JP2004037229A - Method for measuring total nitrogen in water - Google Patents

Method for measuring total nitrogen in water Download PDF

Info

Publication number
JP2004037229A
JP2004037229A JP2002194246A JP2002194246A JP2004037229A JP 2004037229 A JP2004037229 A JP 2004037229A JP 2002194246 A JP2002194246 A JP 2002194246A JP 2002194246 A JP2002194246 A JP 2002194246A JP 2004037229 A JP2004037229 A JP 2004037229A
Authority
JP
Japan
Prior art keywords
ion
water
nitrogen
sample water
photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002194246A
Other languages
Japanese (ja)
Inventor
Tomoyuki Mita
三田 朋幸
Shigeru Sago
佐合 茂
Akira Maekawa
前川 昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunze Ltd
Shiga Prefectural Government.
Original Assignee
Gunze Ltd
Shiga Prefectural Government.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunze Ltd, Shiga Prefectural Government. filed Critical Gunze Ltd
Priority to JP2002194246A priority Critical patent/JP2004037229A/en
Publication of JP2004037229A publication Critical patent/JP2004037229A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel method for measuring total nitrogen in water characterized by dispensing with operations such as filtration, being capable of determining the quantity of total nitrogen with high accuracy, and the like, since nitrate ion measurement is performed by using ion selective electrode measurement unaffected by a residual photocatalyst. <P>SOLUTION: This method for measuring total nitrogen in water is characterized by including a nitrogen/ oxidation reaction step for producing nitrate ions by oxidizing nitrogen compounds in specimen water by irradiating the specimen water with ultraviolet rays in the existence of the photocatalyst and in the existence of air or oxygen, and a step for measuring nitrate ions in the specimen water obtained by the oxidation reaction by using an ion selective electrode. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、水中に含まれる全窒素の新規測定方法に関する。
【0002】
【従来の技術】
全窒素とは、水中に含まれるアンモニウム、亜硝酸、硝酸等の各イオン中の窒素(無機体窒素)および尿素、アミノ酸をはじめとする有機窒素化合物の窒素(有機体窒素)の合計量をいう。
【0003】
従来、無機体窒素または有機体窒素をそれぞれ別々に定量することが行われていたが、湖沼、河川などでの富栄養化問題に関しては全窒素としての定量が重要視されている。
【0004】
我が国における水中の窒素化合物の測定法は、JISのK0102 45.2によって公的に規格化されている(公定法)。具体的には、試料水にアルカリ性ペルオキソ二硫酸カリウム溶液を加え、高圧蒸気滅菌器中で120℃、30分加熱分解して、全ての窒素化合物を硝酸イオンに酸化し、試料水を放冷後pHを2〜3に調整し、硝酸イオンによる波長220nmでの紫外線吸光度を測定するものである。しかし、この公定法では、アルカリ性ペルオキソ二硫酸カリウム溶液の調整等、操作が煩雑で、また、装置化するにあたっては、耐熱耐圧構造の反応釜を必要とするため、装置の高価格化を招き、また高温高圧にて動作するため、部品消耗が激しく、メンテナンス性にも問題がある。
