumulating amount of particulates, which are caught by a catalytic trap 3, based on the output of a pressure sensor 15 detecting the difference between upstream pressure and the downstream pressure of the trap 3 and then judges regeneration timing of the trap. When it is judged as regeneration timing, the operating area where a throttling valve 5 is fully opened and a throttling valve 6 is fully closed by throttling valve driving devices 7, 8 is shifted to a low speed and low load side. Besides, an intake air throttling valve 10 and an exhaust gas throttling valve 11 are closed by throttling valve driving devices 12, 13 in the operating area enlarged further. With this constitution, regeneration of the trap 3 can be carried out efficiently even if the area which makes exhaust gas flow into the trap 3 is enlarged. It is thus possible to prevent the trap 3 from being clogged even if the engine has a large amount of discharged carbon.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明はエンジンの排気浄化装置に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to an engine exhaust purification device.

(従来の技術) ディーゼルエンノンからは#篤微粒子(パーティキュレ
ート)が排出されるので、これを排気通路に備えた触媒
付きトラップに捕集させることにより排気浄化を行う一
方、排気温度が再生温度(350〜400℃)以上にな
る高速高負荷域でこのパーティキュレートを再燃焼させ
ることにより、トラップの目詰まりをなくし、エンノン
に影響がないようにはかっている(特開昭58−512
35号公報参照)。
(Conventional technology) Diesel engines emit particulates, so exhaust gas is purified by collecting them in a trap with a catalyst installed in the exhaust passage. By re-burning the particulates at high speeds and high loads (350 to 400 degrees Celsius) or higher, the traps are unclogged and the ennon is not affected.
(See Publication No. 35).

(発明が解決しようとする課題) ところで、このような装置では、高速高負荷域での使用
が少ないと、パーティキュレートを再燃焼させる機会が
少なくなるので、パーティキュレートが堆積される一方
となり、トラ・ノブが目詰まりするのを避けられないこ
とがある。
(Problem to be solved by the invention) By the way, in such a device, if it is not used in a high-speed, high-load range, there is less chance of re-burning the particulates, so the particulates will continue to accumulate and the trouble will increase.・Sometimes it is unavoidable that the knob becomes clogged.

こうした目詰まりを防止しようと、第8図で示すように
、複数の流路3Aの出口と入口を交互に目封じした触媒
付きトラップ3と、複数の流路4Aを有する触媒装置4
を排気通路に並列に配設し、運転条件に応じて排気を選
択的に導くようにした装置を先に提案した(特願平1−
146580号)。
In order to prevent such clogging, as shown in FIG. 8, a trap 3 with a catalyst is used, in which the outlets and inlets of a plurality of channels 3A are alternately sealed, and a catalyst device 4 having a plurality of channels 4A.
We have previously proposed a device in which the exhaust gases are arranged in parallel in the exhaust passage to selectively guide the exhaust gas depending on the operating conditions (Patent Application No.
No. 146580).

これは、パーティキュレートが、カーボン(サルフェー
トを含む)と有機可溶成分5OF(未燃燃料成分および
オイル成分)に大別され、2つの各成分が多く排出され
る運転域が第9図で示すように相違し、高速高負荷域で
はカーボンの比率が支配的となるのに対し、低中速負荷
域になるとカーボンはそれほどでな(SOFのほうが支
配的となる、αに着目したものである。
This is because particulates are broadly divided into carbon (including sulfate) and organic soluble components (5OF) (unburnt fuel components and oil components), and the operating range where large amounts of each of these two components are emitted is shown in Figure 9. The difference is that in the high-speed, high-load range, the carbon ratio is dominant, while in the low-medium speed load range, the carbon content is less so (SOF is more dominant; this focuses on α). .

たとえば、第10図で領域Iは高速高負荷域でかつ排気
温度がトラップの再生温度に十分達している領域として
設定されており、エンジンの負荷Qと回転数Neから定
まる運転条件がこの領域■に属する場合に、トラップ側
の絞り弁5を全開にし、触媒装置側の絞り弁6を全開に
して、排気の全量をトラップ3に流すと、この領域Iで
支配的となるカーボンがトラップ3に捕集されるととも
に、連続的に速やかに再燃焼されるので、目詰まりは生
じない。
For example, in Fig. 10, region I is set as a high-speed, high-load region where the exhaust temperature has sufficiently reached the trap regeneration temperature, and the operating conditions determined from the engine load Q and rotational speed Ne are in this region ■ If the throttle valve 5 on the trap side is fully opened and the throttle valve 6 on the catalyst device side is fully opened to allow the entire amount of exhaust gas to flow into the trap 3, the carbon that is dominant in this region I will flow into the trap 3. Since it is collected and re-burned continuously and quickly, no clogging occurs.

