JPH07188760A - Production of low core loss grain-oriented silicon steel sheet - Google Patents
Production of low core loss grain-oriented silicon steel sheetInfo
- Publication number
- JPH07188760A JPH07188760A JP5337635A JP33763593A JPH07188760A JP H07188760 A JPH07188760 A JP H07188760A JP 5337635 A JP5337635 A JP 5337635A JP 33763593 A JP33763593 A JP 33763593A JP H07188760 A JPH07188760 A JP H07188760A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- annealing
- final
- grain
- plating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/14766—Fe-Si based alloys
- H01F1/14775—Fe-Si based alloys in the form of sheets
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、変圧器その他の電気
機器の鉄心としての用途に用いて好適な低鉄損方向性電
磁鋼板の製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a low iron loss grain oriented electrical steel sheet suitable for use as an iron core of a transformer or other electric equipment.
【0002】[0002]
【従来の技術】方向性電磁鋼板は、主として変圧器の鉄
心材料として用いられ、その磁気特性が良好であること
が要求される。特に鉄心として使用した場合には、エネ
ルギー損失が低いこと、即ち鉄損が低いことが重要であ
る。鉄損を下げるための従来の方策の一つとしては、圧
延方向と交わる向きに溝部を形成する技術がある。例え
ば特開昭59-197520 号公報には、最終仕上焼鈍前に圧延
方向とほぼ直角方向に線状疵を導入することにより、そ
こに磁極を生成させて磁区細分化を図り、ひいては鉄損
低減を図る技術が開示されている。2. Description of the Related Art Grain-oriented electrical steel sheets are mainly used as core materials for transformers, and are required to have good magnetic properties. Particularly when used as an iron core, it is important that the energy loss is low, that is, the iron loss is low. As one of conventional measures for reducing iron loss, there is a technique of forming a groove portion in a direction intersecting with the rolling direction. For example, in Japanese Patent Laid-Open No. 59-197520, a linear flaw is introduced in a direction substantially perpendicular to the rolling direction before the final finish annealing to generate a magnetic pole there, thereby subdividing a magnetic domain and eventually reducing iron loss. A technique for achieving the above is disclosed.
【0003】また、同様に圧延方向と交わる向きに、局
所的な化学的処理によって微細な2次再結晶粒を線状に
生成させて、磁界の磁極生成による磁区細分化効果にて
鉄損を低減させる技術が提案されている。すなわち、特
開昭60-114522 号公報には、含Alけい素鋼用スラブを熱
間圧延して得られた熱延板に必要な熱処理をしてから常
法に従う冷間圧延を施した鋼板表面上に、Sn又はそれら
の化合物等といった脱炭遅延剤を含む希薄溶液の局所的
付着させ、かかる脱炭遅延剤の作用により塗布領域を微
細な2次再結晶とすることが提案されている。同様に局
所的な化学的処理によって磁区細分化効果にて鉄損低減
を図る技術としては、特開昭60-96720号公報にも、最終
仕上焼鈍前の鋼板に局部加工を加えると共に表面上にSn
化合物をその領域に付着させる技術が開示されている。Similarly, fine secondary recrystallized grains are linearly generated by a local chemical treatment in a direction intersecting the rolling direction, and iron loss is caused by a magnetic domain subdivision effect by magnetic pole generation of a magnetic field. Techniques for reducing it have been proposed. That is, in JP-A-60-114522, a steel sheet obtained by subjecting a hot-rolled sheet obtained by hot rolling an slab for Al-containing silicon steel to necessary heat treatment and then cold rolling according to a conventional method It has been proposed that a dilute solution containing a decarburization retarder such as Sn or a compound thereof be locally adhered to the surface, and the action of the decarburization retarder causes the coated area to be fine secondary recrystallization. . Similarly, as a technique for reducing iron loss by a magnetic domain refining effect by a local chemical treatment, Japanese Patent Laid-Open No. 60-96720 discloses that a steel sheet before final finishing annealing is locally worked and Sn
Techniques for attaching compounds to the area are disclosed.