【0005】
他の測定法としては、特開平9−127005号公報記載の測定法がある。これは、試料水をpH 11に調整後、二酸化チタン粉末を光触媒として用い、紫外線(低圧水銀灯とブラックライト)を照射し、全ての窒素化合物を硝酸イオンに酸化した後、波長220nmにおける硝酸イオンの紫外線吸光度を測定するものである。しかし、この測定法では、酸化反応後の光触媒二酸化チタン粉末を試料中から完全に除去する必要があるためろ過操作が必要となり、また微少な光触媒二酸化チタン粉末を試料中から除去出来なかった場合、残存二酸化チタン粉末が硝酸イオンの吸光度測定に悪影響を与えてしまうという問題点がある。
【0006】
さらに、特開平9−281099号公報記載の測定法では、特開平9−127005号公報記載の方法と同様であるが、触媒活性の劣化を防ぎ耐久性を付与するため、二酸化チタン粉末の代わりに、二酸化チタン粉末と粉ガラスとを基材表面に焼結させたものを用いている。しかし、この測定法では、二酸化チタンの担持体を使用しているため、酸化反応において粉末分散に比較し表面積が小さく実用的な分解能が得られないという問題点がある。
【0007】
【発明が解決しようとする課題】
本発明は、(a)試料水中の窒素化合物を硝酸イオンに酸化する場合、試料調整の必要がなく操作が簡便であり、(b)高温高圧下の酸化反応条件を必要としないため、耐熱耐圧構造の反応釜が不要で、装置の低コスト化が可能になり、かつ安全性も高く、および(c)硝酸イオンの測定には光触媒の残存に影響を受けないイオン選択性電極測定を用いているため、光触媒のろ過等の操作が不要でありかつ高い精度で全窒素の定量が可能である、という特徴を有する新規水中全窒素測定方法を提供するものである。
【0008】
【課題を解決するための手段】
本発明は、光触媒の存在下、空気または酸素の存在下、試料水に紫外線を照射し、試料水中の窒素化合物を酸化して硝酸イオンを生じさせる酸化反応ステップ(以下、第1ステップという)、および、該酸化反応で得られた試料水中の硝酸イオンをイオン選択性電極を用いて測定するステップ(以下、第2ステップという)、を含むことを特徴とする水中全窒素測定方法に関する。
【0009】
【発明の実施の形態】
本発明の水中全窒素測定方法について説明する。
【0010】
(1)第1ステップ
酸化反応に用いる試料水は、試料水中の窒素濃度が2mg/L程度以下であれば河川等から採取したものをそのまま用いることができ、必ずしも測定用に調整する必要はない。試料水中の窒素濃度が2mg/L程度をこえる場合は、窒素濃度が2mg/L程度以下となるよう窒素成分を含まない精製水で希釈してもよい。また、必要に応じ試料水をアルカリ性に調整して用いることができる。この場合、アルカリ調整剤として、例えば、水酸化ナトリウムを使用することができ、試料水中の水酸化ナトリウム濃度が0.2mol/L程度になるよう調整を行えばよい。
【0011】
光触媒としては、例えば、二酸化チタン、酸化亜鉛、硫化カドミウム等従来公知のものが挙げられる。とりわけ、コスト、人体への有害性、水への溶解性等の点から、二酸化チタンが好ましい。二酸化チタンは、公知の方法で製造されたものでよく、例えば、塩素法、硫酸法等により製造されたアナターゼ型のものが挙げられる。光触媒の純度は、窒素酸化反応の触媒として作用しうるものであり、かつ、イオン選択性電極測定に悪影響を及ぼさないものであればよい。具体的には、試料水中で光触媒からNH 等の含窒素成分が溶出しないものを使用する必要がある。ブランク試験で光触媒から含窒素成分が溶出してくるような場合は、400〜600℃の加熱処理を行って、窒素成分を精製除去した光触媒粉体を使用することが好ましい。光触媒は、触媒活性を高める点において、試料水中の分散度が大きくなる粉末、微粒子状態のものが好ましい。例えば、粒子径が2〜30nm程度のものが好ましく、2〜15nm程度のものがより好ましい。また、光触媒の粒子の表面形状としては、試料水と接触面が大きくなる多孔性のものが好ましい。
【0012】
光触媒の使用量としては、例えば、試料水1mLに対して、2〜20mg程度を用いることができる。使用量が少ないと分解効率が低下しやすくなり、また使用量が多いと触媒が試料中で沈殿してしまい分解反応に寄与せず有効活用されないからである。
【0013】
酸化反応に用いる紫外線の光源としては、例えば、高圧水銀灯、低圧水銀灯、ブラックライト、エキシマレーザ、重水素ランプ、キセノンランプ、Hg−Zn−Pbランプ等から選ばれる1種類の光源または波長域の異なる2種類の光源を用いることができる。とりわけ、実用的な分解効率の確保の点から、高圧水銀灯(出力約100〜400 W)が好ましい。また、硝酸イオンの回収率低下を避けるため、光源からの280nm以下の波長をカットするパイレックス(登録商標)フィルターで光源を被覆しておくことが好ましい。
【0014】
空気または酸素の存在下とは、試料水中に酸化反応に必要な酸素分子を有している状態にすることであり、その方法としては、例えば、試料水中に連続的にまたは間欠的に空気または酸素を供給する方法が挙げられる。具体的には、試料水中に空気または酸素を直接吹き込む方法、試料水と空気または酸素を加えた反応容器を撹拌または震とうする方法、水の電気分解による方法等が挙げられる。
【0015】
空気または酸素を試料水中に連続的に供給する場合、その供給量としては、例えば、試料水1mLに対し毎分0.01〜0.2L程度の割合で供給するのが好ましく、とりわけ、分解効率の点から、試料水1mLに対し酸素ガスを毎分0.01〜0.1L程度の割合で供給するのが好ましい。