これに対して、運転条件が第10図の低中速負荷域Hに
ある場合に、トラップ側の絞り弁5を全開にし、触媒装
置側の絞り弁6を全開にして、排気の全量を今度は目封
じなしの触媒装置4に流す。
On the other hand, when the operating conditions are in the low-medium speed load range H shown in Fig. 10, the throttle valve 5 on the trap side is fully opened, the throttle valve 6 on the catalyst device side is fully open, and the entire amount of exhaust gas is reduced. is passed through the catalyst device 4 without plugging.

この領域■での排気はSOFを酸化処理するに十分な温
度(約200℃以上)であるため、この領域■で支配的
となるSOFが触媒装置4により酸化処理される。
Since the exhaust gas in this region (2) has a temperature sufficient to oxidize the SOF (approximately 200° C. or higher), the SOF that is dominant in this region (2) is oxidized by the catalyst device 4.

この場合、触媒装置4には目封じがないため、排気が流
路4Aをストレートに流れるので、カーボンは触媒装置
4に捕集されることなく、下流へと放出される。このた
め、この領域■で使用される機会が多くでも、カーボン
により触媒装置4に目詰まりを生ずることはなり・。な
お、大気中に放出されるカーボンは、その絶対量が少な
り1ので、環境を汚染するものではない。
In this case, since the catalyst device 4 is not sealed, the exhaust gas flows straight through the flow path 4A, so that carbon is discharged downstream without being captured by the catalyst device 4. Therefore, even if the catalyst is often used in this region (3), the catalyst device 4 will not be clogged with carbon. Note that the absolute amount of carbon released into the atmosphere is small, so it does not pollute the environment.

こうして、目詰まりを防止しつつノ(−ティキュレート
を低減することができることになって〜する。
In this way, it is possible to reduce the amount of ticulate while preventing clogging.

さて、カーボンを多く排出するエンジンでは、カーボン
がそのまま大気中へ放出されな〜1よう(こ、第10図
で領域Iを低中速負荷域にまで拡大する必要がある。し
かしながら、領域Iを低中速負荷域のほうに拡大すると
その分排気温度が低下して、トラップの再生を行うこと
ができなくなるので、単純に拡大することはできない。
Now, in an engine that emits a large amount of carbon, the carbon is not directly released into the atmosphere (1) In Fig. 10, it is necessary to expand region I to the low and medium speed load range. If it is expanded to the low-medium speed load range, the exhaust temperature will drop accordingly, making it impossible to regenerate the trap, so it cannot be simply expanded.

このため、カーボンを多く排出するエンジンを領域■と
の境界近辺で艮(運転すると、トラ・ノブの再生が十分
に行なわれず、目詰まりに至る場合が生ずる。
For this reason, if an engine that emits a large amount of carbon is operated near the boundary with region (1), the tiger knob may not be regenerated sufficiently and may become clogged.

また、急加速により運転条件が領域Iに飛び込んだ直後
のような場合は、排気温度が再生に十分な温度に達して
いても、トラップ容量のためトラップが十分に昇温しな
いので、この場合も再生が行なわれにくい。このため、
加減速の繰り返しによりカーボンが焼損限界堆積量に達
してしまうこともある。
In addition, immediately after the operating conditions jump into region I due to sudden acceleration, even if the exhaust gas temperature has reached a temperature sufficient for regeneration, the trap will not heat up sufficiently due to the trap capacity, so in this case as well. Regeneration is difficult. For this reason,
Repeated acceleration and deceleration may cause the amount of carbon deposited to reach the burnout limit.

この発明はこのような従来の課題に着目してなされたも
ので、カーボンの排出量の多いエンノンであっても、ト
ラップの目詰まりの防止をはかる装置を提供することを
目的とする。
The present invention has been made in view of these conventional problems, and an object of the present invention is to provide a device that prevents trap clogging even with ennon, which discharges a large amount of carbon.

