JPH07187622A - Production of low-concentration no and method for measuring no2 - Google Patents

Production of low-concentration no and method for measuring no2

Info

Publication number
JPH07187622A
JPH07187622A JP35547893A JP35547893A JPH07187622A JP H07187622 A JPH07187622 A JP H07187622A JP 35547893 A JP35547893 A JP 35547893A JP 35547893 A JP35547893 A JP 35547893A JP H07187622 A JPH07187622 A JP H07187622A
Authority
JP
Japan
Prior art keywords
activated carbon
concentration
reaction tube
concn
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35547893A
Other languages
Japanese (ja)
Inventor
Eiji Suzuki
栄二 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP35547893A priority Critical patent/JPH07187622A/en
Publication of JPH07187622A publication Critical patent/JPH07187622A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PURPOSE:To inexpensively and everlastingly produce low-concn. NO and to provide a method for measurring NO2. CONSTITUTION:An activated carbon, which has been dipped in an aq. inorrg. strong acid soln. and dried, is packed in a reaction tube 1, the air contg. NO2 is passed through the reaction tube to reduce NO2 to NO, and low-concn. NO is produced. Meanwhile, the NO2 concn. is measured by measuring the NO concn. in the air before and behind the reaction tube. The inorg. strong acid is adsorbed on the activated carbon having a large specific surface, and hence the activatted carbon shares the role to provide a contact filed between the strong acid and the NO2. Consequetly, the NO2 is efficiently reduced in the air at a room temp., the low-concn. stable NO is inexpensiveely produced, and NO2 is measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、標準ガスとして用いら
れる低濃度NOの製造方法及び有害物質であるNO2の
測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing low concentration NO used as a standard gas and a method for measuring NO2 which is a harmful substance.

【0002】[0002]

【従来技術】燃焼排ガス中の二酸化窒素NO2は人体に
有害であり、また一酸化窒素NOは紫外線によって有害
なNO2に変換されるため、近年これらの窒素酸化物の
発生の防止あるいは除去のための研究が盛んに行われて
いるが、従来より空気あるいは水を含むNO2,NOの
分析には、NO2をNOに還元するための高温及び貴金
属触媒が必要とされていた。しかしこの貴金属触媒は、
使用時間と共に還元能力が低下するため交換を要する上
に、加熱用のヒータを必要とするために製造費や維持費
が高くつくという欠点があり、またこの装置を使用して
分析等の標準ガスとして用いられる低濃度NOガスを製
造する場合は、常に不純物としてNO2を含むという欠
点があった。
2. Description of the Related Art Nitrogen dioxide NO2 in combustion exhaust gas is harmful to the human body, and nitric oxide NO is converted into harmful NO2 by ultraviolet rays. Although much research has been done, high temperature and noble metal catalysts for reducing NO2 to NO have been conventionally required for the analysis of NO2 and NO containing air or water. However, this precious metal catalyst
It has the drawback that it requires replacement because the reducing ability decreases with the use time, and that it requires a heater for heating, resulting in high manufacturing costs and maintenance costs. When producing a low-concentration NO gas used as, there is a drawback that NO2 is always included as an impurity.

【0003】[0003]

【発明が解決しようとする課題】本発明は上記の問題点
に鑑み、空気の存在下で、室温での反応が可能であり、
高還元率でしかも長時間持続できるNO2のNOへの還
元方法を提供することを目的とするものである。
In view of the above problems, the present invention is capable of reacting at room temperature in the presence of air,
It is an object of the present invention to provide a method for reducing NO2 to NO that has a high reduction rate and can be maintained for a long time.