【0016】
また、反応容器全体を内部ミラーで覆うことにより、紫外線の照射効率を大きくし酸化反応を促進することができる。
【0017】
本方法は常温での酸化反応が可能な方法であるが、更に反応時間を短縮する場合には試料水を加熱しても良い。加熱温度は、例えば、40〜80℃であればよい。加熱する場合は、試料水の蒸発等により測定値に影響を及ぼさないよう、反応容器の密閉性等に十分留意して行う。
【0018】
本酸化反応の反応時間は、反応容器の大きさ、試料水中の窒素化合物の濃度、光触媒の使用量、紫外線の光源等の反応条件により異なってくるが、約30〜60分程度で進行する。
【0019】
第1ステップにおいて、上記の条件を用いることにより、試料水中のアンモニウム、亜硝酸等の無機体窒素およびアミノ酸、ポリペプチド、タンパク質等の有機体窒素を効率よく硝酸イオンに酸化することができる。
【0020】
(2)第2ステップ
イオン選択性電極としては、例えば、通常用いられるJIS K0122イオン電極方法通則に準拠する硝酸イオン電極、特願平2002−161647に記載されたイオン感応電極、イオン感応電界効果トランジスタ(ISFET)等が挙げられる。
【0021】
ここで、JIS K0122イオン電極方法通則に準拠する硝酸イオン電極とは、例えば、N−135硝酸イオン電極(東亜DKK株式会社製)、8201−10C(堀場製作所製)、9307BN(ORION社製)等が挙げられる。
【0022】
また、特願平2002−161647に記載されたイオン感応電極とは、表面にイオン感応物質を有する導電性繊維またはその構造物よりなるイオン電極チップを用いたイオン感応電極である。具体的には、該イオン感応物質としてバソクプロイン銅(I)硝酸塩等を用い、該導電性繊維またはその構造物として銀メッキ繊維またはそのリブ編みの構造物等からなる、イオン感応電極である。
【0023】
上記イオン選択性電極のうち、とりわけ、低濃度領域の硝酸イオン感度が高い点から、特願平2002−161647に記載されたイオン感応電極が好ましい。中でも、イオン感応物質としてバソクプロイン銅錯体系を用いたものが好ましい。
【0024】
第2ステップにおいて、イオン選択性電極を用いることにより、残存する光触媒(二酸化チタン微粒子等)の影響を受けることなく試料水中の硝酸イオン濃度を精度よく測定することができる。そのため、酸化反応で得られた試料水は、試料水から光触媒を分離する必要がなくそのまま測定に用いることができる。
【0025】
【実施例】
以下、実施例をあげて本発明を説明するが、本発明がこれらに限定されるものではない。
【0026】
実施例1(イオン感応電極の製造方法)
(1)バソクプロイン銅(I)硝酸塩の合成
分液漏斗に蒸留水、硝酸ナトリウム約2.5g、クロロホルム約20ml、バソクプロイン(bcp)(同仁化学研究所製)200mg、塩化銅(I)30mgを入れて、よく振り混ぜ、バソクプロイ
ンの銅錯体を合成した。有機相を分離し、クロロホルム臭がなくなるまで、数日間自然乾燥した。さらに乾燥後の生成物中のバソクプロイン銅錯体の純度をあげるために、エタノール・蒸留水の混合溶媒で再結晶をおこない、硝酸イオン感応物質であるバソクプロイン銅(I)硝酸塩[Cu(bcp)] NOを得た。
(2)電極チップの作製
上記(1)で得られた硝酸イオン感応物質15mgとマトリックス樹脂としてポリ塩化ビニル(PVC) 90 mg、液膜溶媒として2−ニトロフェニルオクチルエーテル(NPOE)200 mg、溶媒としてテトラヒドロフラン(THF) 2 gを混合し、電極チップ支持体(繊維状電極)に塗布することにより、25μm厚みのイオン感応物質層を有する電極チップを作製した。
【0027】
具体的には、100d(デニール)の銀メッキが施されたナイロン繊維を用いて1×1リブ編みで編物を作製し、3mm×50mmサイズにカットしたものを電極チップ支持体として用いた。浸漬法により、イオン感応物質含有塗布液に電極チップ支持体を浸漬し、塗布・乾燥を3度繰り返し、カット部下方3mm×10mmの面積にイオン感応物質を塗布した電極チップとした。
【0028】
実施例2(水中全窒素測定方法)
(1)試料水中の窒素酸化反応
石英セル(60×22×5mm)に二酸化チタン粉末(粒径7mm、ST−01、石原産業製)0.05gを採取し、さらに試料水4ml(試料窒素濃度:2ppm)を採取した。石英セル中の試料水に、毎分0.2Lの割合で酸素ガスを吹き込み、UV光源であるパイレックスフィルターで被覆した高圧水銀灯(AHH100S(100W)(株)ユーブイ製)を点灯し、高圧水銀灯の光源を水冷しながら、45分間試料水に光照射した。試料水はろ過することなくイオン電極測定に供された。
(2)イオン電極の応答電位の測定方法
ガラス比較電極を基準電極として、実施例1で作製した電極チップを硝酸ナトリウム標準溶液(10−5、10−4、 10−3 mol/lの硝酸イオン濃度)に浸漬し(25℃)、その応答電位をプロットし検量線を求めた。ガラス比較電極と作製電極チップを光触媒二酸化チタン混合試料溶液中に浸漬し(25℃)、検量線上での測定値を濃度に換算した。
【0029】
比較例
(1)本発明の測定法、(2)公定法(JISのK0102 45.2)、および(3)特開平9−281099号公報記載の測定法について、種々の窒素化合物の全窒素定量性能試験をおこなった。その結果を表1に示す。試料水中の窒素濃度はいずれも1.5mg/lとした。
【0030】
【表1】