(課題を解決するための手段) この発明は、第1図に示すように、2つに分岐した排気
通I!31の一方31Aに介装され、複数の流路の出口
と入口を交互に目封じしたトラップ32と、他方の分岐
通路31Bに介装され複数の流路を有する触媒装置33
と、2つの分岐通路31 A、31 Bへの排気の導入
を切換える手段34と、前記トラップ32を昇温させる
装置35と、前記トラップ32の再生温度を境界にして
運転域を高速高負荷域Iと低中速負荷域■の2つに区分
けする手段36と、実際のエンノンの負荷Qと回転数N
eをそれぞれ検出するセンサ3.7.38と、これら検
出値から定まる運転条件が前記2つに区分けされたいず
れの運転域I、Hに属するかを判定する手段39と、高
速高負荷域Iにあることが判定された場合には前記トラ
ップ32に、低中速負荷域■であることが判定された場
合には前記触媒装置33にそれぞれ排気が流れるように
前記排気導入切換手段34を制御する手段40と、前記
トランプ32が再生時期にあるかどうかを判定する手段
41と、この再生時期になると前記トラップ32の側に
排気の流れる運転域が拡大するように前記境界を中速負
荷域までシフトして運転域を区分けする手段42と、同
じく再生時期なると前記検出値から定まる運転条件がこ
のシフトにより拡大された領域にあるかどうかを判定す
る手段43と、この拡大された領域で前記昇温装置35
を作動させる手段44とを設けた。
(Means for Solving the Problems) As shown in FIG. 1, the present invention provides an exhaust vent I! A trap 32 is installed in one of the branch passages 31A and has a plurality of flow passages, and a trap 32 is installed in the other branch passage 31B and has a plurality of flow passages.
, a means 34 for switching the introduction of exhaust gas into the two branch passages 31A and 31B, a device 35 for raising the temperature of the trap 32, and a device 35 for changing the operating range to a high speed and high load range with the regeneration temperature of the trap 32 as a boundary. Means 36 for dividing into two areas, I and low-medium speed load range■, and the actual load Q and rotational speed N of the ennon.
sensors 3, 7, and 38 for detecting e, respectively, means 39 for determining which of the two operating ranges I and H the operating conditions determined from these detected values belong to, and high-speed and high-load range I. The exhaust gas introduction switching means 34 is controlled so that the exhaust gas flows to the trap 32 when it is determined that the load is in the low-medium speed load range, and to the catalyst device 33 when it is determined that the load is in the low-medium speed load range. means 40 for determining whether or not the playing card 32 is in a regeneration period; and means 41 for determining whether or not the playing card 32 is at a regeneration time; Means 42 divides the operating range by shifting to 0. Similarly, at regeneration time, means 43 determines whether or not the operating conditions determined from the detected value are in the range expanded by this shift. Temperature raising device 35
means 44 for activating the .

(作用) トラップ32の再生時期にあることが判定されると、再
生操作が開始される。
(Operation) When it is determined that it is time to regenerate the trap 32, a regeneration operation is started.

この場合、トラップ32の昇温装置35を設けであるこ
とから、トラップ32が再生温度にまで達する運転域が
拡大する。このため、再生操作時に、境界シフト手段4
2にてトラップに排気を流す領域を拡大しても、トラッ
プの再生が効率良く行われる。
In this case, since the temperature raising device 35 for the trap 32 is provided, the operating range in which the trap 32 reaches the regeneration temperature is expanded. Therefore, during the playback operation, the boundary shift means 4
Even if the region through which exhaust gas flows into the trap is expanded in step 2, the trap can be efficiently regenerated.

(実施例) 第2図は一実施例のシステム図で、基本的な構成は先に
提案した装置と同様である。図において排気通路2が2
つに分岐され、一方の分岐通路2Aに触媒付きトラップ
3が、他方の分岐通路2Bに触媒装置4が介装される。
(Embodiment) FIG. 2 is a system diagram of an embodiment, and the basic configuration is the same as the previously proposed device. In the figure, exhaust passage 2 is
A trap 3 with a catalyst is installed in one branch passage 2A, and a catalyst device 4 is installed in the other branch passage 2B.

触媒付きトラップ3には、セラミック等の多孔質部材か
らなるハニカム状格子により多数の流路3Aが形成され
、流路3Aの出口と入口とが封鎖材3Bにより交互に目
封じされている。これに対して触媒装置4にも、セラミ
ック等の多孔質部材からなるハニカム状格子に上り流路
4Aが多数形成されるものの、流路4Aは総て目封じさ
れていない。
A large number of flow channels 3A are formed in the catalyst trap 3 by a honeycomb-like lattice made of a porous member such as ceramic, and the outlets and inlets of the flow channels 3A are alternately sealed with sealing materials 3B. On the other hand, although the catalyst device 4 also has a large number of upward flow passages 4A formed in a honeycomb-like lattice made of a porous member such as ceramic, all of the flow passages 4A are not sealed.

上記トラップ3と触媒装置4の各下流にはそれぞれバタ
フライ型の絞り弁5,6が介装され、これらの絞り弁5
,6はこれらに対応して設けられた絞り弁駆動装置7,
8にて駆動される。
Butterfly-type throttle valves 5 and 6 are installed downstream of the trap 3 and the catalyst device 4, respectively.
, 6 is a throttle valve drive device 7, which is provided correspondingly.
8.

