JPH07188802A - Oxide dispersion strengthened cr base sintered alloy and its production - Google Patents

Oxide dispersion strengthened cr base sintered alloy and its production

Info

Publication number
JPH07188802A
JPH07188802A JP5333969A JP33396993A JPH07188802A JP H07188802 A JPH07188802 A JP H07188802A JP 5333969 A JP5333969 A JP 5333969A JP 33396993 A JP33396993 A JP 33396993A JP H07188802 A JPH07188802 A JP H07188802A
Authority
JP
Japan
Prior art keywords
powder
sintered alloy
mechanical alloying
sintered
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5333969A
Other languages
Japanese (ja)
Other versions
JP2978047B2 (en
Inventor
Yasushi Yamamoto
裕史 山本
Isamu Otsuka
勇 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP5333969A priority Critical patent/JP2978047B2/en
Publication of JPH07188802A publication Critical patent/JPH07188802A/en
Application granted granted Critical
Publication of JP2978047B2 publication Critical patent/JP2978047B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To improve the toughness of sintered alloy by preventing a raw material powder from being exposed to oxidation in the time interval after mechanical alloying to sintering. CONSTITUTION:After the raw material powder, in which Y2O3 of <=0.1mum average particle diameter is minutely dispersed by 0.2-2.0% in the matrix of Cr base metal containing >=65% Cr, is once stored in nitrogen gas atmosphere and nitrogen is stuck on the surface of powder particle, it is subjected to sintering. By precipitating chrome nitride at the crystal boundary of sintered alloy and causing a strain to metal lattice, the deformability is increased so as to improve toughness.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は酸化物分散強化型Cr基
耐熱焼結合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxide dispersion strengthened Cr-based heat resistant sintered alloy.

【0002】[0002]

【従来技術及び問題点】出願人は、以前に、高温におけ
る強度及び耐酸化性にすぐれた酸化物分散強化耐熱焼結
合金を提案した(特開平4−325651)。
2. Description of the Related Art The applicant has previously proposed an oxide dispersion strengthened heat resistant sintered alloy having excellent strength and oxidation resistance at high temperatures (Japanese Patent Laid-Open No. 4-325651).

【0003】この焼結合金に使用する原料粉末は、Cr
基金属(実質的にCrからなる金属又はCrを約65%以
上含有する金属)粉末及びY23の酸化物粉末を、アト
ライタ装置(高エネルギー攪拌ボールミル)の中で攪拌し
てメカニカルアロイング処理を施し、金属マトリックス
中に、平均粒径0.1μm以下のY23を重量%で0.2〜2.0
%微細分散させたものである。
The raw material powder used for this sintered alloy is Cr
Mechanical alloying by stirring base metal (metal consisting essentially of Cr or metal containing about 65% or more Cr) powder and Y 2 O 3 oxide powder in an attritor device (high energy stirring ball mill). The metal matrix is treated with Y 2 O 3 having an average particle size of 0.1 μm or less in an amount of 0.2 to 2.0% by weight.
% Finely dispersed.

【0004】しかし、これら粉末粒子は変形能が非常に
小さくて脆いため、焼結によって得られる製品は靱性に
乏しく、衝撃等のエネルギー作用を受けると割れ等が生
ずる不都合がある。
However, since these powder particles have a very small deformability and are brittle, the products obtained by sintering have poor toughness, and there is a disadvantage that cracks and the like occur when subjected to energy such as impact.

【0005】ところで、これら粒子はアトライタ装置に
より微細化されるから、表面が活性状態になっている。
このため、粉末形成後はできるだけ速やかに焼結を行な
うことが望ましい。しかし、焼結を行なうまで粉末を長
時間保存せねばならないことがある。このとき、大気中
に長時間放置すると、大気中に含まれる酸素及び水分等
の影響を受けて、粒子表面が酸化しやすく、その状態で
焼結を行なうと焼結品の高温圧縮クリープ強度が著しく
低下する問題があった。
By the way, since these particles are miniaturized by an attritor device, the surface is in an active state.
Therefore, it is desirable to sinter as soon as possible after powder formation. However, it may be necessary to store the powder for a long time before sintering. At this time, if left in the atmosphere for a long time, the surface of the particles is easily oxidized due to the influence of oxygen and moisture contained in the atmosphere, and if sintering is performed in this state, the high temperature compression creep strength of the sintered product will increase. There was a problem of a significant decrease.