【0004】[0004]

【課題を解決するための手段】本発明による低濃度NO
の製造方法は、図1に示すように、無機強酸の水溶液に
浸漬して乾燥させた活性炭を入口及び出口を有する反応
室に充填し、この反応室にNO2を含有する空気を通し
て、NO2をNOに還元するものであり、また本発明に
よるNO2の測定方法は、上記反応室に通す前後の空気
のNO濃度を測定することにより、NO2濃度を測定す
るものである。
A low concentration NO according to the present invention
As shown in FIG. 1, the method for manufacturing the method of No. 2 is as follows. A reaction chamber having an inlet and an outlet is filled with activated carbon that is immersed in an aqueous solution of a strong inorganic acid and dried, and NO 2 is passed through the reaction chamber by passing air containing NO 2. The method for measuring NO2 according to the present invention is to measure the NO2 concentration by measuring the NO concentration of air before and after passing through the reaction chamber.

【0005】[0005]

【作用】活性炭は多孔性で比表面積が大きく通過空気と
の接触面積が大きいので、通常吸着材として使用されて
いるが、本発明はこの性質を利用して活性炭に無機強酸
を吸着させることにより、活性炭に強酸とNO2との接
触の場を提供する役割を担わせたものであり、これによ
ってNO2の空気中における室温での高効率の還元が可
能となった。
[Function] Since activated carbon is porous and has a large specific surface area and a large contact area with passing air, it is usually used as an adsorbent, but the present invention utilizes this property to adsorb an inorganic strong acid on the activated carbon. , Activated carbon was provided with a role of providing a place for contact between strong acid and NO2, which enabled highly efficient reduction of NO2 in air at room temperature.

【0006】[0006]

【実施例】図1は本発明方法に用いる反応管の構造例を
示したもので、反応管は入口2と出口3を有する円筒状
の反応管本体1の内部に、前後を金網4あるいは多孔板
で仕切った反応室5を設け、この反応室5に酸処理した
活性炭6を充填して形成したものである。活性炭として
は繊維状のものを用いるか、あるいはタブレット状に成
形されたものを酸処理したのち適度に粉砕して充填す
る。粉末状の活性炭に直接強酸水溶液を含浸させると、
ペースト状になって多孔性が失われるからである。本発
明による低濃度NOの製造方法は、例えば繊維状の活性
炭を適量に調整された硫酸等の無機強酸の水溶液に浸漬
したのち、これを乾燥させて、その吸着能をすべて強酸
によって使い尽くした活性炭繊維を形成する。次にこれ
を上述のように反応管1に充填し、この反応管1にNO
2を含有する空気を通すことにより、NO2をNOに還
元するのである。
EXAMPLE FIG. 1 shows an example of the structure of a reaction tube used in the method of the present invention. The reaction tube is inside a cylindrical reaction tube body 1 having an inlet 2 and an outlet 3, and a front and rear metal mesh 4 or a porous body It is formed by providing a reaction chamber 5 partitioned by a plate and filling the reaction chamber 5 with acid-treated activated carbon 6. As the activated carbon, fibrous ones are used, or tablets formed into tablets are acid-treated and then appropriately crushed and filled. When powdered activated carbon is directly impregnated with a strong acid aqueous solution,
This is because it becomes a paste and loses its porosity. In the method for producing low-concentration NO according to the present invention, for example, fibrous activated carbon is immersed in an appropriate amount of an aqueous solution of a strong inorganic acid such as sulfuric acid, and then dried, and the adsorption ability is completely exhausted by the strong acid. Form activated carbon fibers. Then, this is filled in the reaction tube 1 as described above, and the reaction tube 1 is filled with NO.
NO2 is reduced to NO by passing air containing 2.