この場合、絞り弁駆動装置7.8は、たとえば負圧制御
弁とダイヤ7ラムアクチユエータあるいはステンビング
モータなどから構成され、絞り弁駆動装置7,8は絞り
弁5,6が全開と全開の2位置をとるように対応する絞
り弁5,6を駆動する。
In this case, the throttle valve drive device 7.8 is composed of, for example, a negative pressure control valve, a diamond 7 ram actuator, or a stevening motor. The corresponding throttle valves 5 and 6 are driven to take two positions.

絞り弁5,6とその駆動装置7,8は第1図の排気導入
切換手段34を構成している。
The throttle valves 5, 6 and their drive devices 7, 8 constitute the exhaust gas introduction switching means 34 shown in FIG.

なお、絞り弁5,6の取り付は位置は、トラップ3およ
び触媒装置4の上流側であってもさしつかえない。2つ
の分岐通路2Aと2Bは、絞り弁5.6の下流において
合流する。
Note that the throttle valves 5 and 6 may be installed upstream of the trap 3 and the catalyst device 4. The two branch passages 2A and 2B meet downstream of the throttle valve 5.6.

一方、吸気通路9と分岐点上流の排気通路にそれぞれ常
開のバタフライ型絞り弁10,11が介装され、これら
の絞り弁10.11はこれらに対応して設けられた絞り
弁駆動装置12,13にて駆動される。これら絞り弁1
0,11とその駆動装置12.13は第1図の昇温装置
35を構成するものである。
On the other hand, normally open butterfly-type throttle valves 10 and 11 are interposed in the intake passage 9 and the exhaust passage upstream of the branch point, respectively, and these throttle valves 10 and 11 are driven by a throttle valve drive device 12 provided correspondingly. , 13. These throttle valves 1
0 and 11 and their driving devices 12 and 13 constitute the temperature raising device 35 in FIG.

15は半導体式圧力センサで、トラップ3の前後差圧Δ
Pを検出する。16はポテンショメータから構成されア
クセルレバ−開度(エンノン負荷)Qを検出するセンサ
、17はエンジン1の回転数Neを検出するセンサ(ク
ランク角センサ)である。
15 is a semiconductor pressure sensor, which detects the differential pressure Δ across the trap 3.
Detect P. A sensor 16 includes a potentiometer and detects the accelerator lever opening (enron load) Q, and a sensor 17 detects the rotational speed Ne of the engine 1 (crank angle sensor).

これらセンサ15〜17からの信号は、マイクロコンビ
ュータカらなるコントロールユニット21に入力され、
コントロールユニット21では第4図に示すところにし
たがって、4つの駆動装置7.8,12.13に開閉信
号を出力する。
Signals from these sensors 15 to 17 are input to a control unit 21 consisting of a microcomputer.
The control unit 21 outputs opening/closing signals to the four drive devices 7.8, 12.13 as shown in FIG.

第4図はコントロールユニット21のCPUにて実行さ
れるルーチンである。
FIG. 4 shows a routine executed by the CPU of the control unit 21.

このルーチンを詳述する前に、制御の大略を述べておく
。カーボンの排出量の比較的多いエンジンでは、第10
図において領域■との境界近辺での運転が長引くとトラ
ップの再生が十分でなくなリ、目詰まりすることがある
。このため、この例ではトラップが目詰まりしたかどう
か、つまりトラップの再生時期になったかどうかを判定
し、再生時期になると、トラップの昇温装置を作動させ
てトラップの再生を行わせる。
Before explaining this routine in detail, an outline of the control will be described. For engines with relatively high carbon emissions, the 10th
In the figure, if the operation near the boundary with area (3) is prolonged, the trap will not be regenerated sufficiently and may become clogged. Therefore, in this example, it is determined whether the trap is clogged, that is, whether it is time to regenerate the trap, and when the regeneration time comes, the trap temperature raising device is activated to regenerate the trap.

この場合、昇温装置を用いると、トラップが再生温度に
達する運転域が広くなる。このため、再生操作を行うと
きに、第3図で示すように、流路切換ラインを、破線位
置から一点鎖線位置へと、中速負荷域側へ大幅にシフト
すればトラップの再生を効率良く行うことができる。な
お、再生終了後は流路切換えラインをもとの破線の位置
に戻す。
In this case, if a temperature raising device is used, the operating range in which the trap reaches the regeneration temperature is widened. Therefore, when performing a regeneration operation, as shown in Figure 3, if the flow path switching line is significantly shifted from the dashed line position to the dashed-dotted line position toward the medium-speed load range side, trap regeneration can be efficiently performed. It can be carried out. Note that after the regeneration is completed, the flow path switching line is returned to the original position indicated by the broken line.