【0006】[0006]

【発明が解決しようとする課題】本発明は、Cr基金属
のマトリックス中に平均粒径0.1μm以下のY23を重量
%で0.2〜2.0%微細分散させてなる焼結合金の靱性を改
善することを目的とする。本発明は、メカニカルアロイ
ング処理後、焼結を行なうまでの間に、粉末粒子の表面
が酸化を受けないようにすることを更に目的とする。
DISCLOSURE OF THE INVENTION The present invention has the toughness of a sintered alloy obtained by finely dispersing 0.2 to 2.0% by weight of Y 2 O 3 having an average particle size of 0.1 μm or less in a matrix of Cr-based metal. Intended to improve. A further object of the present invention is to prevent the surface of the powder particles from being oxidized after the mechanical alloying treatment and before the sintering.

【0007】[0007]

【課題を解決するための手段】本発明は、前記2つの課
題を一挙に解決するもので、メカニカルアロイング処理
で得られた焼結用原料粉末を、焼結を行なうまでの間、
窒素ガスの雰囲気中で一旦保存し、粉末粒子の表面に窒
素を付着させた後で焼結を行なうようにしたものであ
る。Cr基金属(Crを65%以上含有)のマトリックス中
に平均粒径0.1μm以下のY23を0.2〜2.0%微細分散さ
せた焼結合金の結晶粒界に、窒化クロムを析出させる。
金属組織における窒化クロムの面積率は、0.5〜5%が望
ましい。
Means for Solving the Problems The present invention is to solve the above-mentioned two problems all at once, until the raw material powder for sintering obtained by the mechanical alloying treatment is sintered.
The powder is temporarily stored in a nitrogen gas atmosphere, and nitrogen is attached to the surface of the powder particles, and then the powder particles are sintered. Chromium nitride is deposited on the crystal grain boundaries of a sintered alloy in which Y 2 O 3 having an average particle size of 0.1 μm or less is finely dispersed by 0.2 to 2.0% in a matrix of Cr-based metal (containing 65% or more of Cr).
The area ratio of chromium nitride in the metal structure is preferably 0.5 to 5%.

【0008】Cr基金属として次のものを例示すること
ができる。 (a) 実質的にCrからなる金属。 (b) Fe:0%を超えて20%以下、及び残部実質的にC
rからなる金属。 (c) Al、Mo、W、Nb、Ta、Hf及びAl−Ti
から構成される群から選択される少なくとも一種が0%
を超えて合計量で10%以下、及び残部実質的にCrから
なる金属。 (d) Ti:0.1〜2.0%、及び残部実質的にCrからなる
金属。 (e) Fe:0%を超えて20%以下、Al、Mo、W、N
b、Ta、Hf及びAl−Tiから構成される群から選
択される少なくとも一種が0%を超えて合計量で10%以
下、及び残部実質的にCrからなる金属。 (f) Fe:0%を超えて20%以下、Ti:0.1〜2.0%、
及び残部実質的にCrからなる金属。 (g) Fe:0%を超えて20%以下、Ti:0.1〜2.0%、
Al、Mo、W、Nb、Ta、Hf及びAl−Tiから
構成される群から選択される少なくとも一種が0%を超
えて合計量で10%以下、及び残部実質的にCrからなる
金属。 なお、上記(a)乃至(g)の金属は、Si、Mn等の不純物
を合計量で5%以下含んでいても差支えない。
The following can be exemplified as the Cr-based metal. (a) A metal consisting essentially of Cr. (b) Fe: more than 0% and 20% or less, and the balance substantially C
A metal composed of r. (c) Al, Mo, W, Nb, Ta, Hf and Al-Ti
0% of at least one selected from the group consisting of
A metal whose total amount exceeds 10% and the balance is substantially Cr. (d) Ti: a metal consisting of 0.1 to 2.0% and the balance substantially Cr. (e) Fe: more than 0% and 20% or less, Al, Mo, W, N
A metal in which at least one selected from the group consisting of b, Ta, Hf, and Al-Ti exceeds 0% to a total amount of 10% or less, and the balance substantially consists of Cr. (f) Fe: more than 0% and 20% or less, Ti: 0.1 to 2.0%,
And a metal consisting essentially of the balance Cr. (g) Fe: more than 0% and 20% or less, Ti: 0.1 to 2.0%,
A metal in which at least one selected from the group consisting of Al, Mo, W, Nb, Ta, Hf, and Al-Ti exceeds 0% to a total amount of 10% or less, and the balance substantially consists of Cr. The metals (a) to (g) may contain impurities such as Si and Mn in a total amount of 5% or less.

