JPH0718750B2 - Foreign object detection device - Google Patents
Foreign object detection deviceInfo
- Publication number
- JPH0718750B2 JPH0718750B2 JP62062358A JP6235887A JPH0718750B2 JP H0718750 B2 JPH0718750 B2 JP H0718750B2 JP 62062358 A JP62062358 A JP 62062358A JP 6235887 A JP6235887 A JP 6235887A JP H0718750 B2 JPH0718750 B2 JP H0718750B2
- Authority
- JP
- Japan
- Prior art keywords
- sound
- steam
- fine particles
- solid fine
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Monitoring And Testing Of Nuclear Reactors (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は流体の異物を検出する装置に係り、特に蒸気タ
ービンへ流入する蒸気中の異物検出に好適な異物検出装
置に関する。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for detecting foreign matter in a fluid, and more particularly to a foreign matter detection apparatus suitable for detecting foreign matter in steam flowing into a steam turbine.
蒸気タービンプラント系統の代表例を第2図に示す。本
系統の概略を述べると、復水器10で復水された水はボイ
ラー1で加熱されて蒸気となる。この蒸気は主蒸気止め
弁2,加減弁3を通り高圧タービン4に流動してタービン
ロータを回転させ、発電器機(図示せず)を回転させ
る。高圧タービン4で仕事をした蒸気は再びボイラー1
に回収され、ボイラー内の再熱器により加熱され再熱蒸
気弁6及びインタセプト弁7を内蔵した組合わせ再熱弁
5を経由し中圧タービン8及び低圧タービン9で仕事を
し、蒸気は復水器10で再び水となる。A typical example of a steam turbine plant system is shown in FIG. To explain the outline of this system, the water condensed in the condenser 10 is heated in the boiler 1 to become steam. This steam flows through the main steam stop valve 2 and the regulator valve 3 into the high-pressure turbine 4 to rotate the turbine rotor and rotate a generator (not shown). The steam that worked in the high-pressure turbine 4 is again the boiler 1
Is recovered by the reheater in the boiler and is worked by the intermediate pressure turbine 8 and the low pressure turbine 9 via the combined reheat valve 5 having the reheat steam valve 6 and the intercept valve 7 built-in, and the steam is condensed. It becomes water again in vessel 10.
この系統において、各タービン車室前に配置される主蒸
気止め弁2,加減弁3,再熱蒸気止め弁6及インタセプト弁
7の各主要弁は、タービンの回転数及び発電負荷の制御
機能と緊急時にタービンを停止させる保安機能を有する
重要な弁である。むろんこれらは蒸気流量の制御部つま
り弁の開度変化により実行されるが、弁開閉時には蒸気
の流速が上昇し、蒸気中のボイラー1からの固形微粒子
が部材に衝突して浸食が発生することがある。例えば、
タービン起動時にタービン車室の熱応力を緩和させるた
めに、タービン車室全周より蒸気を流入させる全周噴射
起動が行われるが、このとき主蒸気止め弁2にバイパス
弁を内蔵させることがある。この場合はバイパス弁微開
状態となるため、蒸気もそこに含まれる固形微粒子も音
速で流れ、主蒸気止め弁の弁棒及びバイパス弁等に浸食
が発生する。また主蒸気止め弁以外にも、蒸気タービン
入り口ノズルに同様にして浸食が生じる。このような固
形微粒子の生成は、種々の対策を施しても完全になくす
ことはできない。そして、最近のようにタービンの毎日
起動停止(DSS)、週末起動停止(WSS)が行われると、
温度変化によつて固形微粒子の発生量が増大する。この
固形微粒子対策として、ボイラーの外部へのブローイン
グにより固形微粒子を系外に捨てる方法、あるいは部品
表面に表面処理を施して浸食を受け難いようにする等の
工夫をしているが、対策として万全とはいえない。ま
た、特公昭57−43789号に開示されているように、バイ
パス弁を備えた主蒸気止め弁の浸食防止策として、弁の
形状を工夫したものもある。In this system, the main steam stop valve 2, the regulator valve 3, the reheat steam stop valve 6 and the intercept valve 7 arranged in front of each turbine casing have a function of controlling the rotational speed of the turbine and a power generation load. It is an important valve that has a safety function to stop the turbine in an emergency. Of course, these are executed by the control unit of the steam flow rate, that is, by changing the opening degree of the valve, but when the valve is opened and closed, the flow velocity of the steam rises, and solid fine particles from the boiler 1 in the steam collide with the member to cause erosion. There is. For example,
In order to relieve the thermal stress in the turbine casing at the time of starting the turbine, a full-circle injection starting in which steam is introduced from the entire periphery of the turbine casing is performed. At this time, a bypass valve may be incorporated in the main steam stop valve 2. . In this case, since the bypass valve is in a slightly opened state, steam and solid particles contained therein also flow at the speed of sound, and erosion occurs on the valve rod of the main steam stop valve, the bypass valve, and the like. In addition to the main steam stop valve, erosion similarly occurs in the steam turbine inlet nozzle. The generation of such solid fine particles cannot be completely eliminated even if various measures are taken. And, as is the case recently, when turbine daily start and stop (DSS) and weekend start and stop (WSS) are performed,
The amount of solid fine particles generated increases due to the temperature change. As measures against this solid fine particle, measures such as throwing the solid fine particle out of the system by blowing to the outside of the boiler, or applying surface treatment to the surface of the part to make it hard to be eroded are taken as a countermeasure. Not really. Also, as disclosed in Japanese Patent Publication No. 57-43789, there is a device in which the shape of the valve is devised as a measure against erosion of a main steam stop valve having a bypass valve.