【0004】[0004]
【発明が解決しようとする課題】さて、発明者らは、さ
らなる鉄損低減を図るべく、方向性電磁鋼板の鉄損低減
のための上記した2つの技術、すなわち線状溝形成及び
局所的な化学的処理を組み合わせ、最終冷延板表面にエ
ッチングにて溝を形成し、引続きSn又はSn化合物を該溝
部に付着させることにより、最終仕上焼鈍後に溝下部に
微小粒界を形成させて磁極量を増加させることを試み
た。しかしながら、単に溝部へSn及びSn化合物を付着さ
せただけでは、付着部での2次粒粒界形成は可能である
ものの、2次粒そのものの結晶方位が、いわゆるゴス方
位から大きくずれる結果、磁束密度特性B8 が低下し、
ヒステリシス損が顕著に増大したため、鉄損はむしろ大
きく劣化した。SUMMARY OF THE INVENTION In order to further reduce the iron loss, the inventors of the present invention use the above-mentioned two techniques for reducing the iron loss of grain-oriented electrical steel sheets, namely, linear groove formation and local groove formation. By combining chemical treatment and forming grooves on the surface of the final cold rolled sheet by etching, and then depositing Sn or Sn compound on the grooves, a fine grain boundary is formed at the bottom of the grooves after final finishing annealing, and the amount of magnetic pole is increased. Tried to increase. However, although the secondary grain boundary can be formed in the adhered portion only by simply depositing Sn and the Sn compound in the groove portion, the crystal orientation of the secondary grain itself is largely deviated from the so-called Goss orientation, resulting in the magnetic flux. The density characteristic B 8 is lowered,
Since the hysteresis loss was significantly increased, the iron loss was rather deteriorated.
【0005】この発明は、ゴス方位からずれた2次再結
晶粒の生成を有利に抑制して、Sn及びその化合物の溝部
への付着による2次再結晶粒粒界形成効果を発揮させる
ことによって、溝形成による鉄損低減効果に加えてさら
なる鉄損低減を図ることのできる、低鉄損方向性電磁鋼
板の製造方法を提案することを目的とする。The present invention advantageously suppresses the formation of secondary recrystallized grains deviated from the Goth orientation and exerts the effect of forming secondary recrystallized grain boundaries by depositing Sn and its compound on the groove. An object of the present invention is to propose a method for producing a low iron loss grain-oriented electrical steel sheet, which is capable of further reducing iron loss in addition to the effect of reducing iron loss by forming grooves.
【0006】[0006]
【課題を解決するための手段】発明者らは、仕上焼鈍時
の2次再結晶の進行の挙動について検討を加えた結果、
特に最終冷間圧延後、鋼板表面に線状溝を形成し、しか
るのちに該溝部にSnをめっきにより形成する場合には、
最終昇温過程における昇温速度を所定の範囲にすること
よって初めて、磁気特性の向上が達成できることを見出
した。この発明は、上記の知見に立脚するものである。
すなわち、この発明は、含けい素鋼スラブを熱間圧延し
たのち、1回又は中間焼鈍を挟む2回以上の冷間圧延に
より最終板厚とし、その後脱炭焼鈍、次いで最終仕上焼
鈍を施す一連の工程によって方向性電磁鋼板を製造する
に当り、最終冷間圧延後、鋼板表面に連続又は非連続の
線状溝を形成し、しかるのちに該溝部にSnをめっきによ
り形成すること及び最終仕上焼鈍時の昇温過程におい
て、850 〜1050℃の間の昇温速度を5℃/hr 以上25℃/h
r 以下とすることを特徴とする低鉄損方向性電磁鋼板の
製造方法である。[Means for Solving the Problems] As a result of the inventors' investigations on the behavior of the progress of secondary recrystallization during finish annealing,
In particular, after the final cold rolling, to form a linear groove on the surface of the steel sheet, and then to form Sn in the groove portion by plating,
It has been found that the improvement of the magnetic properties can be achieved only by setting the temperature rising rate in the final temperature rising process within a predetermined range. The present invention is based on the above findings.
That is, the present invention is a series of hot-rolling a silicon steel slab, and then cold rolling one or more times with intermediate annealing to obtain a final plate thickness, followed by decarburization annealing and then final finishing annealing. In the production of the grain-oriented electrical steel sheet by the process of, after the final cold rolling, a continuous or discontinuous linear groove is formed on the surface of the steel sheet, and then Sn is plated on the groove portion and the final finish. In the temperature rising process during annealing, the temperature rising rate between 850 and 1050 ℃ should be 5 ℃ / hr or more and 25 ℃ / h or more.
The method for producing a low iron loss grain-oriented electrical steel sheet is characterized in that
【0007】[0007]
【作用】以下、この発明の解明経緯について説明する。
発明者らは、インヒビター構成要素としてAlを含むけい
素鋼スラブを熱間圧延及び冷間圧延して得た最終冷延板
に、溝部に線状に形成し、さらに該溝部にSnを付着させ
た鋼板について、最終仕上焼鈍時のSnの拡散挙動と、2
次再結晶粒の成長挙動とについて調査した。その調査に
よって、2次再結晶粒生成時に板厚方向のSnの分布が不
均一であると、Snによる表層の抑制力が不必要に強化さ
れてしまい、結果として中心層よりも方位の悪い2次粒
が生成することが判明した。それと併せて、2次再結晶
がおこる温度域にて昇温速度を低くすると、温度に対す
るSnの拡散距離が大になり、同時に2次再結晶の進行は
遅れるため、Snの板厚方向の分布が均一になってから2
次再結晶が進むようになり、方位の悪い粒は生成し得な
いこと、またSn付着部下部においては、2次再結晶粒の
界面エネルギーの低下することによって成長がそこで停
止し、粒界が生成することが判明したのである。The operation of the present invention will be described below.