【0007】図2は本発明によるNO2の測定方法の一
例を流れ図で示したものである。粉末状の活性炭を使用
する場合は、これを少量のバインダと共に成形して適当
な大きさの塊状とし、次にこれを硫酸等の無機強酸の水
溶液に浸漬して乾燥させたのち、この塊状の活性炭を再
び粉砕して粉末状の活性炭とし、上記反応管1に充填す
る。次にNO2を含有する空気を図示の如く第一のNO
濃度測定器7に通したのち、上記反応管1に通し、更に
第二のNO濃度測定器8に通して、NO濃度を測定す
る。このとき増加したNOがNO2から還元されたもの
であり、従って第二のNO濃度測定器8の読みから第一
のNO濃度測定器7の読みを差し引けば、当初空気中に
存在したNO2の濃度が求められることになる。なおN
O濃度測定器としては、例えばサンプルを採取して、こ
れを放電によって形成したO3と反応させる。このと
き、O3との反応で一定のエネルキーを放出するので、
これを化学発光法で測定することによりNOの濃度を知
ることができるのである。以下に3種類の酸で処理した
活性炭によるNO2還元率の比較を示した。
FIG. 2 is a flow chart showing an example of the NO2 measuring method according to the present invention. When powdered activated carbon is used, it is molded with a small amount of binder into a lump of an appropriate size, which is then dipped in an aqueous solution of a strong inorganic acid such as sulfuric acid and dried, and then this lump of The activated carbon is pulverized again to obtain powdered activated carbon, which is filled in the reaction tube 1. Next, the air containing NO2 is treated with the first NO as shown.
After passing through the concentration measuring device 7, it is passed through the reaction tube 1 and then through the second NO concentration measuring device 8 to measure the NO concentration. The NO increased at this time is reduced from NO2. Therefore, if the reading of the first NO concentration measuring instrument 7 is subtracted from the reading of the second NO concentration measuring instrument 8, the NO2 originally present in the air is reduced. The concentration will be required. N
As the O concentration measuring device, for example, a sample is taken and reacted with O3 formed by discharge. At this time, a certain energy is released by the reaction with O3,
The concentration of NO can be known by measuring this with a chemiluminescence method. Below, a comparison of NO2 reduction rates by activated carbon treated with three kinds of acids is shown.

【0008】実例1:本例は、硫酸処理した活性炭によ
るNO2からNOへの還元性能、滞留時間に対する還元
効率の変化及びNO2濃度に対する還元効率の変化を測
定したものであり、試験管中で2.9%の硫酸水溶液1
3.92gに、0.30gの塊状活性炭成形品4個を浸
漬し、約10分経過後に活性炭成形品を取り出して粉砕
し、この粉末状活性炭の0.314gを直径6mmの反
応管に充填した。このときの充填部分の体積すなわち反
応室の容積は0.48mlであった。これにNO2の濃
度80〜90ppb、NOの濃度160〜200pp
b、RH30〜33%の空気を、流量920ml/分、
温度25℃で、0〜50時間流した。図3の曲線S1及
びS2は、この測定結果を示したもので、これによれば
硫酸で処理した活性炭が、当初含有していたNO2の9
9%以上をNOに還元し、その効力が50時間経過後も
殆ど低下していないことが分かる。また図4は、同一の
試料により順次空気流量を変えて、反応管内での滞留時
間の影響を測定したもので、横軸の滞留因子W/Fにお
けるW(g)は酸処理活性炭のグラム数、F(リットル
/分)は流量を示しており、これによれば硫酸処理活性
炭によるNO2還元効率はきわめて高く、特に滞留因子
0.33以上ではほぼ100%で、接触時間は例えば
0.1秒もあれば十分であることが分かる。更に図5
は、同一の試料によりNO2濃度による影響を測定し
た。このときの空気流量は1520ml/分、継続時間
は170〜260時間であるが、NO2濃度には殆ど関
係なく85%以上の高い還元効率が示されている。
Example 1: This example was used to measure the reduction performance of NO2 to NO by activated carbon treated with sulfuric acid, the change of reduction efficiency with respect to residence time, and the change of reduction efficiency with respect to NO2 concentration. 9% sulfuric acid aqueous solution 1
Four 0.30 g lumps of activated carbon molded products were immersed in 3.92 g, and after about 10 minutes, the activated carbon molded products were taken out and crushed, and 0.314 g of this powdered activated carbon was filled in a reaction tube having a diameter of 6 mm. . The volume of the filled portion at this time, that is, the volume of the reaction chamber was 0.48 ml. The concentration of NO2 is 80 to 90 ppb, and the concentration of NO is 160 to 200 pp.
b, air with RH of 30 to 33%, flow rate of 920 ml / min,
Flowed at a temperature of 25 ° C for 0 to 50 hours. Curves S1 and S2 in FIG. 3 show the results of this measurement. According to this, the activated carbon treated with sulfuric acid contained 9% of NO2 initially contained.
It can be seen that 9% or more is reduced to NO and the potency is not lowered even after 50 hours. In addition, FIG. 4 shows that the influence of the residence time in the reaction tube was measured by sequentially changing the air flow rate for the same sample, and W (g) in the retention factor W / F on the horizontal axis is the number of grams of acid-treated activated carbon. , F (liter / min) indicates the flow rate, which shows that the NO2 reduction efficiency by the sulfuric acid-treated activated carbon is extremely high, and is almost 100% especially when the retention factor is 0.33 or more, and the contact time is, for example, 0.1 seconds. It turns out that there is enough. Furthermore, FIG.
Measured the effect of NO2 concentration on the same sample. At this time, the air flow rate is 1520 ml / min and the duration is 170 to 260 hours, but a high reduction efficiency of 85% or more is shown irrespective of the NO2 concentration.