上記の特公昭57−43789号に開示されたものは、弁棒浸
食対策としては有効であるが、バイパス弁先端の突起部
及びバイパス弁通過後の蒸気を通す通過穴の壁面に浸食
が生ずることがあり、浸食防止策としては完全ではな
い。このために蒸気中に含まれる固形微粒子の大きさや
量、分布の把握が必要であるが、現段階においてはその
技術が皆無である。The one disclosed in Japanese Patent Publication No. 57-43789 is effective as a countermeasure for valve rod erosion, but erosion occurs on the projection part at the tip of the bypass valve and the wall surface of the passage hole for passing steam after passing the bypass valve. However, it is not a complete erosion control measure. For this reason, it is necessary to grasp the size, amount, and distribution of the solid fine particles contained in the steam, but at the present stage, there is no such technique.
本発明の目的は、蒸気中に含まれる固形微粒子の大きさ
や量、分布を把握するための異物検出装置を提供するに
ある。An object of the present invention is to provide a foreign matter detection device for grasping the size, amount, and distribution of solid fine particles contained in vapor.
上記の問題は、配管内を流れる流体中に含まれる固形微
粒子の分布を求める異物検出装置において、前記配管内
を横断する方向に挿入される聴音棒と、該聴音棒の両端
に装着され該聴音棒に固形微粒子が衝突したとき発生す
る音を検出する第1,第2のAEセンサと、該第1,第2のAE
センサの各検出信号の差から固形微粒子の衝突位置を求
めると共に前記聴音棒が挿入方向に移動されたときに検
出される検出信号から固形微粒子の前記配管の横断方向
の分布を求める信号処理手段とを設けることにより達成
される。The above-mentioned problem is that in a foreign matter detection device for determining the distribution of solid fine particles contained in a fluid flowing in a pipe, a sound stick inserted in a direction traversing the pipe, and the sound stick attached to both ends of the sound stick. First and second AE sensors for detecting sound generated when solid particles collide with the rod, and the first and second AE sensors
Signal processing means for obtaining the collision position of the solid fine particles from the difference between the detection signals of the sensor and for obtaining the distribution of the solid fine particles in the transverse direction of the pipe from the detection signal detected when the listening rod is moved in the insertion direction. It is achieved by providing.
AEセンサーの出力の振巾及び周波数スペクトルは、管内
を流れる固形微粒子の量及び大きさによつて変化する。
従つて固形微粒子の量及び大きさの種々の値に対するAE
センサー出力の振巾や周波数スペクトルの特徴を予め測
定しておけば、それとの比較により管内の固形微粒子の
大きさ及び量を常時監視することができる。The amplitude and frequency spectrum of the output of the AE sensor change depending on the amount and size of solid particles flowing in the tube.
Therefore, AE for various values of amount and size of solid particles
If the amplitude of the sensor output and the characteristics of the frequency spectrum are measured in advance, the size and amount of the solid fine particles in the tube can be constantly monitored by comparison with them.
また、聴音棒の両端に夫々AEセンサを設けると、各検出
信号の差から固形微粒子の衝突位置を求めることができ
る。従って、聴音棒を配管に挿入しながら衝突する固形
微粒子の位置を求めることで、配管の横断方向の分布を
求めることができる。If AE sensors are provided at both ends of the listening rod, the collision position of the solid particles can be obtained from the difference between the detection signals. Therefore, the distribution in the transverse direction of the pipe can be obtained by obtaining the position of the solid fine particles that collide with each other while inserting the listening rod into the pipe.