The inventors of the present invention, in the final cold-rolled sheet obtained by hot rolling and cold rolling a silicon steel slab containing Al as an inhibitor constituent, linearly formed in the groove, and further Sn is attached to the groove. Diffusion behavior of Sn during final finish annealing for
The growth behavior of secondary recrystallized grains was investigated. According to the investigation, if the distribution of Sn in the plate thickness direction is non-uniform when secondary recrystallized grains are generated, the suppressing force of the surface layer by Sn is unnecessarily strengthened, and as a result, the orientation is worse than that of the central layer. It was found that secondary grains were formed. In addition, if the heating rate is lowered in the temperature range where secondary recrystallization occurs, the diffusion distance of Sn with respect to temperature increases, and the progress of secondary recrystallization is delayed at the same time. 2 after becoming uniform
The secondary recrystallization progresses, and grains with bad orientation cannot be generated. Also, in the lower part of the Sn adhesion part, the growth of the secondary recrystallized grains is stopped due to the reduction of the interface energy, and the grain boundaries are reduced. It turned out to generate.
【0008】上記の知見から、この発明に達するために
以下の実験を行った。C:0.068 wt%、Si:3.20wt%、
Mn:0.080 wt%、P:0.003 wt%、S:0.002 wt%、so
l Al:0.028 wt%、N:0.008 wt%、Se:0.024 wt%及
びSb:0.029wt%を含有する鋼塊を1420℃で28分間均熱
して十分にAlN, MnS, MnSeを固溶させたのち、熱間圧延
を施して2.7mm の板厚としてから、550 ℃で巻取り、次
いで冷間圧延によって1.5mm 厚にし、その後1100℃, 1
分間の中間焼鈍後、急冷したのち、0.23mmの最終板厚ま
で冷間圧延を行った。その後、幅0.15mm, 間隔7mmの線
状の非印刷部を有するレジストインキを鋼板表面に印刷
形成した。この線状の非印刷領域は、鋼板圧延方向に対
して直交する方向である。これらのサンプルをNaClを用
いた電解エッチング法にて線状非印刷領域に対応する鋼
板表面に深さ25μm の溝を形成したのちにSnめっきを、
種々のめっき量で行った。Based on the above findings, the following experiments were conducted to reach the present invention. C: 0.068 wt%, Si: 3.20 wt%,
Mn: 0.080 wt%, P: 0.003 wt%, S: 0.002 wt%, so
l An ingot containing Al: 0.028 wt%, N: 0.008 wt%, Se: 0.024 wt% and Sb: 0.029 wt% was soaked at 1420 ° C for 28 minutes to sufficiently dissolve AlN, MnS, MnSe. After that, hot rolling is applied to obtain a plate thickness of 2.7 mm, which is then wound at 550 ° C and then cold rolled to a thickness of 1.5 mm, and then 1100 ° C, 1
After the intermediate annealing for 1 minute, the material was rapidly cooled and then cold-rolled to a final thickness of 0.23 mm. After that, a resist ink having a linear non-printed portion having a width of 0.15 mm and an interval of 7 mm was printed on the surface of the steel sheet. This linear non-printed area is a direction orthogonal to the steel plate rolling direction. These samples were plated with Sn after forming a groove with a depth of 25 μm on the surface of the steel sheet corresponding to the linear non-printed area by electrolytic etching using NaCl.
Various plating amounts were used.