第4図に戻り、Slではアクセルレバ−開度Qと回転数
Neを読み込む。
Returning to FIG. 4, at Sl, the accelerator lever opening degree Q and rotational speed Ne are read.

S2はS7〜S9.S20とともに、再生時期になった
かどうかを判断する部分で、tJS1図の再生時期判定
手段41の機能を果たす。S2では再生時期であるかど
うかをみて、再生時期にないと判定すればS3に進む。
S2 is S7-S9. Along with S20, this part determines whether or not it is the reproduction time, and functions as the reproduction time determination means 41 in the tJS1 diagram. In S2, it is checked whether it is the playback time or not, and if it is determined that it is not the playback time, the process advances to S3.

この場合、7ラグFの値にて再生時期を判断するように
してあり、再生時期にない場合はF=0となっている。
In this case, the reproduction time is determined based on the value of 7 lag F, and if it is not the reproduction time, F=0.

S3では第5図の流路切換マツプAを読み出す。In S3, the flow path switching map A shown in FIG. 5 is read out.

このマツプAは第10図の特性と同じであり、境界はト
ラップの再生温度に相当する。第5図のマツプはROM
に記憶されており、このROMにて第1図の運転域区分
は手段36の機能が果たされる。
This map A has the same characteristics as in FIG. 10, and the boundary corresponds to the regeneration temperature of the trap. The map in Figure 5 is ROM
This ROM performs the function of means 36 for operating range classification in FIG.

S4はS12とともに第1図の運転域判定手段39の機
能を果たす部分である。ここではエンジンの負荷Qと回
転数Neから定まる運転条件が第5図に示したいずれの
領域I、IIに属するかをみて、高速高負荷域Iにあれ
ばS5に進み、この逆に低中速負荷域■にあればS6に
進む。
S4, together with S12, is a part that performs the function of the driving range determining means 39 shown in FIG. Here, we check to which region I or II shown in Fig. 5 the operating conditions determined from the engine load Q and rotational speed Ne belong, and if it is in the high-speed, high-load region I, we proceed to S5; If the load is in the fast load range ■, proceed to S6.

S5と86は第1図の制御手段40の機能を果たす部分
である。まずS5ではトラップ側の絞り弁5を全開にす
る一方で、触媒装置側の絞り弁6を全開にして、徘×の
全量をトラップ3に流す。
S5 and 86 are parts that perform the function of the control means 40 in FIG. First, in S5, the throttle valve 5 on the trap side is fully opened, and the throttle valve 6 on the catalyst device side is fully opened to allow the entire amount of Wandering x to flow into the trap 3.

S6ではこの逆に絞り弁5,6を操作して、排気の全量
を触媒装置4に流す。
In S6, the throttle valves 5 and 6 are operated in the opposite direction to allow the entire amount of exhaust gas to flow into the catalyst device 4.

S7ではトラップ捕集限界時の差圧ΔP waxのマツ
プを読み出す。
In S7, a map of the differential pressure ΔP wax at the trap collection limit is read out.

S8ではこのマツプをそのときの回転と負荷から検索し
、芙際の差圧ΔPと比較する。そして、ΔP≧ΔP m
axであれば再生時期にあると判断してS9に進む。S
9ではフラグを立てる(F=1とする)。
In S8, this map is searched based on the rotation and load at that time, and compared with the differential pressure ΔP at the edge. And ΔP≧ΔP m
If it is ax, it is determined that it is time for reproduction, and the process proceeds to S9. S
At 9, a flag is set (F=1).

S10では、トラップ3の昇温装置を作動させない状態
にしておく(吸気絞り弁10と排気絞り弁11を開く)
In S10, the temperature raising device of the trap 3 is kept inactive (the intake throttle valve 10 and the exhaust throttle valve 11 are opened).
.

一方、S2で再生時期にあると判断された場合はS11
に進む。
On the other hand, if it is determined in S2 that it is time for regeneration, S11
Proceed to.

Sllは第1図の境界シフト手段42の機能を果たす部
分で、ここでは第5図のマツプAに代えて第6図の流路
切換マツプBを読み出す。このマツプBでは2つの領域
r’、n’の境界が第5図の場合よりも中速負荷域の側
に大きくシフトされている。
Sll is a portion that performs the function of the boundary shifting means 42 in FIG. 1, and here, instead of the map A in FIG. 5, the channel switching map B in FIG. 6 is read out. In this map B, the boundary between the two regions r' and n' is shifted more toward the medium speed load region than in the case of FIG.