Figure 2004037229
【0031】
表1の結果より、本発明の測定法は、公定法とほぼ同等の高い窒素回収率を示した。なお、表中で100%を越えた数値は測定誤差に基づくものである。また、特開平9−281099号公報記載の測定法では、光触媒として二酸化チタンの担持体を使用しているため、酸化反応において分散粉末触媒に比較し反応表面積が小さく実用的な分解能が得られない。従って、本発明の測定法は、光触媒を用いているため窒素化合物の酸化反応効率が高く、かつ、残存する光触媒に影響を受けないイオン選択性電極測定を用いているため測定精度が高いことが分かった。
【0032】
【発明の効果】
本発明は、光触媒の存在下、空気または酸素を供給しながら試料水に紫外線を照射し、試料水中の窒素化合物を酸化して硝酸イオンを生じさせ、該硝酸イオンをイオン選択性電極を用いて測定し窒素化合物濃度を求めること、を特徴とする水中全窒素測定方法および装置に関するものである。そのため、本発明は、(a)試料水中の窒素化合物を硝酸イオンに酸化する場合、試料調整の必要がなく操作が簡便であり、(b)高温高圧下の酸化反応条件を必要としないため、耐熱耐圧構造の反応釜が不要で、装置の低コスト化が可能になり、かつ安全性も高く、および(c)硝酸イオンの測定には光触媒の残存に影響を受けないイオン選択性電極測定を用いているため、光触媒のろ過等の操作が不要でありかつ高い精度で全窒素の定量が可能である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a novel method for measuring total nitrogen contained in water.
[0002]
[Prior art]
Total nitrogen refers to the total amount of nitrogen (inorganic nitrogen) and nitrogen (organic nitrogen) in organic nitrogen compounds including urea and amino acids in each ion of ammonium, nitrous acid, nitric acid, etc. contained in water. .
[0003]
Conventionally, inorganic nitrogen or organic nitrogen has been separately quantified. However, regarding the eutrophication problem in lakes, marshes, rivers, and the like, quantification as total nitrogen is regarded as important.
[0004]
The method for measuring nitrogen compounds in water in Japan is officially standardized by JIS K0102 45.2 (official method). Specifically, an alkaline potassium peroxodisulfate solution is added to the sample water, and the mixture is heated and decomposed in a high-pressure steam sterilizer at 120 ° C. for 30 minutes to oxidize all nitrogen compounds to nitrate ions. The pH is adjusted to 2-3 and the ultraviolet absorbance at a wavelength of 220 nm due to nitrate ions is measured. However, in this official method, operations such as adjustment of an alkaline potassium peroxodisulfate solution are complicated, and in making the device, a reactor with a heat-resistant and pressure-resistant structure is required. In addition, since the device operates at high temperature and high pressure, parts are intensely consumed and there is a problem in maintenance.
[0005]
As another measuring method, there is a measuring method described in JP-A-9-127005. This means that after adjusting the sample water to pH 11, using titanium dioxide powder as a photocatalyst, irradiating with ultraviolet rays (low-pressure mercury lamp and black light) to oxidize all nitrogen compounds to nitrate ions, It measures ultraviolet absorbance. However, in this measurement method, since it is necessary to completely remove the photocatalytic titanium dioxide powder after the oxidation reaction from the sample, a filtration operation is required, and if the fine photocatalytic titanium dioxide powder cannot be removed from the sample, There is a problem that the residual titanium dioxide powder has an adverse effect on the measurement of the absorbance of nitrate ions.
[0006]
Further, the measurement method described in JP-A-9-289999 is the same as the method described in JP-A-9-127005, but instead of titanium dioxide powder, in order to prevent deterioration of the catalyst activity and to impart durability. In addition, a material obtained by sintering titanium dioxide powder and glass powder on the surface of a base material is used. However, in this measurement method, since a titanium dioxide carrier is used, there is a problem that the surface area is small in the oxidation reaction as compared with powder dispersion, and practical resolution cannot be obtained.
[0007]
[Problems to be solved by the invention]
According to the present invention, (a) when a nitrogen compound in a sample water is oxidized to nitrate ions, the operation is simple without the need for sample preparation, and (b) the oxidation reaction conditions under high temperature and high pressure are not required. A reactor with a structure is not required, the cost of the apparatus can be reduced, and the safety is high. (C) The measurement of nitrate ion uses an ion selective electrode measurement which is not affected by the remaining photocatalyst. Therefore, an object of the present invention is to provide a novel method for measuring total nitrogen in water, which does not require an operation such as filtration of a photocatalyst and can quantify total nitrogen with high accuracy.
[0008]
[Means for Solving the Problems]
The present invention provides an oxidation reaction step of irradiating sample water with ultraviolet rays in the presence of a photocatalyst in the presence of air or oxygen to oxidize nitrogen compounds in the sample water to generate nitrate ions (hereinafter, referred to as a first step), And a step of measuring nitrate ions in the sample water obtained by the oxidation reaction using an ion-selective electrode (hereinafter, referred to as a second step).
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The method for measuring total nitrogen in water according to the present invention will be described.
[0010]
(1) As the sample water used for the first step oxidation reaction, if the nitrogen concentration in the sample water is about 2 mg / L or less, a water sampled from a river or the like can be used as it is, and it is not always necessary to adjust for measurement. . When the nitrogen concentration in the sample water exceeds about 2 mg / L, it may be diluted with purified water containing no nitrogen component so that the nitrogen concentration becomes about 2 mg / L or less. In addition, the sample water can be adjusted to be alkaline as needed. In this case, for example, sodium hydroxide can be used as the alkali adjuster, and adjustment may be performed so that the concentration of sodium hydroxide in the sample water becomes about 0.2 mol / L.
[0011]