【0009】その後レジストインキを除去し、洗浄乾燥
したのち840 ℃、2分間の脱炭焼鈍を行った。そしてMg
O を主成分とする焼鈍分離剤を塗布した後、仕上焼鈍を
行った。この仕上げ焼鈍は、850 ℃で30時間保定後、11
50℃まで昇温速度を種々に代えて昇温を行ったものであ
る。引き続き純化焼鈍を行った。かくして得られた電磁
鋼板の磁気特性と昇温速度との関係を図1に示す。図1
から明らかなように、いずれのめっき量であっても、昇
温速度が5℃/hr 以上25℃/hr 以下である場合に良好な
電磁特性を示した。そして、昇温速度が5℃/hr未満で
は2次再結晶せず細粒組織となるために磁気特性は劣化
した。また、25℃/hr を超えると、Snめっきに伴う方位
の悪い粒の生成によって磁気特性は劣化した。After that, the resist ink was removed, and after washing and drying, decarburization annealing was performed at 840 ° C. for 2 minutes. And Mg
After applying an annealing separator containing O 2 as a main component, finish annealing was performed. This finish annealing was performed after holding for 30 hours at 850 ° C, then
The temperature was raised up to 50 ° C. at various heating rates. Purification annealing was subsequently performed. The relationship between the magnetic properties of the thus-obtained magnetic steel sheet and the heating rate is shown in FIG. Figure 1
As is clear from the above, good electromagnetic characteristics were exhibited when the heating rate was 5 ° C./hr or more and 25 ° C./hr or less at any plating amount. When the temperature rising rate is less than 5 ° C./hr, secondary recrystallization does not occur and a fine grain structure is formed, so that the magnetic properties are deteriorated. On the other hand, when the temperature exceeded 25 ° C / hr, the magnetic properties deteriorated due to the formation of grains with bad orientation due to Sn plating.
【0010】換言すれば、この発明を満足する範囲に
て、B8 が劣化することなしに溝部のSn付着効果によっ
て2次再結晶粒粒界が形成されそこで磁極が生成するた
めに、さらなる磁区細分化効果が加わり、鉄損低減を成
就することができるのである。また、そのSn付着は、連
続であっても非連続であってもその効果が何ら変わるこ
とはない。In other words, within the range satisfying the present invention, secondary recrystallized grain boundaries are formed by the Sn adhering effect of the groove portion without deterioration of B 8 and a magnetic pole is generated there. The addition of the subdivision effect makes it possible to achieve iron loss reduction. Further, the Sn adhesion does not change its effect whether it is continuous or discontinuous.
【0011】この発明の素材となる含けい素鋼スラブと
しては、方向性電磁鋼板として従来公知のいずれもが適
用できるが、インヒビター構成成分としてAlを含有させ
て、AlN インヒビターを用いるもの、あるいはAlN とMn
S 、MnSeとを併用したものが鉄損改善が著しい。代表的
な成分組成範囲を挙げると次のとおりである。As the silicon-containing steel slab used as the material of the present invention, any of the conventionally known grain-oriented electrical steel sheets can be applied. One containing Al as an inhibitor constituent and using an AlN inhibitor, or AlN And Mn
The combination of S and MnSe improves the iron loss significantly. The typical composition ranges of the components are as follows.
【0012】C:0.02〜0.09wt% Cは、γ変態を利用して熱延組織を改善するために0.02
wt%以上必要である。一方0.09wt%を超えると脱炭不良
となるので、0.02〜0.09wt%の範囲である。 Si:2.5 〜5.0 wt% Siは、電気抵抗を高めて鉄損を向上させるため2.5 wt%
以上必要である。一方5.0 wt%を超えるとぜい化が激し
く冷間圧延が困難となるので、2.5 〜5.0 wt%の範囲で
ある。C: 0.02 to 0.09 wt% C is 0.02 in order to improve the hot rolled structure by utilizing γ transformation.
More than wt% is required. On the other hand, if it exceeds 0.09 wt%, decarburization becomes poor, so the range is 0.02 to 0.09 wt%. Si: 2.5-5.0 wt% Si is 2.5 wt% because it increases electric resistance and improves iron loss.
The above is necessary. On the other hand, if it exceeds 5.0 wt%, embrittlement is severe and cold rolling becomes difficult, so the range is 2.5 to 5.0 wt%.
【0013】Al:0.01〜0.04wt% Alは主インヒビターである、AlN 析出のための基本成分
であり、0.01wt%未満ではAlN の析出量が足りず、逆に
0.04wt%を超えると析出するAlN が粗大化して抑制力が
劣化するので0.01〜0.04wt%の範囲である。 N:0.0055〜0.0100wt% Nも主インヒビターである、AlN の析出のための基本成
分であり、0.0055wt%未満ではAlN の析出量が足りず、
逆に0.0100wt%を超えると鋼スラブの加熱の際にガス化
して、フクレ等のトラブルの原因になるので0.0055〜0.
0100wt%の範囲とする。Al: 0.01 to 0.04 wt% Al is a main inhibitor and is a basic component for AlN precipitation. If it is less than 0.01 wt%, the precipitation amount of AlN is insufficient, and conversely.