S12〜S14はS4〜S6と同様である。S12 to S14 are similar to S4 to S6.

ただし、運転条件が領域■′にある場合はさらにS15
に進む。
However, if the operating conditions are in the area ■', S15
Proceed to.

S15と316は第1図の拡大域判定手段43の機能を
果たす部分である。S15では第7図のマツプCを読み
出す。第7図では、第6図の領域1′と第5図の領域■
との差の領域、つまりトラップに排気の流れる領域が拡
大した分がbとして設定されている。なお、領域aは第
5図の領域Iに等しい。
S15 and 316 are parts that perform the function of the enlarged area determining means 43 in FIG. At S15, map C in FIG. 7 is read out. In Figure 7, area 1' in Figure 6 and area ■ in Figure 5 are shown.
The area of difference between the two, that is, the area where the exhaust gas flows into the trap is expanded, is set as b. Note that area a is equal to area I in FIG.

316ではエンノンの負荷Qと回転数Neから定まる運
転条件が第7図に示した領域すに属するかどうかをみて
、領域すにあればS17進む。
At step 316, it is checked whether the operating conditions determined from the load Q and the rotational speed Ne of the ennon belong to the range shown in FIG. 7. If the operating conditions are within the range shown in FIG.

S17は第1図の作動手段44の機能を果たす部分で、
ここでは吸気と排気の両方を絞る。これらの操作により
、排気温度がトラップの再生温度まで高められ、トラッ
プ3の再生が行なわれる。
S17 is a part that performs the function of the actuating means 44 in FIG.
Here, both intake and exhaust are throttled. Through these operations, the exhaust gas temperature is raised to the regeneration temperature of the trap, and the trap 3 is regenerated.

318では再生時間をカウントし、S19に進む。S1
9ではカウントした再生時間を所定時間(たとえば10
分)と比較し、所定時間経過すれば、再生を終了したと
判断して、S20に進む。S20では7ラグFを降ろす
In step 318, the playback time is counted, and the process advances to step S19. S1
9, the counted playback time is set to a predetermined time (for example, 10
If a predetermined period of time has elapsed, it is determined that the playback has ended and the process proceeds to S20. In S20, lower the 7 lag F.

ここで、この例の作用を説明する。Here, the operation of this example will be explained.

トラップ3の前後差圧よりトラップ3の再生時期にある
ことが判定されると、再生操作が開始される。
When it is determined from the differential pressure across the trap 3 that it is time to regenerate the trap 3, a regeneration operation is started.

この場合、トラップの昇温装置を設けであることから、
トラ7プが再生温度にまで達する運転域が拡大する。こ
のため、再生操作時に、第3図に示したようにトラ7プ
に排気を流す領域を拡大しても、トラップの再生が効率
良く行われる。このため、カーボンの多く排出されるエ
ンノンが、領域Hの近辺で継続して運転されることがあ
っても、再生操作時になれば、昇温装置を用いてトラッ
プの再生が十分に行なわれるので、百詰まりすることが
ない。
In this case, since a trap temperature raising device is provided,
The operating range in which Trap 7 reaches the regeneration temperature is expanded. Therefore, even if the region through which exhaust gas flows into the trap 7 is expanded as shown in FIG. 3 during the regeneration operation, the trap can be regenerated efficiently. Therefore, even if Ennon, which emits a large amount of carbon, is continuously operated near area H, the trap will be regenerated sufficiently using the temperature raising device when it comes time for regeneration operation. , never get stuck.

なお、昇温装置による再生操作が必要となるといっても
、効率的にトラップが再生されるので、その使用頻度は
非常に小さく、したがって昇温装置を作動させることに
よるエンジン性能への悪影響は最小限に抑えられている
Although regeneration operations using the heating device are required, the traps are efficiently regenerated, so the frequency of use is extremely small, and therefore the negative impact on engine performance due to operating the heating device is minimal. It is kept to a minimum.

実施例では、トラップの前後差圧から再生時期を判定し
ているが、公知の運転履歴(エンジン回転数の積算値や
走行即離等)で行うこともできる。
In the embodiment, the regeneration timing is determined based on the differential pressure across the trap, but it may also be determined based on the known driving history (integrated value of engine rotational speed, immediate departure from running, etc.).

トラップの昇温装置も実施例のものに限られることはな
く、吸気絞りや排気絞りだけあるいはトラップ入口にヒ
ーターを設けたものなど、要はトラップ温度を上昇させ
るものであれば構わない。また、排気通路の分岐点に設
けた単一の絞り弁でも流路の切換を行わせることができ
る。
The temperature raising device for the trap is not limited to that of the embodiment, and any device that increases the trap temperature may be used, such as only an intake throttle, an exhaust throttle, or a heater provided at the trap inlet. Furthermore, the flow path can be switched using a single throttle valve provided at a branch point of the exhaust path.