本発明の実施例を第1図及び第3図に示す。第3図は蒸
気管内に固形微粒子の衝突音を感知する聴音棒14を挿入
した状態図である。聴音棒14の中央には感音部13があ
り、固形微粒子11を含んだ蒸気が蒸気管12内を左方より
右方に流れると、固形微粒子が衝突する際発生する音が
感音部で感知され、AEセンサー15で受信される。An embodiment of the present invention is shown in FIGS. FIG. 3 is a diagram showing a state in which a sound stick 14 for detecting the collision sound of solid particles is inserted in the steam pipe. There is a sound-sensing part 13 in the center of the listening rod 14, and when the vapor containing the solid particles 11 flows from the left to the right in the steam pipe 12, the sound-sensing part produces the sound generated when the solid particles collide. It is detected and received by the AE sensor 15.
第1図は、第3図の蒸気管12のA−A横断面とAEセンサ
ー15の出力の処理系及び記録・表示系の実施例を示すも
ので、AEセンサー15で感知された衝突音信号はプリアン
プ16で増幅され、蒸気流のノイズを分離するためのノイ
ズフイルタ17を介してメインアンプ18で増幅される。更
にこの出力は平均回路19で平均化されてペンレコーダー
20で記録される。他方、メインアンプ18を通つた信号の
一部は、衝突信号の周波数成分を通すフイルタ21を通し
たのち信号解析装置22に入力される。同装置22には固形
微粒子11の量の多少及び粒子の大小を判別するための予
め測定された判別波形23が入力まされ、これは検出波形
とともにモニター24に表示され、またレコーダー25に記
録されて監視される。FIG. 1 shows an embodiment of the processing system and the recording / display system of the AA cross section of the steam pipe 12 and the output of the AE sensor 15 in FIG. 3, and the collision sound signal detected by the AE sensor 15 is shown. Is amplified by a preamplifier 16 and is amplified by a main amplifier 18 through a noise filter 17 for separating noise of vapor flow. Furthermore, this output is averaged by the averaging circuit 19 and the pen recorder
Recorded at 20. On the other hand, a part of the signal passed through the main amplifier 18 is passed through a filter 21 through which the frequency component of the collision signal passes, and then input to a signal analysis device 22. The device 22 is inputted with a pre-determined discrimination waveform 23 for discriminating the amount of the solid fine particles 11 and the size of the particles, which is displayed on the monitor 24 together with the detection waveform and recorded on the recorder 25. Be monitored.
第4図の波形a及びbは、感音部13に少量の固形微粒子
11が衝突した場合と多量の固形微粒子11が衝突した場合
のメインアンプ18の出力を示しており、固形微粒子の速
度エネルギーの差により振幅の差が生じる。従つてこれ
の平均化した値、つまりペンレコーダー20の記録から、
固形微粒子の量を判定できる。またこの時の周波数分析
を装置22を行うと、第4図の波形c,dに示すごとくその
振幅及び波形密度の差が出て来る。この波形を判別波形
23と比較することより、固形微粒子の量の多少の判断が
可能となる。又、感音部13は蒸気管断面の一部の衝突の
みを感知しているから、感音部13の面積と蒸気管12の断
面積とから、蒸気管12内の全体の固形微粒子の量を推定
することができる。更に固形微粒子の大きさについて
は、粒子が小さい場合の検出波形(メインアンプ出力)
及び周波数分析出力は第4図の波形a,cとなり、粒子が
大きい場合は波形b,dのようになる。従つて判別波形23
と比較することによつて実機の固形微粒子の状態を定量
的に判断することが可能となる。Waveforms a and b in FIG. 4 show a small amount of solid fine particles in the sound sensing part 13.
The output of the main amplifier 18 is shown when the solid particles 11 collide with each other and when a large amount of the solid particles 11 collide with each other, and a difference in amplitude occurs due to a difference in velocity energy of the solid particles. Therefore, from the averaged value of this, that is, the recording of the pen recorder 20,
The amount of solid particles can be determined. Further, when the frequency analysis at this time is performed by the device 22, the difference in the amplitude and the waveform density appears as shown by the waveforms c and d in FIG. This waveform is the discrimination waveform
By comparing with 23, it is possible to judge the amount of solid fine particles to some extent. Further, since the sound sensing unit 13 senses only a collision of a part of the steam pipe cross section, the amount of solid particles in the steam pipe 12 is determined from the area of the sound sensing unit 13 and the cross sectional area of the steam pipe 12. Can be estimated. Regarding the size of solid particles, the detection waveform when the particles are small (main amplifier output)
And the frequency analysis output becomes the waveforms a and c in FIG. 4, and becomes the waveforms b and d when the particles are large. Therefore, the discrimination waveform 23
By comparing with the above, it becomes possible to quantitatively judge the state of the solid particles of the actual machine.