Examples of the photocatalyst include conventionally known photocatalysts such as titanium dioxide, zinc oxide, and cadmium sulfide. Above all, titanium dioxide is preferred from the viewpoint of cost, harm to the human body, solubility in water, and the like. Titanium dioxide may be produced by a known method, for example, anatase type produced by a chlorine method, a sulfuric acid method, or the like. The purity of the photocatalyst may be any as long as it can act as a catalyst for the nitrogen oxidation reaction and does not adversely affect the ion-selective electrode measurement. Specifically, it is necessary to use a material in which nitrogen-containing components such as NH 4 + do not elute from the photocatalyst in the sample water. In the case where the nitrogen-containing component is eluted from the photocatalyst in the blank test, it is preferable to use a photocatalyst powder obtained by performing a heat treatment at 400 to 600 ° C. and purifying and removing the nitrogen component. From the viewpoint of enhancing the catalytic activity, the photocatalyst is preferably in the form of a powder or fine particles in which the degree of dispersion in sample water is large. For example, those having a particle diameter of about 2 to 30 nm are preferable, and those having a particle diameter of about 2 to 15 nm are more preferable. Further, the surface shape of the photocatalyst particles is preferably porous so that the contact surface with the sample water is large.
[0012]
As the usage amount of the photocatalyst, for example, about 2 to 20 mg can be used for 1 mL of sample water. If the amount used is small, the decomposition efficiency tends to decrease, and if the amount used is large, the catalyst precipitates in the sample and does not contribute to the decomposition reaction and is not effectively used.
[0013]
As the ultraviolet light source used for the oxidation reaction, for example, one type of light source selected from a high-pressure mercury lamp, a low-pressure mercury lamp, a black light, an excimer laser, a deuterium lamp, a xenon lamp, a Hg-Zn-Pb lamp, or a different wavelength range is used. Two types of light sources can be used. In particular, a high-pressure mercury lamp (output: about 100 to 400 W) is preferable from the viewpoint of ensuring practical decomposition efficiency. Further, in order to avoid a decrease in the recovery rate of nitrate ions, it is preferable to coat the light source with a Pyrex (registered trademark) filter that cuts a wavelength of 280 nm or less from the light source.
[0014]
The presence of air or oxygen refers to a state in which oxygen molecules required for an oxidation reaction are present in the sample water. For example, air or oxygen is continuously or intermittently present in the sample water. A method of supplying oxygen is given. Specific examples include a method of directly blowing air or oxygen into the sample water, a method of stirring or shaking the reaction vessel containing the sample water and the air or oxygen, a method of electrolysis of water, and the like.
[0015]
When air or oxygen is continuously supplied into the sample water, the supply amount is preferably, for example, 0.01 to 0.2 L per minute per 1 mL of the sample water. In view of this, it is preferable to supply oxygen gas at a rate of about 0.01 to 0.1 L per minute per 1 mL of sample water.
[0016]
In addition, by covering the entire reaction vessel with the internal mirror, it is possible to increase the irradiation efficiency of ultraviolet rays and promote the oxidation reaction.
[0017]
This method is a method capable of performing an oxidation reaction at room temperature. However, in order to further reduce the reaction time, the sample water may be heated. The heating temperature may be, for example, 40 to 80 ° C. In the case of heating, sufficient attention should be paid to the hermeticity of the reaction vessel and the like so that the measurement value is not affected by evaporation of the sample water.
[0018]
The reaction time of the present oxidation reaction varies depending on the reaction conditions such as the size of the reaction vessel, the concentration of the nitrogen compound in the sample water, the amount of the photocatalyst used, and the light source of ultraviolet light, but it proceeds in about 30 to 60 minutes.
[0019]
In the first step, by using the above conditions, inorganic nitrogen such as ammonium and nitrite and organic nitrogen such as amino acids, polypeptides and proteins in the sample water can be efficiently oxidized to nitrate ions.
[0020]
(2) The second step ion-selective electrode includes, for example, a nitrate ion electrode conforming to generally used JIS K0122 ion electrode method rules, an ion-sensitive electrode described in Japanese Patent Application No. 2002-161647, and an ion-sensitive field-effect transistor. (ISFET) and the like.
[0021]
Here, the nitrate ion electrode conforming to the general rules of the JIS K0122 ion electrode method includes, for example, N-135 nitrate ion electrode (manufactured by Toa DKK), 8201-10C (manufactured by HORIBA, Ltd.), 9307BN (manufactured by ORION), and the like. Is mentioned.
[0022]
The ion-sensitive electrode described in Japanese Patent Application No. 2002-161647 is an ion-sensitive electrode using an ion electrode tip made of a conductive fiber or a structure thereof having an ion-sensitive substance on the surface. Specifically, it is an ion-sensitive electrode comprising bathocuproine copper (I) nitrate or the like as the ion-sensitive substance and silver-plated fiber or a rib-knitted structure as the conductive fiber or its structure.
[0023]
Among the above-mentioned ion-selective electrodes, the ion-sensitive electrode described in Japanese Patent Application No. 2002-161647 is particularly preferable because of its high nitrate ion sensitivity in the low concentration region. Above all, those using a bathocuproine copper complex system as the ion-sensitive substance are preferred.
[0024]