【0009】実例2:本例は、塩酸処理活性炭につい
て、実例1と同様な測定を行ったものである。1Nの塩
酸水溶液2.44gに水10.70gと0.30gの塊
状活性炭成形品4個を入れ、15分後活性炭成形品を取
り出して粉砕したのち、0.247gの活性炭粉末を直
径6mmの反応管に入れた。このときの充填部分の体積
は0.37mlである。これにNO2の濃度80〜90
ppb、NOの濃度160〜200ppb、RH30〜
33%の空気を、流量1040ml/分、温度25℃
で、0〜50時間流した。図3の曲線C1及びC2はこ
の測定結果を示したもので、これによれば塩酸で処理し
た活性炭が、当初含有していたNO2の約90%をNO
に還元し、その効力は50時間経過後も殆ど低下してい
ないことが分かる。また図6は、同一の試料により順次
空気流量を変えて、反応管内での滞留時間の影響を測定
したもので、塩酸処理活性炭による還元効率は滞留因子
0.3以下では60〜70%、0.5以上ではほぼ80
%であり、硫酸処理活性炭よりもやや性能は劣るもの
の、十分実効があることが示されている。更に図7は、
同一の試料によりNO2濃度による影響を測定したもの
で、このときのガス流量は1040ml/分、継続時間
は50〜170時間であるが、NO2濃度には殆ど関係
なく、還元効率はほぼ60%程度であることが示されて
いる。
Example 2: In this example, the same measurement as in Example 1 was performed on the activated carbon treated with hydrochloric acid. Water 10.70 g and 0.30 g of four lumps of activated carbon molded products were added to 2.44 g of 1N hydrochloric acid aqueous solution, 15 minutes later, the activated carbon molded products were taken out and crushed, and then 0.247 g of activated carbon powder was reacted with a diameter of 6 mm. I put it in a tube. The volume of the filled portion at this time is 0.37 ml. NO2 concentration of 80-90
ppb, NO concentration 160-200 ppb, RH30-
33% air, flow rate 1040 ml / min, temperature 25 ° C
Then, it was run for 0 to 50 hours. Curves C1 and C2 in FIG. 3 show the results of this measurement. According to this, activated carbon treated with hydrochloric acid contained about 90% of NO2 initially contained in NO.
It can be seen that the potency was reduced to 50% and the potency was not decreased even after 50 hours. In addition, FIG. 6 shows that the effect of residence time in the reaction tube was measured by sequentially changing the air flow rate for the same sample, and the reduction efficiency by the hydrochloric acid-treated activated carbon was 60 to 70% when the retention factor was 0.3 or less, 0 Almost 80 above 0.5
%, Which is slightly inferior to the sulfuric acid-treated activated carbon, but is shown to be sufficiently effective. Furthermore, FIG.
The same sample was used to measure the effect of NO2 concentration. At this time, the gas flow rate was 1040 ml / min and the duration was 50 to 170 hours, but the reduction efficiency was about 60% regardless of the NO2 concentration. Is shown.