第5図は本発明の別の実施例を示すもので、第1図と異
なる部分は、聴音棒14上で感音部13を移動できる構造と
した点と、聴音棒14の両端にAEセンサー15A,15Bを取り
付け、各センサーからの信号をプリアンプ16A,16B,ノイ
ズフイルタ17A,17B,メインアンプ18A,18B,平均値回路19
A,19Bを通す構成とした点である。本実施例によると、
解析装置22による周波数分析結果は、第6図に示すよう
に感音部13に近いAEセンサー(第5図では15A)側と感
音部13から遠いAEセンサー(第5図では15B)側とは間
に差Δxが生じる。この差は蒸気管12内の位置を示すこ
とになる。聴音棒14の感音部13を適宜移動させることに
より、蒸気管内の固形微粒子11の分布を把握することが
可能となる。FIG. 5 shows another embodiment of the present invention. The difference from FIG. 1 is that the sound sensing portion 13 can be moved on the listening stick 14, and that the AE sensors are provided at both ends of the listening stick 14. 15A and 15B are attached, and the signals from each sensor are sent to the preamplifier 16A, 16B, noise filter 17A, 17B, main amplifier 18A, 18B, average value circuit 19
The point is that it is configured to pass A and 19B. According to this embodiment,
As shown in FIG. 6, the frequency analysis result by the analysis device 22 shows that the AE sensor (15A in FIG. 5) side close to the sound sensing unit 13 and the AE sensor (15B in FIG. 5) side far from the sound sensing unit 13 There is a difference Δx between them. This difference will indicate the position within the steam pipe 12. By appropriately moving the sound-sensing part 13 of the listening rod 14, it becomes possible to grasp the distribution of the solid fine particles 11 in the steam pipe.
本発明によれば、蒸気流に含まれる固形微粒子の量及び
粒子の大小並びに分布を常時監視できるから、事前に蒸
気タービンの浸食防止を行え、特にタービンのDDS及びW
SSが行われる場合には大きな効果がある。According to the present invention, the amount of solid fine particles contained in the steam flow and the size and distribution of the particles can be constantly monitored, so that the erosion of the steam turbine can be prevented in advance, and especially the DDS and W of the turbine can be prevented.
It has a great effect when SS is performed.
第1図は本発明の一実施例を示す図、第2図は蒸気ター
ビンの蒸気系統を示す図、第3図は聴音棒の蒸気管への
取り付け状態を示す図、第4図は第1図の実施例の検出
波形を示す図、第5図は本発明の別の実施例を示す図、
第6図は第5図は実施例の周波数分析波形を示す図であ
る。 11……固形微粒子、12……蒸気管、13……感音部、14…
…聴音棒、15,15A,15B……AEセンサー、16,16A,16B……
プリアンプ、17,17A,17B……ノイズフイルタ、18,18A,1
8B……メインアンプ、19,19A,19B……平均回路、20……
ペンレコーダー、21……周波数フイルタ、22……解析装
置、23……判別波形、24……モニター、25……データレ
コーダー。FIG. 1 is a view showing an embodiment of the present invention, FIG. 2 is a view showing a steam system of a steam turbine, FIG. 3 is a view showing a mounting state of a hearing rod to a steam pipe, and FIG. The figure which shows the detection waveform of the Example of FIG. 5, FIG. 5 is the figure which shows another Example of this invention,
FIG. 6 is a diagram showing a frequency analysis waveform of the embodiment shown in FIG. 11 …… Solid fine particles, 12 …… Steam pipe, 13 …… Sound-sensing part, 14…
… Listening bar, 15,15A, 15B …… AE sensor, 16,16A, 16B ……
Preamplifier, 17,17A, 17B …… Noise filter, 18,18A, 1
8B …… Main amplifier, 19,19A, 19B …… Averaging circuit, 20 ……
Pen recorder, 21 …… Frequency filter, 22 …… Analysis device, 23 …… Discriminant waveform, 24 …… Monitor, 25 …… Data recorder.
