JPH02286899A - Stall predicting and preventing device for turbo machine - Google Patents

Stall predicting and preventing device for turbo machine

Info

Publication number
JPH02286899A
JPH02286899A JP1110396A JP11039689A JPH02286899A JP H02286899 A JPH02286899 A JP H02286899A JP 1110396 A JP1110396 A JP 1110396A JP 11039689 A JP11039689 A JP 11039689A JP H02286899 A JPH02286899 A JP H02286899A
Authority
JP
Japan
Prior art keywords
stall
pressure
controller
turbomachine
analyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1110396A
Other languages
Japanese (ja)
Inventor
Masahiro Inoue
雅弘 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1110396A priority Critical patent/JPH02286899A/en
Publication of JPH02286899A publication Critical patent/JPH02286899A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/001Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Abstract

PURPOSE:To avoid rushing into the revolutional stall condition by extracting continuous output signals pertaining to a change in the pressure or flow velocity sensed by a sensor, subjecting them to statistic processing one after another, and allowing a controller having an analyzer to perform time shift processing. CONSTITUTION:A controller 10 extracts a pressure sensing signal generated by a pressure sensor 7, which responds fully to high-frequency pressure variation resulting from passage of each rotary vane 5, and is equipped with a data input part 11 to convert the anlog signals as result from said extraction into digital signals and also with an analyzer 12 to perform statistic processing of changes in the fluid pressure one after another which are caused by rotation of the impeller 4. The data taken into the statistics are subjected to time shift processing according to an extract command, and the result is stored in a memory of the controller 10 as the latest information. Thus the difference between the statistic quantity kept with updating from time to time and the set threshold value will be lessened, and when it is sensed that the statistic quantity has exceeded the threshold value, the controller 10 emits a signal for output correction of the turbo-machine 1 concerned 1.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は流体を圧送するポンプ、送風機、圧縮機等に分
類される機械であって、遠心式、軸流式、斜流式等に種
別されて、総称をターボ機械と称する機械にかかわり、
該ターボ機械における流体の流量および圧力の激しい変
動の原因となる旋回失速状態を回避するためり旋回失速
の発生を事前に予知する装こに関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a machine that is classified as a pump, blower, compressor, etc. for pumping fluid, and is divided into centrifugal type, axial flow type, mixed flow type, etc. related to machines collectively called turbomachinery.
The present invention relates to a system for predicting the occurrence of a rotational stall in advance in order to avoid a rotational stall condition that causes severe fluctuations in fluid flow rate and pressure in the turbomachine.

(従来の技術) はじめに、本発明の技術的背景にかかわり、ターボ機械
においては、加圧供給される流体の流量が人為的もしく
は何等かの原因で減少することにより、失速現象を生じ
る傾向のあることについて理解されたい、なお、翼車の
一部で失速状態にある流体が翼車の回転速度のおよそ3
0%〜70%の角速度で回転する現象を旋回失速状態と
云う。
(Prior Art) First, regarding the technical background of the present invention, in turbomachinery, a stall phenomenon tends to occur when the flow rate of fluid supplied under pressure is reduced artificially or for some other reason. It should be understood that the stalled fluid in a portion of the wheel is approximately 3 times the rotational speed of the wheel.
The phenomenon of rotating at an angular velocity of 0% to 70% is called a rotating stall state.

この旋回失速はサージングや脈動やキャビテーションを
生起し、更には振動や騒音あるいは機械部品の疲労破壊
と云う設備の重大なトラブルを発生する原因となり、そ
のトラブルによって産業上の多大な損害を被ることとな
る。
This rotational stall causes surging, pulsation, and cavitation, and can also cause serious equipment problems such as vibration, noise, and fatigue failure of mechanical parts, which can cause great industrial damage. Become.

しかるに従来、前記の旋回失速状態を検知する方法はあ
るが、失速状態の生起以前の段階でその兆候を予知する
方法は知られていない。
However, although there are conventional methods for detecting the turning stall condition, there is no known method for predicting the signs of the stall condition before it occurs.

従って従来は、予め設備の試験運転を成すことにより、
当該設備特有の旋回失速状態に移行する運転上の限界点
を設定し、設備の運転領域を定めて、それに基づき運転
している。
Therefore, conventionally, by performing a test run of the equipment in advance,
The operating limit point at which the equipment enters a rotating stall state is set, the operating range of the equipment is defined, and the equipment is operated based on this.