If it exceeds 0.04 wt%, the precipitated AlN will be coarsened and the suppressing power will deteriorate, so it is in the range of 0.01 to 0.04 wt%. N: 0.0055 to 0.0100 wt% N is also the main inhibitor for the precipitation of AlN, which is the main inhibitor. If it is less than 0.0055 wt%, the precipitation amount of AlN is insufficient,
On the other hand, if it exceeds 0.0100 wt%, it will be gasified when heating the steel slab and cause problems such as blistering.
The range is 0100wt%.
【0014】Mnは、熱間圧延時の割れを防止するのに有
用であり、またMnS やMnSe等の副インヒビター利用の際
にはインヒビター形成成分としても有用となる。そのた
めには、0.02wt%以上必要である。但し0.3 wt%を超え
ると、これらMnS やMnSeをスラブ加熱により溶解させる
ことが困難となるので、その範囲は0.02〜0.3 wt%が望
ましい。S,SeはMnと結合して副インヒビターのMnS や
MnSeを析出させるので有用な成分である。この効果をも
たらすためには、0.005 wt%以上が必要であるが、一
方、0.040 wt%を超えると、析出物の粗大化が生じ磁気
特性の劣化を招くので0.005 〜0.040 wt%の範囲が好ま
しい。Mn is useful for preventing cracks during hot rolling, and is also useful as an inhibitor-forming component when using a secondary inhibitor such as MnS or MnSe. For that purpose, 0.02 wt% or more is necessary. However, if it exceeds 0.3 wt%, it becomes difficult to dissolve these MnS and MnSe by slab heating, so the range is preferably 0.02 to 0.3 wt%. S and Se combine with Mn to bind to MnS
It is a useful component because it precipitates MnSe. In order to bring about this effect, 0.005 wt% or more is required. On the other hand, when it exceeds 0.040 wt%, coarsening of precipitates causes deterioration of magnetic properties, so 0.005 to 0.040 wt% is preferable. .
【0015】さらに、他にインヒビター補強成分として
公知であるSb, Cu, Sn, P, Bi, As, B, Ge, V, Nb,
Cr等を含有しても良いことは勿論である。この目的のた
めには、Sbは0.005 〜0.060 wt%、Cu, Sn, Crは、0.03
〜0.30wt%、Biは0.005 〜0.020 wt%、P, Ge, V, N
b, Asは0.005 〜0.030 wt%、Bは0.0005〜0.0020wt%
の範囲の含有が好ましい。加えて、けい素鋼特有の熱間
圧延での割れを防止するために、Moを0.005 〜0.020 wt
%含有させることも可能である。In addition, Sb, Cu, Sn, P, Bi, As, B, Ge, V, Nb, which are known as inhibitor reinforcing components, are also known.
Of course, Cr and the like may be contained. For this purpose, Sb is 0.005-0.060 wt% and Cu, Sn, Cr are 0.03
~ 0.30 wt%, Bi 0.005 ~ 0.020 wt%, P, Ge, V, N
b, As 0.005 to 0.030 wt%, B 0.0005 to 0.0020 wt%
The range of inclusion is preferable. In addition, 0.005 to 0.020 wt% of Mo is added to prevent cracking in hot rolling peculiar to silicon steel.
% Can be included.
【0016】次に、この発明に従う製造方法について説
明する。上記成分を含有するけい素鋼スラブは、常法に
よりスラブ加熱された後、熱間圧延が施される。熱間圧
延のコイルは、1回又は中間焼鈍を挟む2回以上の冷間
圧延工程により、最終鋼板板厚とされるが、最終の冷間
圧延は、公知のように圧下率80〜95%の高圧下とするこ
とが好ましく、この範囲をはずれると、いずれの側でも
磁束密度が低下する。Next, the manufacturing method according to the present invention will be described. The silicon steel slab containing the above components is slab-heated by a conventional method and then hot-rolled. The coil of hot rolling is made into the final steel plate thickness by one or two or more cold rolling steps sandwiching intermediate annealing, but the final cold rolling is, as is well known, a reduction rate of 80 to 95%. It is preferable that the pressure is set to a high pressure, and if it deviates from this range, the magnetic flux density decreases on either side.