【0009】[0009]

【作用】窒素ガス中での保存中、粉末粒子の活性表面に
窒素が付着する。このように粒子表面に窒素が付着した
粉末を焼結に付すと、粒界部に窒化クロムが析出する。
この窒化クロムの析出によって金属格子に歪みが生じ、
粒界の変形能が高められ、靱性が向上する。特に1300℃
以上の高温における靱性が著しく改善される。メカニカ
ルアロイング処理によって粉末粒子の表面が活性状態に
なっていても、窒素ガスの雰囲気中で保存するから、粒
子表面の酸化は防止される。
Function During storage in nitrogen gas, nitrogen adheres to the active surface of the powder particles. When the powder having nitrogen adhered to the surface of the particles is subjected to sintering as described above, chromium nitride is precipitated at the grain boundary portion.
This precipitation of chromium nitride causes strain in the metal lattice,
The deformability of the grain boundaries is increased and the toughness is improved. Especially 1300 ℃
The toughness at the above high temperatures is remarkably improved. Even if the surface of the powder particles is activated by the mechanical alloying treatment, the powder particles are stored in a nitrogen gas atmosphere, so that the surface of the particles is prevented from being oxidized.

【0010】[0010]

【発明の効果】焼結品は、粒界部に析出した窒化クロム
によって高温靱性が向上しており、耐衝撃性及び耐割れ
性にすぐれている。従って、高温用構造材に使用したと
き、衝撃荷重を受けて突然破損するような事態を回避す
ることができる。粒子表面が酸化による劣化を受けてい
ない粉末を原料に用いて焼結するから、焼結時にその悪
影響を受けることはない。従って、焼結品は所定の高温
圧縮クリープ強度を確保することができ、常に安定した
品質の焼結製品を製造することができる。この焼結品
は、高温で所定の圧縮クリープ強度を確保しつつ、1300
℃以上の高温での靱性にすぐれているから、これら両特
性が重要視されるウオーキングビームコンベヤー式加熱
炉のスキッドボタンに使用することにより、耐久性の向
上、メンテナンスの軽減等の諸効果をもたらすことがで
きる。
EFFECTS OF THE INVENTION The sintered product has improved high temperature toughness due to chromium nitride precipitated at the grain boundary portion, and is excellent in impact resistance and crack resistance. Therefore, when it is used as a high temperature structural material, it is possible to avoid a situation in which it is suddenly damaged due to an impact load. Since the powder whose particle surface has not been deteriorated by oxidation is used as the raw material for sintering, it is not adversely affected during the sintering. Therefore, the sintered product can secure a predetermined high temperature compression creep strength and can always produce a sintered product of stable quality. This sintered product is 1300
Since it has excellent toughness at high temperatures of ℃ or more, when used in the skid button of a walking beam conveyor type heating furnace where both these characteristics are important, it brings various effects such as improved durability and reduced maintenance. be able to.