【0010】実例3:本例は繊維状の活性炭を使用した
もので、硫酸濃度、活性炭繊維の質量などを表1に示す
ように調整した硫酸処理活性炭を反応管R1,R2及び
R3に充填し、NO2濃度90〜100ppb、NO濃
度150〜170、相対湿度50〜60%の空気を、そ
れぞれ1000ml/分,900ml/分,1380m
l/分で340時間通した。このときのNO2減少率及
びNOへの転化率を図10に示す。また図11は、未処
理活性炭との性能の比較及び滞留時間の影響を測定した
もので、測定条件としては表1の反応管R4を使用して
いる。
Example 3: This example uses fibrous activated carbon, and the reaction tubes R1, R2, and R3 are filled with sulfuric acid-treated activated carbon whose sulfuric acid concentration and activated carbon fiber mass are adjusted as shown in Table 1. , NO2 concentration of 90 to 100 ppb, NO concentration of 150 to 170, and relative humidity of 50 to 60%, respectively, 1000 ml / min, 900 ml / min, 1380 m
L / min was passed for 340 hours. FIG. 10 shows the NO2 reduction rate and the NO conversion rate at this time. Further, FIG. 11 shows the comparison of the performance with untreated activated carbon and the influence of the residence time, and the reaction tube R4 in Table 1 is used as the measurement condition.

【表1】 [Table 1]

【0012】実例4:本例は、本発明方法には含まれな
い例として、有機酸である酢酸で処理した活性炭につい
て、実例1及び2と同様な測定を行ったものである。和
光酢酸(純度93%)0.96gのを14.30gの水
に入れ、更に0.30gの塊状活性炭を入れて、約15
分後に取り出したのちこれを粉砕し、0.295gの活
性炭粉末を直径6mmの反応管に入れる。このときの充
填部分の体積は0.42mlである。これにNO2の濃
度80〜90ppb、NOの濃度160〜200pp
b、RH30〜33%の空気を、流量1220ml/
分、温度25℃で、0〜50時間流した。図5のA1A
2はこの測定結果を示したものであるが、NO2の減少
率はきわめて高いのに比して、NOの増加率はあまり高
くなく塩酸処理活性炭の場合とほぼ同等であることが示
されている。また図8は、同一の試料により順次空気流
量を変えて、反応管内での滞留時間の影響を測定したも
のであるが、酢酸処理活性炭の場合は、NO2減少率は
きわめて高い値を示しているにも拘らず、NOの増加率
はむしろマイナスの値を示すことが示されている。更に
図9は、同一の試料によりNO2濃度による影響を測定
したもので、このときの空気流量は480ml/分、継
続時間は170〜260時間であるが、NO2濃度が1
50ppb以下ではNOがむしろ減少して、NO2濃度
が50ppb近辺では、マイナス200%にもなり、酢
酸処理は本発明方法には採用できないことを示してい
る。
Example 4: In this example, as an example not included in the method of the present invention, the same measurement as in Examples 1 and 2 was performed on activated carbon treated with an organic acid, acetic acid. 0.96 g of Wako acetic acid (purity 93%) is added to 14.30 g of water, and 0.30 g of lumped activated carbon is further added to obtain about 15
After taking out after a minute, this is crushed and 0.295 g of activated carbon powder is put into a reaction tube having a diameter of 6 mm. The volume of the filled portion at this time is 0.42 ml. The concentration of NO2 is 80 to 90 ppb, and the concentration of NO is 160 to 200 pp.
b, RH 30-33% air, flow rate 1220 ml /
Flowed for 0 to 50 hours at a temperature of 25 ° C. for minutes. A1A in FIG.
No. 2 shows the results of this measurement, and it is shown that the rate of NO2 decrease is extremely high, whereas the rate of NO increase is not very high and is almost the same as that of hydrochloric acid-treated activated carbon. . Further, FIG. 8 shows the effect of the residence time in the reaction tube was measured by sequentially changing the air flow rate for the same sample, and in the case of the acetic acid-treated activated carbon, the NO2 reduction rate is extremely high. Nevertheless, it has been shown that the rate of increase of NO shows a rather negative value. Further, FIG. 9 shows the effect of NO2 concentration measured with the same sample. At this time, the air flow rate is 480 ml / min and the duration is 170 to 260 hours, but the NO2 concentration is 1
At 50 ppb or less, NO was rather reduced, and when the NO2 concentration was around 50 ppb, it was minus 200%, indicating that acetic acid treatment cannot be adopted in the method of the present invention.