【0017】最終仕上冷延後は、鋼板表面に連続又は非
連続の線状溝を形成し、しかる後にSnめっきを施すこと
が、この発明の重要な要件である。かかる連続又は非連
続の線状溝は、圧延方向とほぼ直交する方向に形成する
ことが望ましい。線状溝の形成方法としては、ナイフの
刃先、レーザービーム、放電加工、電子ビーム法などで
もよいが、後に形成させるめっき処理との処理工程上の
連続性を考えると、エッチング法がより好ましい。この
エッチッング法は、鋼板表面にエッチングレジストを、
非塗布領域として圧延方向と直交する方向に連続または
非連続の線状領域を残存させて塗布焼き付けたのち、エ
ッチング処理を施すものである。溝の深さは、5〜35μ
m程度が好ましい。エッチング処理は、電解エッチング
など、従来公知のエッチング処理法であればよい。It is an important requirement of the present invention to form continuous or discontinuous linear grooves on the surface of the steel sheet after the final finish cold rolling and then perform Sn plating. It is desirable to form such continuous or discontinuous linear grooves in a direction substantially orthogonal to the rolling direction. The method for forming the linear groove may be a knife edge, a laser beam, an electric discharge machining, an electron beam method, or the like, but the etching method is more preferable in view of the continuity in the processing step with the plating processing to be formed later. This etching method uses an etching resist on the steel plate surface.
As a non-coating area, a linear area which is continuous or discontinuous in the direction orthogonal to the rolling direction is left to be applied and baked, and then an etching treatment is performed. Groove depth is 5-35μ
About m is preferable. The etching treatment may be any conventionally known etching treatment method such as electrolytic etching.
【0018】次いで形成された線状溝部に、Snめっきを
施す。Snめっきは、前掲特開昭60-114522 号公報に記載
されているようなSn又はSn化合物の希釈溶液あるいは希
釈懸濁液を塗布する方法にくらべて、付着量を制御しや
すく、密着性が良いというメリットがある。Snめっき
は、溝形成の際に用いたエッチングレジストを鋼板表面
に形成させたままでめっき処理を行い、所定の厚みにな
るSnめっきを行った後に、このエッチングレジストを除
去することよって達成される。めっき厚は、1μm未満
では効果が少なく、50μmを超えると、溝からSnがあふ
れて、ボックス炉による最終仕上げ焼鈍時にSnが転写す
る。よって1〜50μm の範囲とすることが好ましい。な
お、Snめっきとして、Sn−35%Niめっきなどの合金めっ
きについても使用することができる。Next, Sn plating is applied to the formed linear groove portion. Compared to the method of applying a diluted solution or a diluted suspension of Sn or Sn compound as described in JP-A-60-114522, Sn plating is easier to control the amount of adhesion and has better adhesion. It has the advantage of being good. The Sn plating is achieved by performing a plating treatment with the etching resist used for forming the groove formed on the surface of the steel sheet, performing Sn plating having a predetermined thickness, and then removing the etching resist. If the plating thickness is less than 1 μm, the effect is small, and if it exceeds 50 μm, Sn overflows from the groove, and Sn is transferred during final finish annealing in a box furnace. Therefore, it is preferably in the range of 1 to 50 μm. As the Sn plating, alloy plating such as Sn-35% Ni plating can also be used.
【0019】最終冷延後のコイルは、脱脂後、脱炭焼鈍
に供される。脱炭焼鈍は、公知の湿水素雰囲気中、750
〜900 ℃、60〜180 sec で行われる。脱炭焼鈍後のコイ
ルは焼鈍分離剤を塗布した後、コイル状に巻き取られ最
終仕上げ焼鈍に供される。この最終仕上げ焼鈍に際し、
850 〜1050℃の間の昇温速度を5℃/hr 以上25℃/hr 以
下とすることがこの発明の特徴の一つである。昇温速度
が5℃/hr 未満の場合も25℃/hr を超える場合も、既に
述べたとおり磁気特性が劣化する。After the final cold rolling, the coil is degreased and then subjected to decarburization annealing. Decarburization annealing is performed in a known wet hydrogen atmosphere at 750
It is carried out at ~ 900 ℃ and 60 ~ 180 sec. The coil after decarburization annealing is coated with an annealing separating agent, and then wound into a coil and subjected to final finish annealing. In this final finish annealing,
It is one of the features of the present invention that the rate of temperature rise between 850 and 1050 ° C is 5 ° C / hr or more and 25 ° C / hr or less. As described above, the magnetic properties are deteriorated when the heating rate is less than 5 ° C / hr and more than 25 ° C / hr.
【0020】最終焼鈍後のコイルは、残存する焼鈍分離
剤を除去した後、絶縁抵抗を高める必要のある場合は絶
縁コーティングを塗布して平坦化焼鈍を施し製品とされ
る。また製品は、プラズマジェット、レーザーもしくは
電子ビームの照射や、溝形成等の磁区細分化技術を適用
することは可能である。After the final annealing, the coil is made into a product by removing the remaining annealing separator and then applying an insulating coating if it is necessary to increase the insulation resistance and performing flattening annealing. In addition, it is possible to apply plasma jet, laser or electron beam irradiation, or magnetic domain subdivision technology such as groove formation to the product.