【0011】[0011]

【実施例】Fe15%、残部実質的にCrからなり、平均
粒度約100μmのFe−Cr合金粉末2kgと、平均粒度約1
μmのY23粉末20gをアトライタ装置に投入し、48時
間、メカニカルアロイング処理を行なった。使用したア
トライタ装置は三井化工機製のMA−1Dであり、タン
ク内には3/8インチのSUJ-2鋼球を17.5kg充填し、装置の
運転中は雰囲気ガスとしてArガスを導入した。このよ
うにして得られた粉末(2)を、図1に示す容器(4)の中に
装入する。施蓋密閉後、弁(6)(8)を開いてN2ガスを入
口導管(10)から導入し、所定時間、出口導管(12)から排
出して、容器(2)内の空気をN2ガスと完全に置換してか
ら、弁(6)(8)を閉じる。このようにして、粉末(2)は容
器(4)のN2ガス雰囲気中で保存することができる。
[Example] 2 kg of Fe-Cr alloy powder having an average particle size of about 100 μm, consisting of 15% Fe and the balance substantially Cr, and an average particle size of about 1
20 g of the Y 2 O 3 powder of μm was put into the attritor device, and mechanical alloying treatment was performed for 48 hours. The attritor device used was MA-1D manufactured by Mitsui Kakoki, 17.5 kg of 3/8 inch SUJ-2 steel balls was filled in the tank, and Ar gas was introduced as an atmospheric gas during the operation of the device. The powder (2) thus obtained is charged into the container (4) shown in FIG. After sealing the lid, the valves (6) and (8) were opened to introduce N 2 gas from the inlet conduit (10) and discharge it from the outlet conduit (12) for a predetermined time to remove the air in the container (2) to N 2. 2 After completely replacing the gas, close the valves (6) and (8). In this way, the powder (2) can be stored in the N 2 gas atmosphere of the container (4).

【0012】次に、上記要領にてメカニカルアロイング
後、N2ガス中で3か月間保存した粉末と、メカニカル
アロイング後、大気中で3か月間放置した粉末と、更に
メカニカルアロイング処理直後の粉末を、夫々、1250
℃、1200kgf/cm2の条件でHIP(熱間静水圧加圧)処理
に付し、直径50mm、長さ70mmの焼結品を作った。
Next, after the mechanical alloying as described above, the powder was stored in N 2 gas for 3 months, the powder was left in the atmosphere for 3 months after the mechanical alloying, and immediately after the mechanical alloying treatment. Powder of 1250
HIP (hot isostatic pressurization) treatment was performed under the conditions of ℃ and 1200 kgf / cm 2 to make a sintered product having a diameter of 50 mm and a length of 70 mm.

【0013】N2ガス中で保存後の粉末をHIP処理し
た焼結品の金属組織を図2に示す。図2より、粒界に沿
って窒化クロムが局部的に析出していることがわかる。
メカニカルアロイング処理直後の粉末をHIP処理した
焼結品の金属組織を図3に示す。図3において観察され
る粒界には、窒化クロムの析出は認められない。
FIG. 2 shows the metallographic structure of the sintered product obtained by HIPing the powder after storage in N 2 gas. From FIG. 2, it can be seen that chromium nitride is locally precipitated along the grain boundaries.
FIG. 3 shows the metal structure of the sintered product obtained by HIP-treating the powder immediately after the mechanical alloying treatment. No precipitation of chromium nitride is observed at the grain boundaries observed in FIG.

【0014】高温圧縮試験 得られた焼結品について高温圧縮試験を行なった。試験
は、1350℃の電気炉の中で、ラムの昇降により、圧縮荷
重0.5kgf/mm2を反復負荷して行なった。荷重反復パター
ンは、圧縮荷重0.5kgf/mm2の負荷を5秒間、無負荷5秒間
(負荷状態から無負荷状態への移行1秒、無負荷状態3
秒、無負荷状態から負荷状態への移行1秒)の10秒サイク
ルにて、焼結品に104回圧縮荷重を作用させて変形量(単
位:%)を調べた。なお、変形量は、試験前の長さをL
1、試験後の長さをL2としたとき、次式により求めた。 圧縮変形量(%) = (L1−L2)/L1 × 100
[0014] was carried out hot compression test for the sintered article obtained hot compression test. The test was performed in an electric furnace at 1350 ° C. by repeatedly raising and lowering a ram and applying a compressive load of 0.5 kgf / mm 2 . Repeated load pattern is a compression load of 0.5 kgf / mm 2 for 5 seconds and no load for 5 seconds.
(Transition from loaded state to unloaded state 1 second, unloaded state 3
The amount of deformation (unit:%) was examined by applying a compressive load to the sintered product 10 4 times in a 10-second cycle of 1 second from the no-load state to the loaded state). For the amount of deformation, the length before the test is L
1. When the length after the test was L2, it was determined by the following formula. Compressive deformation amount (%) = (L1-L2) / L1 x 100