【0013】[0013]

【発明の効果】本発明に用いる二酸化窒素還元方法は、
活性炭の高い比表面積を利用して、これに予め無機強酸
(硫酸が最も望ましい)を吸着させておき、これにNO
2を含有する空気を通すことによって、NO2をNOに
還元するものであり、本発明はこの還元方法を利用して
低濃度NOを製造し、あるいはNO2の測定を行うもの
であるから、高価な貴金属触媒を必要とせず、しかも反
応温度は常温でよいのでヒータ等を必要とせず、安価な
活性炭を使用して空気中で且つ常温で反応を行わせるこ
とができるという利点があり、しかも接触時間はきわめ
て短時間でよいので、装置を小型化することができると
いう利点がある。
The method for reducing nitrogen dioxide used in the present invention is
Utilizing the high specific surface area of activated carbon, a strong inorganic acid (sulfuric acid is most desirable) is previously adsorbed on it, and NO
NO2 is reduced to NO by passing air containing 2, and the present invention uses this reduction method to produce low-concentration NO or to measure NO2, which is expensive. No precious metal catalyst is required, and since the reaction temperature can be room temperature, there is no need for a heater, etc., and there is the advantage that the reaction can be carried out in air at room temperature using inexpensive activated carbon, and the contact time is Since it takes only a very short time, there is an advantage that the device can be downsized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法に用いる反応管の断面図。FIG. 1 is a sectional view of a reaction tube used in the method of the present invention.

【図2】本発明方法の一実施例を示す流れ図。FIG. 2 is a flow chart showing an embodiment of the method of the present invention.

【図3】本発明に用いるNO2還元法において、各種の
酸処理活性炭を用いた場合の継続時間に対するNOx濃
度の変化を示すグラフ。
FIG. 3 is a graph showing changes in NOx concentration with respect to duration when various acid-treated activated carbons are used in the NO 2 reduction method used in the present invention.

【図4】硫酸処理活性炭を使用した場合における滞留因
子の変化に対するNOx増減率の変化を示すグラフ。
FIG. 4 is a graph showing changes in the NOx increase / decrease rate with respect to changes in the retention factor when using sulfuric acid-treated activated carbon.

【図5】硫酸処理活性炭を使用した場合におけるNO2
濃度とNOx増減率の変化を示すグラフ。
FIG. 5: NO2 when using sulfuric acid-treated activated carbon
The graph which shows the change of concentration and NOx increase / decrease rate.

【図6】塩酸処理活性炭を使用した場合における滞留因
子の変化に対するNOx増減率の変化を示すグラフ。
FIG. 6 is a graph showing changes in the NOx increase / decrease rate with respect to changes in the retention factor when hydrochloric acid-treated activated carbon was used.

【図7】塩酸処理活性炭を使用した場合におけるNO2
濃度とNOx増減率の変化を示すグラフ。
FIG. 7: NO2 when hydrochloric acid-treated activated carbon is used
The graph which shows the change of concentration and NOx increase / decrease rate.

【図8】硫酸処理活性炭繊維を使用した場合における継
続時間に対するNO2減少率とNOへの転化率の変化を
示すグラフ。
FIG. 8 is a graph showing changes in the NO2 reduction rate and the NO conversion rate with respect to the continuous time when the sulfuric acid-treated activated carbon fiber is used.

【図9】硫酸処理活性炭繊維を使用した場合における反
応管内滞留時間に対するNO2減少率とNOへの転化率
の変化を、未処理活性炭繊維を使用した場合と比較して
示したグラフ。
FIG. 9 is a graph showing changes in the NO2 reduction rate and the conversion rate to NO with respect to the residence time in the reaction tube when using sulfuric acid-treated activated carbon fibers, as compared with when untreated activated carbon fibers are used.