In the second step, by using the ion-selective electrode, the nitrate ion concentration in the sample water can be accurately measured without being affected by the remaining photocatalyst (such as titanium dioxide fine particles). Therefore, the sample water obtained by the oxidation reaction can be used for measurement as it is without having to separate the photocatalyst from the sample water.
[0025]
【Example】
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto.
[0026]
Example 1 (Method of manufacturing ion-sensitive electrode)
(1) Synthesis of bathocuproine copper (I) nitrate Into a separating funnel, put distilled water, about 2.5 g of sodium nitrate, about 20 ml of chloroform, 200 mg of bathocuproin (bcp) (manufactured by Dojindo Laboratories), and 30 mg of copper (I) chloride. Then, the mixture was shaken well to synthesize a copper complex of bathocuproine. The organic phase was separated and air-dried for several days until the chloroform odor disappeared. Further, in order to increase the purity of the bathocuproine copper complex in the product after drying, recrystallization is performed with a mixed solvent of ethanol and distilled water, and bathocuproine copper (I) nitrate [Cu (bcp) 2 ] which is a nitrate ion-sensitive substance. NO 3 was obtained.
(2) Preparation of electrode chip 15 mg of the nitrate ion-sensitive substance obtained in (1) above, 90 mg of polyvinyl chloride (PVC) as a matrix resin, 200 mg of 2-nitrophenyloctyl ether (NPOE) as a liquid film solvent, and a solvent Was mixed with 2 g of tetrahydrofuran (THF) and applied to an electrode chip support (fibrous electrode) to produce an electrode chip having a 25 μm-thick ion-sensitive substance layer.
[0027]
Specifically, a knitted fabric was prepared by 1 × 1 rib knitting using nylon fibers plated with 100 d (denier) silver, and cut into a size of 3 mm × 50 mm was used as an electrode chip support. The electrode tip support was immersed in an ion-sensitive substance-containing coating solution by an immersion method, and coating and drying were repeated three times to obtain an electrode chip in which the ion-sensitive substance was applied to an area of 3 mm × 10 mm below the cut portion.
[0028]
Example 2 (Method of measuring total nitrogen in water)
(1) 0.05 g of titanium dioxide powder (particle diameter: 7 mm, ST-01, manufactured by Ishihara Sangyo) was collected in a nitrogen oxidation reaction quartz cell (60 × 22 × 5 mm) in sample water, and 4 ml of sample water (sample nitrogen concentration) : 2 ppm). Oxygen gas is blown into the sample water in the quartz cell at a rate of 0.2 L / min, and a high pressure mercury lamp (AHH100S (100W) manufactured by Ubuy Co., Ltd.) covered with a Pyrex filter as a UV light source is turned on. The sample water was irradiated with light for 45 minutes while cooling the light source with water. The sample water was used for ion electrode measurement without filtration.
(2) Method of Measuring Response Potential of Ion Electrode Using a glass comparative electrode as a reference electrode, the electrode tip prepared in Example 1 was subjected to sodium nitrate standard solution (10 −5 , 10 −4 , 10 −3 mol / l nitrate ion). Concentration) at 25 ° C., and the response potential was plotted to obtain a calibration curve. The glass reference electrode and the fabricated electrode tip were immersed (25 ° C.) in a photocatalytic titanium dioxide mixed sample solution, and the measured value on the calibration curve was converted to a concentration.
[0029]
Comparative Examples (1) Measurement method of the present invention, (2) Official method (JIS K0102 45.2), and (3) Determination of total nitrogen of various nitrogen compounds by the measurement method described in JP-A-9-281099. A performance test was performed. Table 1 shows the results. The nitrogen concentration in each sample water was 1.5 mg / l.
[0030]
[Table 1]
Figure 2004037229
[0031]
From the results shown in Table 1, the measurement method of the present invention showed a high nitrogen recovery almost equal to the official method. The numerical values exceeding 100% in the table are based on measurement errors. In addition, in the measurement method described in JP-A-9-281099, since a titanium dioxide carrier is used as a photocatalyst, the oxidation reaction has a small reaction surface area as compared with a dispersed powder catalyst, and practical resolution cannot be obtained. . Therefore, the measurement method of the present invention uses a photocatalyst, so that the oxidation reaction efficiency of the nitrogen compound is high, and that the measurement accuracy is high because the ion selective electrode measurement is not affected by the remaining photocatalyst. Do you get it.
[0032]
【The invention's effect】
In the present invention, in the presence of a photocatalyst, the sample water is irradiated with ultraviolet light while supplying air or oxygen to oxidize nitrogen compounds in the sample water to generate nitrate ions, and the nitrate ions are ion-selective using an ion-selective electrode. The present invention relates to a method and an apparatus for measuring total nitrogen in water, which comprises measuring and determining the concentration of a nitrogen compound. Therefore, according to the present invention, (a) when oxidizing a nitrogen compound in a sample water to nitrate ions, the operation is simple without the need for sample preparation, and (b) the oxidation reaction conditions under high temperature and high pressure are not required. A reaction vessel with a heat-resistant and pressure-resistant structure is not required, which makes it possible to reduce the cost of the apparatus and is highly safe. (C) Measurement of nitrate ions requires ion-selective electrodes that are not affected by the remaining photocatalyst. Since it is used, no operation such as filtration of the photocatalyst is required, and the total nitrogen can be determined with high accuracy.