(発明の効果) この発明は、再生時期になるとトラップに徘×を導入す
る運転域を拡大するとともに、この拡大された領域では
昇温装置を用いてトラップの再生を行わせるようにした
ため、カーボンの排出量が多いエンジンであっても、ト
ラップを目詰まりさせることがない。
(Effects of the Invention) This invention expands the operating range in which wandering is introduced into the trap at the time of regeneration, and in this expanded range, the trap is regenerated using a temperature raising device. Even if the engine has a large amount of emissions, the trap will not become clogged.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明のクレーム対応図、第2図は一実施例
のシステム図、第3図はこの実施例での流路切換ライン
の変更を示す領域図、第4図はこの実施例の制御動作を
説明するための流れ図、第5図ないし第7図は第4図に
おいで使用されるマツプ内容を示す領域図である。 第8図は先に提案した装置のシステム図、第9図は先に
提案した装置のエンノン負荷に対するパーティキュレー
ト排出量の特性図、第10図は先に提案した装置の運転
領域図である。 1・・・エンジン、2・・・排気通路、2 A、2 B
・・・分岐通路、3・・・目封じされた触媒付きトラッ
プ、4・・・触媒装置、5,6・・・絞り弁、7,8・
・・絞9弁駆動装置、10・・・吸気絞り弁、11・・
・排気絞り弁、12.13・・・絞り弁駆動装置、15
・・・圧力センサ、16・・・アクセルレバ−開度セン
サ(エンジン負荷センサ)、17・・・エンジン回転数
センサ、21・・・コントロールユニット、31・・・
排気1路、 31 A。 31B・・・分岐通路、32・・・目封じしたトラップ
、33・・・触媒装置、34・・・排気導入切換手段、
35・・・昇温装置、36・・・運転域区分は手段、3
7・・・エンジン負荷センサ、38・・・エンジン回転
数センサ、39・・・運転域判定手段、40・・・制御
手段、41・・・再生時期判定手段、42・・・境界シ
フト手段、43・・・拡大域判定手段、44・・・作動
手段。
Fig. 1 is a diagram corresponding to the claims of this invention, Fig. 2 is a system diagram of one embodiment, Fig. 3 is a region diagram showing changes in the flow path switching line in this embodiment, and Fig. 4 is a diagram of this embodiment. Flowcharts for explaining control operations, and FIGS. 5 to 7 are area diagrams showing the contents of the map used in FIG. 4. FIG. 8 is a system diagram of the previously proposed device, FIG. 9 is a characteristic diagram of the particulate emission amount with respect to ennon load of the previously proposed device, and FIG. 10 is an operating range diagram of the previously proposed device. 1... Engine, 2... Exhaust passage, 2 A, 2 B
... Branch passage, 3... Trap with sealed catalyst, 4... Catalyst device, 5, 6... Throttle valve, 7, 8...
... Throttle 9 valve drive device, 10... Intake throttle valve, 11...
・Exhaust throttle valve, 12.13... Throttle valve drive device, 15
... Pressure sensor, 16... Accelerator lever opening sensor (engine load sensor), 17... Engine speed sensor, 21... Control unit, 31...
1 exhaust, 31A. 31B... Branch passage, 32... Sealed trap, 33... Catalyst device, 34... Exhaust introduction switching means,
35... Temperature raising device, 36... Operating range classification is means, 3
7... Engine load sensor, 38... Engine rotation speed sensor, 39... Operating range determining means, 40... Control means, 41... Regeneration timing determining means, 42... Boundary shift means, 43... Expansion area determination means, 44... Actuation means.

Claims (1)