【図10】酢酸処理活性炭を使用した場合における滞留
因子の変化に対するNOx増減率の変化を示すグラフ。
FIG. 10 is a graph showing changes in NOx increase / decrease rate with respect to changes in retention factor when acetic acid-treated activated carbon is used.

【図11】酢酸処理活性炭を使用した場合におけるNO
2濃度とNOx増減率の変化を示すグラフ。
FIG. 11: NO when using activated carbon treated with acetic acid
2 is a graph showing changes in 2 concentration and NOx increase / decrease rate.

【符号の説明】[Explanation of symbols]

1 反応管 2 入口 3 出口 4 金網 5 反応室 6 活性炭 7,8 NO濃度測定器 1 Reaction Tube 2 Inlet 3 Outlet 4 Wire Mesh 5 Reaction Chamber 6 Activated Carbon 7,8 NO Concentration Meter

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 無機強酸の水溶液に浸漬して乾燥させた
活性炭を入口及び出口を有する反応室に充填し、該反応
室にNO2を含有する空気を通して、NO2をNOに還
元することを特徴とする低濃度NOの製造方法。
1. A reaction chamber having an inlet and an outlet is filled with activated carbon that has been immersed in an aqueous solution of a strong inorganic acid and dried, and NO2 is passed through the reaction chamber to reduce NO2 to NO. A method for producing low concentration NO.
【請求項2】 無機強酸の水溶液に浸漬して乾燥させた
活性炭を入口及び出口を有する反応室に充填し、該反応
室にNO2を含有する空気を通して、その前後のNO濃
度を測定することにより、NO2濃度を測定することを
特徴とするNO2の測定方法。
2. A reaction chamber having an inlet and an outlet is filled with activated carbon that has been dipped in an aqueous solution of a strong inorganic acid and dried, and air containing NO2 is passed through the reaction chamber, and the NO concentration before and after that is measured. A method for measuring NO2, comprising measuring the NO2 concentration.
JP35547893A 1993-12-22 1993-12-22 Production of low-concentration no and method for measuring no2 Pending JPH07187622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35547893A JPH07187622A (en) 1993-12-22 1993-12-22 Production of low-concentration no and method for measuring no2

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35547893A JPH07187622A (en) 1993-12-22 1993-12-22 Production of low-concentration no and method for measuring no2

Publications (1)

Publication Number Publication Date
JPH07187622A true JPH07187622A (en) 1995-07-25

Family

ID=18444183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35547893A Pending JPH07187622A (en) 1993-12-22 1993-12-22 Production of low-concentration no and method for measuring no2

Country Status (1)

Country Link
JP (1) JPH07187622A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008510675A (en) * 2004-08-18 2008-04-10 ゲノ エルエルシー Conversion of nitrogen dioxide (NO2) to nitrogen oxide (NO)
JP2012502770A (en) * 2008-09-22 2012-02-02 ゲノ エルエルシー Conversion of nitrogen dioxide (NO2) to nitric oxide (NO)
US11312626B2 (en) 2008-01-28 2022-04-26 Vero Biotech Inc. Conversion of nitrogen dioxide (NO2) to nitric oxide (NO)
US11554241B2 (en) 2004-08-18 2023-01-17 Vero Biotech Inc. Conversion of nitrogen dioxide (NO2) to nitric oxide (NO)
US11744978B2 (en) 2008-08-21 2023-09-05 Vero Biotech Inc. Systems and devices for generating nitric oxide
US11925764B2 (en) 2009-06-22 2024-03-12 Vero Biotech Inc. Nitric oxide therapies