Claims (3)

光触媒の存在下、空気または酸素の存在下、試料水に紫外線を照射し、試料水中の窒素化合物を酸化して硝酸イオンを生じさせる酸化反応ステップ、および、該酸化反応で得られた試料水中の硝酸イオンをイオン選択性電極を用いて測定するステップ、を含むことを特徴とする水中全窒素測定方法。In the presence of a photocatalyst, in the presence of air or oxygen, the sample water is irradiated with ultraviolet light to oxidize nitrogen compounds in the sample water to generate nitrate ions, and the sample water obtained by the oxidation reaction Measuring a nitrate ion using an ion-selective electrode. 光触媒が二酸化チタンである請求項1記載の測定方法。The method according to claim 1, wherein the photocatalyst is titanium dioxide. 照射する紫外線の光源が高圧水銀灯である請求項2記載の測定方法。3. The measuring method according to claim 2, wherein the ultraviolet light source for irradiation is a high-pressure mercury lamp.
JP2002194246A 2002-07-03 2002-07-03 Method for measuring total nitrogen in water Pending JP2004037229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002194246A JP2004037229A (en) 2002-07-03 2002-07-03 Method for measuring total nitrogen in water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002194246A JP2004037229A (en) 2002-07-03 2002-07-03 Method for measuring total nitrogen in water