【特許請求の範囲】[Claims] 2つに分岐した排気通路の一方に介装され、複数の流路
の出口と入口を交互に目封じしたトラップと、他方の分
岐通路に介装され複数の流路を有する触媒装置と、2つ
の分岐通路への排気の導入を切換える手段と、前記トラ
ップを昇温させる装置と、前記トラップの再生温度を境
界にして運転域を高速高負荷域と低中速負荷域の2つに
区分けする手段と、実際のエンジンの負荷と回転数をそ
れぞれ検出するセンサと、これら検出値から定まる運転
条件が前記2つに区分けされたいずれの運転域に属する
かを判定する手段と、高速高負荷域にあることが判定さ
れた場合には前記トラップに、低中速負荷域であること
が判定された場合には前記触媒装置にそれぞれ排気が流
れるように前記排気導入切換手段を制御する手段と、前
記トラップが再生時期にあるかどうかを判定する手段と
、この再生時第になると前記トラップの側に排気の流れ
る運転域が拡大するように前記境界を中速負荷域までシ
フトして運転域を区分けする手段と、同じく再生時期な
ると前記検出値から定まる運転条件がこのシフトにより
拡大された領域にあるかどうかを判定する手段と、この
拡大された領域で前記昇温装置を作動させる手段とを設
けたことを特徴とするエンジンの排気浄化装置。
a trap that is interposed in one of the two branched exhaust passages and alternately seals the outlets and inlets of the plurality of flow passages; a catalyst device that is interposed in the other branched passage and has the plurality of flow passages; means for switching the introduction of exhaust gas into two branch passages, a device for raising the temperature of the trap, and a regeneration temperature of the trap that divides the operating range into two, a high-speed, high-load range and a low-medium-speed load range. a sensor for detecting the actual engine load and rotational speed, a means for determining which of the two operating ranges the operating conditions determined from these detected values belong to, and a high-speed, high-load range. means for controlling the exhaust gas introduction switching means so that the exhaust gas flows into the trap when it is determined that the speed is in the low-medium speed load region, and to the catalyst device when it is determined that the speed is in the low-medium speed load region; means for determining whether or not the trap is in a regeneration period; and a means for determining whether or not the trap is in a regeneration period, and shifting the boundary to a medium speed load area to expand the operation range so that the operation range where exhaust gas flows to the side of the trap expands at the time of regeneration. means for classifying, means for determining whether the operating conditions determined from the detected value are in a region expanded by this shift at the regeneration time, and means for operating the temperature raising device in this expanded region. An engine exhaust purification device characterized by being provided with an engine exhaust purification device.
JP2029985A 1990-02-09 1990-02-09 Exhaust gas purifier of engine Pending JPH03233119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2029985A JPH03233119A (en) 1990-02-09 1990-02-09 Exhaust gas purifier of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2029985A JPH03233119A (en) 1990-02-09 1990-02-09 Exhaust gas purifier of engine

Publications (1)

Publication Number Publication Date
JPH03233119A true JPH03233119A (en) 1991-10-17

Family

ID=12291254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2029985A Pending JPH03233119A (en) 1990-02-09 1990-02-09 Exhaust gas purifier of engine

Country Status (1)

Country Link
JP (1) JPH03233119A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07189656A (en) * 1993-12-28 1995-07-28 Nippondenso Co Ltd Exhaust emission control device for internal combustion engine
EP0690210A1 (en) * 1994-06-29 1996-01-03 Konstantin N. Prof.Dr.-Ing. Pattas Process and device for controllably regenerating a diesel soot filter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07189656A (en) * 1993-12-28 1995-07-28 Nippondenso Co Ltd Exhaust emission control device for internal combustion engine
EP0690210A1 (en) * 1994-06-29 1996-01-03 Konstantin N. Prof.Dr.-Ing. Pattas Process and device for controllably regenerating a diesel soot filter

Similar Documents

Publication Publication Date Title
US7337609B2 (en) Diesel exhaust system variable backpressure muffler
EP0831209B1 (en) A device for purifying the exhaust gas of an internal combustion engine
US6655133B2 (en) Exhaust gas purifier for internal combustion engine
US5582002A (en) Method of and an apparatus for controlled regeneration of a diesel soot filter
US6742329B2 (en) Exhaust emission control system of diesel engine
JPH07189655A (en) Exhaust emission control device for engine
JPH0481513A (en) Exhaust purifying device for diesel engine
JPH03233119A (en) Exhaust gas purifier of engine
JPH0544436A (en) Exhaust gas purifying device for internal combustion engine
JP2002188493A (en) Exhaust emission control system for diesel engine
KR102131704B1 (en) Air reverse circulation system for DPF back washing and DPF back washing method using the same
JPH1047112A (en) Exhaust emission control device for internal combustion engine
JP2005207242A (en) Regeneration control device for particulate filter
JPH03233120A (en) Exhaust gas purifier of engine
JP2005155532A (en) Exhaust emission control device
JPH037010B2 (en)
JP5739605B2 (en) Engine exhaust purification system
JPH03242412A (en) Exhaust emission control device for engine
JPH0544439A (en) Exhaust gas purifying device for diesel engine
JP3975498B2 (en) Exhaust brake device for diesel engine
JPH0614016Y2 (en) Exhaust gas purification device for diesel engine
JP3003213B2 (en) Engine exhaust purification device
JPH0330571Y2 (en)
JPH04101013A (en) Exhaust emission control device for engine
JPH04134116A (en) Exhauster for diesel engine