【0021】[0021]
【実施例】C:0.062 wt%、Si:3.3 wt%、Mn:0.076
wt%、Se:0.024 wt%、Al:0.025 及びN:0.008 を含
み、残部は実質的にFeの組成になるけい素鋼スラブを、
熱間圧延し、1050℃, 2min の焼鈍後、冷間圧延を施し
て、0.20mmの最終板厚まで圧延した。かかるコイルをグ
ラビアオフセット印刷にて圧延方向と80°をなす方向に
0.2 mm幅, 間隔3.5 mmの線状の非印刷領域を有するよう
に、エポキシ系樹脂を主成分とするインキをレジストと
して塗布形成した。インキ厚みは3μm である。Example: C: 0.062 wt%, Si: 3.3 wt%, Mn: 0.076
A silicon steel slab containing wt%, Se: 0.024 wt%, Al: 0.025 and N: 0.008, the balance being substantially Fe composition,
It was hot-rolled, annealed at 1050 ° C. for 2 minutes, cold-rolled, and rolled to a final plate thickness of 0.20 mm. Gravure offset printing this coil in the direction that makes 80 ° with the rolling direction.
An ink containing an epoxy resin as a main component was applied and formed as a resist so as to have linear non-printed areas having a width of 0.2 mm and a gap of 3.5 mm. The ink thickness is 3 μm.
【0022】次いで電解エッチングにて非印刷領域に対
応する鋼板の表面に溝部を形成させた。電解エッチング
は、NaCl電解液中において電流密度8A/dm2 で30s間行
って溝の深さを15μm とした。次いで、レジストを付着
させたままでSnの電気めっきを行った。電気めっきは、
フェノールスルフォン酸錫を主剤とする溶液で電流密度
10A/dm2 、浴温50℃の条件にて、エッチングにより形成
された溝部に種々のSn付着量にてめっきを行ったもので
ある。その後レジストインキを除去し、脱脂、乾燥を行
ったのち脱炭焼鈍を行い、最終仕上焼鈍を 850〜1050℃
間の昇温速度を変えて行った。2次再結晶焼鈍後の鋼板
の磁気特性について調べた結果を表1にまとめて示す。Then, a groove was formed on the surface of the steel sheet corresponding to the non-printed area by electrolytic etching. The electrolytic etching was carried out in a NaCl electrolytic solution at a current density of 8 A / dm 2 for 30 s so that the groove depth was 15 μm. Then, Sn electroplating was performed with the resist still attached. Electroplating is
Current density with a solution containing tin phenol sulfonate as the main component
The groove was formed by etching under conditions of 10 A / dm 2 and a bath temperature of 50 ° C. with various amounts of Sn deposition. After that, the resist ink is removed, degreasing and drying are performed, then decarburization annealing is performed, and final finishing annealing is performed at 850 to 1050 ° C.
The heating rate was changed during this period. Table 1 shows the results of examining the magnetic properties of the steel sheet after the secondary recrystallization annealing.
【0023】[0023]
【表1】 [Table 1]
【0024】[0024]
【発明の効果】この発明は、最終冷延板溝部へのSnの線
状付着を行った際の最終焼鈍時の昇熱速度を制御するこ
とによって、Sn付着に伴う、ゴス方位からずれた2次再
結晶粒の成長を抑制し、かつ結晶粒界をSn付着部にて生
成することによって、粒界の磁極生成による磁区線分化
を達成できる。これにより溝の磁区細分化効果に加えて
さらなる低鉄損化を図ることができる。EFFECTS OF THE INVENTION According to the present invention, by controlling the rate of temperature increase during final annealing when linearly depositing Sn to the groove portion of the final cold-rolled sheet, the deviation from the Goss orientation due to the Sn deposition 2 By suppressing the growth of the next recrystallized grains and generating the crystal grain boundaries at the Sn adhesion portion, the domain line differentiation can be achieved by the generation of the magnetic poles at the grain boundaries. This can further reduce the iron loss in addition to the effect of subdividing the magnetic domain of the groove.
【図1】Sn付着量、昇温速度と磁気特性との関係を示す
グラフである。FIG. 1 is a graph showing a relationship between a Sn deposition amount, a temperature rising rate, and magnetic characteristics.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 圭司 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 石田 昌義 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 千田 邦浩 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Keiji Sato, 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Prefecture Technical Research Division, Kawasaki Steel Co., Ltd. (72) Masayoshi Ishida, 1 Kawasaki-cho, Chuo-ku, Chiba (72) Inventor Kunihiro Senda 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Iron & Steel Co., Ltd.