Publications (1)

Publication Number Publication Date
JP2004037229A true JP2004037229A (en) 2004-02-05

Family

ID=31702985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002194246A Pending JP2004037229A (en) 2002-07-03 2002-07-03 Method for measuring total nitrogen in water

Country Status (1)

Country Link
JP (1) JP2004037229A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111879596A (en) * 2020-07-20 2020-11-03 广东石油化工学院 Buffer solution for detecting nitrate nitrogen in industrial sewage and detection method
CN111879597A (en) * 2020-07-20 2020-11-03 广东石油化工学院 Buffer solution for detecting nitrate nitrogen in domestic sewage and detection method
CN111912814A (en) * 2019-12-17 2020-11-10 南开大学 Method for measuring total nitrogen content in water
CN115015361A (en) * 2021-12-17 2022-09-06 江苏省农业科学院 Method for rapidly detecting soil nitrate nitrogen

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111912814A (en) * 2019-12-17 2020-11-10 南开大学 Method for measuring total nitrogen content in water
CN111912814B (en) * 2019-12-17 2022-11-04 南开大学 Method for measuring total nitrogen content in water
CN111879596A (en) * 2020-07-20 2020-11-03 广东石油化工学院 Buffer solution for detecting nitrate nitrogen in industrial sewage and detection method
CN111879597A (en) * 2020-07-20 2020-11-03 广东石油化工学院 Buffer solution for detecting nitrate nitrogen in domestic sewage and detection method
CN111879596B (en) * 2020-07-20 2023-12-01 广东石油化工学院 Buffer solution for detecting industrial sewage nitrate nitrogen and detection method
CN111879597B (en) * 2020-07-20 2023-12-05 广东石油化工学院 Buffer solution for detecting nitrate nitrogen in domestic sewage and detection method
CN115015361A (en) * 2021-12-17 2022-09-06 江苏省农业科学院 Method for rapidly detecting soil nitrate nitrogen

Similar Documents

Publication Publication Date Title
JP3790189B2 (en) Novel synthesis method of visible light responsive BiVO4 fine powder, photocatalyst comprising the BiVO4 fine powder, and purification method using the photocatalyst
US20190055148A1 (en) Method for Controlling Chlorinated Nitrogen-Containing Disinfection By-Product In Water
Gleit et al. Use of Electrically Excited Oxygen for the Low Temperature Decomposition of Organic Substances.
Al-Rasheed et al. Photocatalytic degradation of humic acid in saline waters: Part 2. Effects of various photocatalytic materials
Georgieva et al. Determination of palladium by adsorptive stripping voltammetry
Takeda et al. Characteristics on the determination of dissolved organic nitrogen compounds in natural waters using titanium dioxide and platinized titanium dioxide mediated photocatalytic degradation
JPS63190697A (en) Method of decomposing oxidizer in effluent and manufacture of catalyst thereof
Wibowo et al. Highly synergistic sensor of graphene electrode functionalized with rutile tio2 microstructures to detect l-tryptophan compound
Vasu et al. 2D-layered Bi-functional direct solid-Z-scheme heterogenous vanadium and oxygen doped graphitic carbon nitride single layered nanosheet catalysis for detection and photocatalytic removal of toxic heavy metal
CN111151274A (en) Catalytic material, preparation method thereof, photocatalyst and production method of hydrogen peroxide
Dhayanithi et al. Development of amine-based transition metal MOFs as efficient electrochemical sensors for the detection of chloramphenicol in food and pharmaceutical samples
JP2004037229A (en) Method for measuring total nitrogen in water
JP4175002B2 (en) Oxidation / reducing agent injection rate control method
JP2009178636A (en) Titanium oxide photocatalyst showing high photocatalytic activity under visible light, and its manufacturing method
JP3987289B2 (en) Photocatalyst, method for producing the same, and photocatalyst using the same
AU2010251701B2 (en) Water analysis
JP3567004B2 (en) Photocatalyst and method for producing the same
JP2001029944A (en) Method for removing nitrogen compound in water
JPH07187622A (en) Production of low-concentration no and method for measuring no2
Karimova et al. pH Dependence of the speciation and optical properties of 4-benzoylbenzoic acid
JP2005319451A (en) Photocatalyst and method for manufacturing the same
JP2021104486A (en) Photocatalysis and method for manufacturing the same
JP2005281031A (en) Metal-supporting titanium dioxide sol and production method therefor
RU2370459C2 (en) Method of purifying waste water
JPS61178402A (en) Method of decomposition treatment of ozone