【0015】N2ガス中で3か月間保存した粉末の焼結
品の変形量は約1.2%、大気中で3か月間放置した粉末
の焼結品の変形量は約5%、メカニカルアロイング処理
直後の粉末の焼結品の変形量は約0.8%であった。N2
ス中で保存した粉末の焼結品は、メカニカルアロイング
処理後直ちに焼結したものよりも、変形量が約0.4%大
きくなっているが、その差異は非常に小さく、ほぼ同等
の高温圧縮強度を備えているといえる。これに対して、
大気中で保存した粉末の焼結品は変形量が大きく、酸化
による影響を受けていることがわかる。
The amount of deformation of the powder sintered product stored in N 2 gas for 3 months is about 1.2%, the amount of deformation of the powder sintered product left in the atmosphere for 3 months is about 5%, mechanical alloying The amount of deformation of the sintered powder product immediately after the treatment was about 0.8%. The amount of deformation of the powder sintered product stored in N 2 gas is about 0.4% larger than that of the product sintered immediately after mechanical alloying treatment, but the difference is very small and the temperature is almost the same. It can be said that it has compressive strength. On the contrary,
It can be seen that the sintered product of the powder stored in the air has a large amount of deformation and is affected by oxidation.

【0016】高温曲げ試験 メカニカルアロイング後、N2ガス中で3か月間保存し
た粉末の焼結品(窒化クロム析出)と、メカニカルアロイ
ング直後の粉末の焼結品(窒化クロムの析出なし)につい
て、曲げ試験を行なって靱性を調べた。曲げ試験は、JI
S R 1601に準拠し、常温、1000℃及び1300℃の温度で実
施した。各試験温度における荷重と撓み量との関係を図
4、図5及び図6に示す。図4及び図5から、常温及び
1000℃の温度では、窒化クロムの析出効果はあまり認め
られない。しかし、図6から明らかなように、1300℃の
温度では、窒化クロムを析出していない焼結品は、10kg
fの荷重により約0.25mm撓んだだけで破断しているのに
対し、窒化クロムの析出した焼結品は10kgfの荷重で破
断することなく、さらに1mm以上撓んでも破断に至ら
ず、1300℃の高温における靱性が著しく改善されている
ことがわかる。なお、試験片が約1.5mm撓んだときに試
験を中止した。
High temperature bending test Sintered product of powder (chromium nitride precipitation) stored in N 2 gas for 3 months after mechanical alloying and sintered product of powder immediately after mechanical alloying (no precipitation of chromium nitride) For, the bending test was conducted to examine the toughness. Bending test is JI
According to SR 1601, it was carried out at room temperature, 1000 ° C and 1300 ° C. The relationship between the load and the bending amount at each test temperature is shown in FIGS. 4, 5 and 6. From Figure 4 and Figure 5,
At a temperature of 1000 ° C, the precipitation effect of chromium nitride is not so noticeable. However, as is clear from Fig. 6, at a temperature of 1300 ° C, the sintered product that does not precipitate chromium nitride is 10 kg.
While it fractures only by bending about 0.25mm under the load of f, the sintered product with chromium nitride deposited does not break under the load of 10kgf, and even if it bends more than 1mm, it does not break, and It can be seen that the toughness at a high temperature of ° C is significantly improved. The test was stopped when the test piece was bent by about 1.5 mm.

【図面の簡単な説明】[Brief description of drawings]

【図1】N2ガスを充填した容器中で、酸化物分散強化
型焼結合金用の原料粉末を保存する方法を説明する図で
ある。
FIG. 1 is a diagram illustrating a method of storing a raw material powder for an oxide dispersion strengthened sintered alloy in a container filled with N 2 gas.

【図2】メカニカルアロイング処理後、N2ガス中で3
か月間保存した粉末をHIP処理した焼結品の金属組織
を示す図である。
[FIG. 2] After mechanical alloying, 3 in N 2 gas
It is a figure which shows the metallographic structure of the sintered product which carried out HIP processing of the powder preserve | saved for a month.