Claims (1)
1回又は中間焼鈍を挟む2回以上の冷間圧延により最終
板厚とし、その後脱炭焼鈍、次いで最終仕上焼鈍を施す
一連の工程によって方向性電磁鋼板を製造するに当り、 最終冷間圧延後、鋼板表面に連続又は非連続の線状溝を
形成し、しかるのちに該溝部にSnをめっきにより形成す
ること及び最終仕上焼鈍時の昇温過程において、850 〜
1050℃の間の昇温速度を5℃/hr以上25℃/hr 以下とす
ることを特徴とする低鉄損方向性電磁鋼板の製造方法。1. After hot rolling a silicon-containing steel slab,
In producing a grain-oriented electrical steel sheet by a series of steps in which final sheet thickness is obtained by performing cold rolling once or two or more times with intermediate annealing sandwiched, then decarburization annealing, and then final finishing annealing. , Forming a continuous or discontinuous linear groove on the surface of the steel sheet, and then forming Sn in the groove portion by plating, and in the temperature rising process at the time of final finish annealing, 850 ~
A method for manufacturing a low iron loss grain-oriented electrical steel sheet, characterized in that a temperature rising rate between 1050 ° C. and 5 ° C./hr or more and 25 ° C./hr or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5337635A JPH07188760A (en) | 1993-12-28 | 1993-12-28 | Production of low core loss grain-oriented silicon steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5337635A JPH07188760A (en) | 1993-12-28 | 1993-12-28 | Production of low core loss grain-oriented silicon steel sheet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07188760A true JPH07188760A (en) | 1995-07-25 |
Family
ID=18310516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5337635A Pending JPH07188760A (en) | 1993-12-28 | 1993-12-28 | Production of low core loss grain-oriented silicon steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07188760A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017095745A (en) * | 2015-11-19 | 2017-06-01 | 新日鐵住金株式会社 | Grain oriented silicon steel sheet and method for manufacturing the same |
-
1993
- 1993-12-28 JP JP5337635A patent/JPH07188760A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017095745A (en) * | 2015-11-19 | 2017-06-01 | 新日鐵住金株式会社 | Grain oriented silicon steel sheet and method for manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2878687B1 (en) | Method for producing grain-oriented electrical steel sheet | |
KR101620763B1 (en) | Grain-oriented electrical steel sheet and method of producing the same | |
WO2016056501A1 (en) | Low-core-loss grain-oriented electromagnetic steel sheet and method for manufacturing same | |
KR101921401B1 (en) | Method for producing grain-oriented electrical steel sheet | |
CN110651058B (en) | Grain-oriented electromagnetic steel sheet and method for producing same | |
CN108699621B (en) | Method for producing grain-oriented electromagnetic steel sheet | |
WO2017006955A1 (en) | Grain-oriented electromagnetic steel sheet and method for manufacturing same | |
CN109844156B (en) | Hot-rolled steel sheet for producing electromagnetic steel sheet and method for producing same | |
WO2006132095A1 (en) | Grain-oriented magnetic steel sheet with extremely high magnetic property and process for producing the same | |
KR100336661B1 (en) | Very low iron loss grain oriented electrical steel sheet and method of producing the same | |
CN104838028B (en) | Grain-oriented electromagnetic steel sheet | |
JP3357578B2 (en) | Grain-oriented electrical steel sheet with extremely low iron loss and method for producing the same | |
JPH10121135A (en) | Production of grain oriented silicon steel sheet with minimal iron loss and high magnetic flux density | |
JP3846064B2 (en) | Oriented electrical steel sheet | |
JP2001073097A (en) | Nonoriented silicon steel sheet excellent in magnetic characteristic and workability, and its manufacture | |
JP2017106111A (en) | Manufacturing method of oriented electromagnetic steel sheet | |
JPH10324959A (en) | Grain oriented silicon steel sheet with extremely low iron loss, and its manufacture | |
KR930011405B1 (en) | Method of manufacturing an oriented silicon steel sheet having improved magnetic flux density | |
JP3928275B2 (en) | Electrical steel sheet | |
JP2023554123A (en) | Non-oriented electrical steel sheet and its manufacturing method | |
JPH07188760A (en) | Production of low core loss grain-oriented silicon steel sheet | |
KR20210107833A (en) | Grain-oriented electrical steel sheet and iron core using same | |
JPH06256846A (en) | Production of grain oriented electrical steel sheet having stable high magnetic flux density | |
JP2003089821A (en) | Method for producing ultrahigh magnetic flux density grain oriented silicon steel sheet | |
WO2020149333A1 (en) | Method for manufacturing grain-oriented electrical steel sheet |