Claims (1)
子の大小,量,分布を求める異物検出装置において、前
記配管内を横断する方向に挿入される聴音棒と、該聴音
棒の両端に装着された該聴音棒に固形微粒子が衝突した
とき発生する音を検出する第1,第2のAEセンサと、該第
1,第2のAEセンサの検出信号から固形微粒子の大きさ及
び量を求め且つ両AEセンサの各検出信号の差から固形微
粒子の衝突位置を求めると共に前記聴音棒が挿入方向に
移動されたときに両AEセンサで検出される検出信号から
固形微粒子の前記配管の横断方向の分布を求める信号処
理手段とを備えることを特徴とする異物検出装置。1. A foreign matter detection device for determining the size, amount, and distribution of solid fine particles contained in a fluid flowing in a pipe, wherein a sound rod inserted in a direction traversing the pipe and both ends of the sound rod. A first and a second AE sensor for detecting a sound generated when solid fine particles collide with the attached sound-accepting rod;
When the size and amount of the solid fine particles are obtained from the detection signals of the first and second AE sensors, the collision position of the solid fine particles is obtained from the difference between the detection signals of both AE sensors, and the sound stick is moved in the insertion direction. And a signal processing means for obtaining a distribution of solid particles in the transverse direction of the pipe from detection signals detected by both AE sensors.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62062358A JPH0718750B2 (en) | 1987-03-19 | 1987-03-19 | Foreign object detection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62062358A JPH0718750B2 (en) | 1987-03-19 | 1987-03-19 | Foreign object detection device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63229334A JPS63229334A (en) | 1988-09-26 |
JPH0718750B2 true JPH0718750B2 (en) | 1995-03-06 |
Family
ID=13197813
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62062358A Expired - Lifetime JPH0718750B2 (en) | 1987-03-19 | 1987-03-19 | Foreign object detection device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0718750B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AUPQ841500A0 (en) * | 2000-06-28 | 2000-07-20 | Commonwealth Scientific And Industrial Research Organisation | Measurement of particle size in pneumatic flows |
WO2009002394A1 (en) * | 2007-06-21 | 2008-12-31 | Avistar, Inc. | Method and apparatus for controlling relative coal flow in pipes from a pulverizer |
CN108227532B (en) * | 2018-02-12 | 2024-03-29 | 许静 | Monitoring device, monitoring system and monitoring method for waste yeast discharge in beer fermentation process |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5236289A (en) * | 1975-09-17 | 1977-03-19 | Toshiba Corp | Nuclear reactor abnormailty checking equipment |
JPS5642114A (en) * | 1979-09-14 | 1981-04-20 | Chugoku Electric Power Co Ltd:The | Detection method for loose parts |
-
1987
- 1987-03-19 JP JP62062358A patent/JPH0718750B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5236289A (en) * | 1975-09-17 | 1977-03-19 | Toshiba Corp | Nuclear reactor abnormailty checking equipment |
JPS5642114A (en) * | 1979-09-14 | 1981-04-20 | Chugoku Electric Power Co Ltd:The | Detection method for loose parts |
Also Published As
Publication number | Publication date |
---|---|
JPS63229334A (en) | 1988-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Blackwelder et al. | On the wall structure of the turbulent boundary layer | |
JPS609759Y2 (en) | Online shock monitoring device for pressurized water reactors | |
JP2017090449A (en) | Acoustic emission system and method for predicting explosions in dissolving tank | |
EP2176628A1 (en) | Method and apparatus for controlling relative coal flow in pipes from a pulverizer | |
JPH0718750B2 (en) | Foreign object detection device | |
JP4580601B2 (en) | Cavitation diagnostic equipment for hydroelectric power generation equipment | |
JP4670360B2 (en) | Gas appliance, appliance discrimination device and gas meter | |
US5148669A (en) | Detection of particulates in a hot gas flow | |
JPH11125574A (en) | Leakage inspection method and device therefor | |
US6079262A (en) | Coin identification procedure | |
US5419189A (en) | Method for obtaining zero flowmeter reading for zero flow | |
Cader et al. | LDV measurements in a centrifugal slurry pump: water and dilute slurry flows | |
JPH04235380A (en) | Detecting device of extraneous substance in fluid inside tube | |
JP2003097407A (en) | Cavitation diagnosis device for hydraulic machinery | |
EP1518039B1 (en) | Method for operating a gas turbine installation, and gas turbine installation | |
JPH01321397A (en) | Monitor for loose parts | |
JPH08141612A (en) | Method for detecting chattering in rolling mill | |
JPH02286899A (en) | Stall predicting and preventing device for turbo machine | |
Eich et al. | Large-scale structures in turbulent boundary layers under an adverse pressure gradient up to flow separation | |
SU1522880A1 (en) | Method of detecting inter-circuit leak developing in steam generator | |
JPS60147607A (en) | Method for measuring particle size using laser doppler speedometer | |
JP3151803B2 (en) | How to diagnose tuyere damage | |
JP3376531B2 (en) | Leak monitoring device and leak monitoring method | |
JPS58144726A (en) | Apparatus for monitoring leakage of pressure fluid | |
JPH0821780A (en) | Leak detector and leak-detecting method |