【図3】メカニカルアロイング処理直後の粉末をHIP
処理した焼結品の金属組織を示す図である。
FIG. 3: HIP the powder immediately after the mechanical alloying treatment.
It is a figure which shows the metallographic structure of the processed sintered product.

【図4】常温における曲げ試験の結果を示すグラフであ
る。
FIG. 4 is a graph showing the results of a bending test at room temperature.

【図5】1000℃の温度における曲げ試験の結果を示すグ
ラフである。
FIG. 5 is a graph showing the results of a bending test at a temperature of 1000 ° C.

【図6】1300℃の温度における曲げ試験の結果を示すグ
ラフである。
FIG. 6 is a graph showing the results of a bending test at a temperature of 1300 ° C.

【符号の説明】[Explanation of symbols]

(2) 粉末 (4) 容器 (6)(8) 弁 (10) N2ガス入口導管 (12) N2ガス出口導管(2) Powder (4) Container (6) (8) Valve (10) N 2 gas inlet conduit (12) N 2 gas outlet conduit

【手続補正書】[Procedure amendment]

【提出日】平成6年6月20日[Submission date] June 20, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】N2ガスを充填した容器中で、酸化物分散強化
型焼結合金用の原料粉末を保存する方法を説明する図で
ある。
FIG. 1 is a diagram illustrating a method of storing a raw material powder for an oxide dispersion strengthened sintered alloy in a container filled with N 2 gas.

【図2】メカニカルアロイング処理後、N2ガス中で3
か月間保存した粉末をHIP処理した焼結品の金属組織
を示す図面代用顕微鏡写真である。
[FIG. 2] After mechanical alloying, 3 in N 2 gas
It is a drawing substitute micrograph which shows the metal structure of the sintered product which carried out HIP processing of the powder preserve | saved for a month.

【図3】メカニカルアロイング処理直後の粉末をHIP
処理した焼結品の金属組織を示す図面代用顕微鏡写真で
ある。
FIG. 3: HIP the powder immediately after the mechanical alloying treatment.
It is a drawing substitute micrograph which shows the metallographic structure of the processed sintered product.

【図4】常温における曲げ試験の結果を示すグラフであ
る。
FIG. 4 is a graph showing the results of a bending test at room temperature.

【図5】1000℃の温度における曲げ試験の結果を示すグ
ラフである。
FIG. 5 is a graph showing the results of a bending test at a temperature of 1000 ° C.

【図6】1300℃の温度における曲げ試験の結果を示すグ
ラフである。
FIG. 6 is a graph showing the results of a bending test at a temperature of 1300 ° C.

【符号の説明】 (2) 粉末 (4) 容器 (6)(8) 弁 (10) N2ガス入口導管 (12) N2ガス出口導管[Explanation of symbols] (2) Powder (4) Container (6) (8) Valve (10) N 2 gas inlet conduit (12) N 2 gas outlet conduit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Crを65%(重量%、以下同じ)以上含有
するCr基金属のマトリックス中に平均粒径0.1μm以下
のY23を0.2〜2.0%微細分散させた焼結合金におい
て、焼結合金は結晶粒界に窒化クロムの析出物を有して
いることを特徴とする、酸化物分散強化型Cr基焼結合
金。
1. A sintered alloy in which 0.2 to 2.0% of Y 2 O 3 having an average particle size of 0.1 μm or less is finely dispersed in a matrix of Cr-based metal containing 65% or more by weight of Cr (the same applies hereinafter). The oxide-dispersion-strengthened Cr-based sintered alloy is characterized in that the sintered alloy has a precipitate of chromium nitride at a grain boundary.
【請求項2】 メカニカルアロイング処理によりCr基
金属のマトリックス中に酸化物を微細分散させた粒子を
作り、これら粒子を原料粉末に用いて焼結品の製造を行
なうCr基酸化物分散強化焼結合金の製法において、メ
カニカルアロイング処理で得られた焼結用原料粉末を、
窒素ガスの雰囲気中で一旦保存した後で焼結を行なうこ
とを特徴とする、酸化物分散強化型Cr基焼結合金の製
法。
2. A Cr-based oxide dispersion-strengthened calcination for producing particles by finely dispersing an oxide in a matrix of Cr-based metal by mechanical alloying and using these particles as raw material powder to produce a sintered product. In the method of producing bond gold, the raw material powder for sintering obtained by mechanical alloying treatment,
A method for producing an oxide dispersion-strengthened Cr-based sintered alloy, which is characterized by performing storage after being stored once in a nitrogen gas atmosphere.
JP5333969A 1993-12-28 1993-12-28 Oxide dispersion strengthened Cr-based sintered alloy and method for producing the same Expired - Lifetime JP2978047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5333969A JP2978047B2 (en) 1993-12-28 1993-12-28 Oxide dispersion strengthened Cr-based sintered alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5333969A JP2978047B2 (en) 1993-12-28 1993-12-28 Oxide dispersion strengthened Cr-based sintered alloy and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07188802A true JPH07188802A (en) 1995-07-25
JP2978047B2 JP2978047B2 (en) 1999-11-15