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11554241B2 (en) 2004-08-18 2023-01-17 Vero Biotech Inc. Conversion of nitrogen dioxide (NO2) to nitric oxide (NO)
JP2012179365A (en) * 2004-08-18 2012-09-20 Geno Llc Conversion of nitrogen dioxide (no2) to nitric oxide (no)
US8609028B2 (en) 2004-08-18 2013-12-17 Geno Llc Conversion of nitrogen dioxide (NO2) to nitric oxide (NO)
US11202880B2 (en) 2004-08-18 2021-12-21 Vero Biotech LLC Conversion of nitrogen dioxide (NO2) to nitric oxide (NO)
US11291793B2 (en) 2004-08-18 2022-04-05 Vero Biotech Inc. Conversion of nitrogen dioxide (NO2) to nitric oxide (NO)
US11383059B2 (en) 2004-08-18 2022-07-12 Vero Biotech Inc. Conversion of nitrogen dioxide (NO2) to nitric oxide (NO)
JP2008510675A (en) * 2004-08-18 2008-04-10 ゲノ エルエルシー Conversion of nitrogen dioxide (NO2) to nitrogen oxide (NO)
US11312626B2 (en) 2008-01-28 2022-04-26 Vero Biotech Inc. Conversion of nitrogen dioxide (NO2) to nitric oxide (NO)
US11884541B2 (en) 2008-01-28 2024-01-30 Vero Biotech Inc. Conversion of nitrogen dioxide (NO2) to nitric oxide (NO)
US11744978B2 (en) 2008-08-21 2023-09-05 Vero Biotech Inc. Systems and devices for generating nitric oxide
JP2012502770A (en) * 2008-09-22 2012-02-02 ゲノ エルエルシー Conversion of nitrogen dioxide (NO2) to nitric oxide (NO)
US11511252B2 (en) 2008-09-22 2022-11-29 Vero Biotech Inc. Conversion of nitrogen dioxide (NO2) to nitric oxide (NO)
US11925764B2 (en) 2009-06-22 2024-03-12 Vero Biotech Inc. Nitric oxide therapies

Similar Documents

Publication Publication Date Title
US3933431A (en) Method and apparatus for sampling atmospheric mercury
JP3231781B2 (en) Method for removing oxygen from ammonia at room temperature
JP4635197B2 (en) Oxidation catalyst for exhaust gas purification and method for producing the same
Ghoreishian et al. γ-Radiolysis as a highly efficient green approach to the synthesis of metal nanoclusters: a review of mechanisms and applications
JPH07187622A (en) Production of low-concentration no and method for measuring no2
CN103638981A (en) Supported type Au catalyst containing organic polymer electronic auxiliary
JPS58198817A (en) Apparatus having activated metal getter and auxiliary unit in exhaust valve
JP2004074069A (en) Formaldehyde oxidation removal method
JP4214221B2 (en) Method for removing nitrogen oxides by photoreaction
JP2016215181A (en) Catalyst decomposing carbon dioxide at room temperature and method for producing the same
CN108722357A (en) SO in a kind of efficient absorption flue gas2Modified activated carbon preparation method
KR101165796B1 (en) Activated carbon for removing gas-phase elemental mercury
Mohammadi et al. Separation of trace amounts palladium by SiO 2/TiO 2/Ce nanoparticles prior to flame atomic absorption spectrometry determination in anodic slime and wastewater samples
JPS62190465A (en) Total organic carbon analyzer
CN1162210C (en) Process for preparing filtering agent of potential controlled electrolysis-type CO gas sensor
JP4949795B2 (en) Method for producing hydrogen generating medium
CN111013583A (en) Preparation method of monolithic catalyst for efficiently decomposing carbon monoxide at room temperature
JP2004037229A (en) Method for measuring total nitrogen in water
JPH08304377A (en) Reducing equipment for nitrogen oxide
KR102601557B1 (en) Copper ferrite, manufacturing method of copper ferrite, method for removing hydrogen sulfide
JPH06262079A (en) Catalyst for nitrogen oxide purification and nitrogen oxide purification
JPH03207448A (en) Catalyst and method for decomposition of nitrogen oxide
JPS5951852B2 (en) Carbon monoxide oxidation catalyst
JP5339104B2 (en) Method for producing sulfur-based gas removal material
JPS6028823A (en) Manufacture of carbon monoxide oxidizing catalyst