Family

ID=18272022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5333969A Expired - Lifetime JP2978047B2 (en) 1993-12-28 1993-12-28 Oxide dispersion strengthened Cr-based sintered alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JP2978047B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5022707A (en) * 1973-07-02 1975-03-11
JPH04325651A (en) * 1991-04-26 1992-11-16 Kubota Corp Oxide dispersion strengthened heat resistant sintered alloy
JPH05263179A (en) * 1992-03-17 1993-10-12 Kubota Corp Chromium base heat resistant sintered alloy and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5022707A (en) * 1973-07-02 1975-03-11
JPH04325651A (en) * 1991-04-26 1992-11-16 Kubota Corp Oxide dispersion strengthened heat resistant sintered alloy
JPH05263179A (en) * 1992-03-17 1993-10-12 Kubota Corp Chromium base heat resistant sintered alloy and its manufacture

Also Published As

Publication number Publication date
JP2978047B2 (en) 1999-11-15

Similar Documents

Publication Publication Date Title
KR100490912B1 (en) High-toughness and high-strength sintered ferritic steel and method of producing the same
JPH0811801B2 (en) Method for producing dispersion strengthened composite metal powder
TW589388B (en) Cold work steel alloy and manufacturing method of parts by method of powder metallurgy
EP0510495B1 (en) Oxide-dispersion-strengthened heat-resistant sintered alloy
JP3017764B2 (en) Abrasion resistant composite roll and method for producing the same
JP2013234387A (en) Material with high wear resistance
JP2001514703A (en) Steel manufactured by integrated powder metallurgy and its heat treatment tool and use of the steel for the tool
US20160207110A1 (en) Corrosion resistant article and methods of making
JPH07188802A (en) Oxide dispersion strengthened cr base sintered alloy and its production
US10179943B2 (en) Corrosion resistant article and methods of making
EP3481969B1 (en) Process for manufacturing chromium and iron bearing agglomerates with different addition of manganese, nickel and molybdenum bearing materials
JPH07179961A (en) Production of cr-based sintered alloy reinforced by oxide dispersion
Belyakov et al. Evolution of submicrocrystalline iron containing dispersed oxides under mechanical milling followed by consolidation
EP1068915A1 (en) High-strength metal solidified material and acid steel and manufacturing methods thereof
JPH01275724A (en) Manufacture of dispersion strengthened heat-resistant alloy
JP2002285289A (en) High strength ferritic stainless steel and production method therefor
JP2696624B2 (en) Oxide dispersion strengthened ferritic heat-resistant steel sheet
JPH08291355A (en) Chromium-base heat resistant alloy
Takaki Understanding of grain refining strengthening based on dislocation pile-up model
JPH06306514A (en) Production of sintered titanium alloy
JPH0297614A (en) Steel material transferring member in heating furnace
JPH0841577A (en) Oxide dispersion reinforced heat resistant sintered alloy excellent in toughness at high temperature
JPH0841578A (en) Oxide dispersion reinforced heat resistant sintered alloy excellent in toughness at high temperature
JPS6283403A (en) Production of high-hardness sintered alloy
JPH08159692A (en) Radiant tube

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990831