従ワて従来、ターボ機械を装備する設備においては、該
ターボ機械あるいは付属の加圧流体の回路等のいずれか
に長期使用や外的原因で流体作用の著しい変化が生じた
ばあい、当然に前記の旋回失速状態に移行する運転上の
限界点が変化し、ある時突如として旋回失速状態に陥る
ことがある。
Conventionally, in equipment equipped with turbomachinery, if a significant change in fluid behavior occurs in either the turbomachine or the attached pressurized fluid circuit due to long-term use or external causes, it will naturally occur. The operational limit point at which the vehicle enters the rotating stall state may change, and at some point the vehicle may suddenly enter the rotating stall state.

なお、前記の旋回失速状態に陥ったばあい、失速特性が
ヒステリシス特性を持つため、その回避は容易ではなく
、該回避措置が完了するまでに相当の時間を経過し、そ
の間に重大なトラブルを誘発すると云う危険性がある。
In addition, if the above-mentioned turning stall condition occurs, it is not easy to avoid it because the stall characteristics have hysteresis characteristics, and it may take a considerable amount of time to complete the avoidance measures, and serious trouble may occur during that time. There is a risk of triggering.

(発明が解決しようとする問題点) 旋回失速現象は、その現象がかなり進行した段階では、
加圧流体の流れの脈動、機械の振動、発生する騒音など
の程度によっても概略検知することができょうが、この
ように発達した失速現象を初期の段階で検知してその後
に失速状悪な回避する41↑近をとったとしても、この
失速状態を回避するまでに相当の時間を要し、事故対策
が不可能なばあいが多い、すなわちそれは、本発明の発
明者による。前記の旋回失速現象と失速状態にかかわる
流体作用を調べることを目的とした次の実験によって理
解できよう。
(Problem to be solved by the invention) When the turning stall phenomenon has progressed considerably,
It can be roughly detected by the degree of pulsation of the flow of pressurized fluid, vibration of the machine, noise generated, etc., but it is possible to detect a stall phenomenon that has developed in this way at an early stage and to detect a stall in a bad state. Even if a situation close to 41↑ is avoided, it takes a considerable amount of time to avoid this stall state, and there are many cases where it is impossible to take measures against the accident. This can be understood through the following experiment aimed at investigating the above-mentioned rotating stall phenomenon and the fluid action involved in the stall condition.

上記の旋回失速にかかわる出力波形の特性を検知するた
め、機械および装置の回路内の適切な位こに、熱線流速
計や圧力センサなどを挿入し1機械内の流体作用を調べ
た。第2図はそのデータであり、出力波形を時間の経過
に伴なって記録したちのである。同図の1列と3列の出
力は、翼の回転に伴なって生起した翼数X回転数の翼通
過により生じる周波数にかかわる波形である。同図の2
列と4列は、それぞれ1列と3列の出力に翼通過周波数
×l/2の低帯域フィルタを施して翼通過周波数成分を
除去して記録したものであって、図の横軸の1目盛は翼
車の1回転に相当する。この低帯域フィルタを施した出
力波形では前記の翼通過周波数が消去されることから、
旋回失速の現象として図の2列目および4列目のように
流体圧(もしくは流速)の擾乱が明確に現われる。なお
、図の2列目で確認できる小さな擾乱は旋回失速現象の
初生の状態を示し、4列目の擾乱は前記の失速現象が発
達するに伴なって旋回失速特有の波形に移行する流体圧
の現象を示している。
In order to detect the characteristics of the output waveform related to the above-mentioned rotating stall, we inserted hot-wire anemometers, pressure sensors, etc. at appropriate locations in the circuits of machines and equipment, and investigated the fluid action within one machine. Figure 2 shows the data, and the output waveform was recorded over time. The outputs in the first and third rows in the same figure are waveforms related to the frequency generated by the blade passage of the blade number x rotation speed that occurs as the blade rotates. 2 in the same figure
Rows and rows 4 are the outputs of rows 1 and 3, respectively, which are recorded by applying a low band filter of blade passing frequency x l/2 to remove the blade passing frequency component. The scale corresponds to one rotation of the impeller. Since the above-mentioned blade passing frequency is eliminated in the output waveform after applying this low-band filter,
As a phenomenon of rotating stall, disturbances in fluid pressure (or flow velocity) clearly appear as shown in the second and fourth rows of the figure. The small disturbance that can be seen in the second column of the figure indicates the initial state of the rotating stall phenomenon, and the disturbance in the fourth column indicates the fluid pressure that shifts to a waveform specific to a rotating stall as the stall phenomenon develops. This shows the phenomenon of

上記の実験結果の図によって明らかなように、旋回失速
現象の初生から失速状態の生起点に至る発達過程に要す
る時間は、翼車の回転量にして僅か数回転に相当する瞬
間的なものである。従って前記の旋回失速現象の初生点
以後の遅い時期に失速現象や失速状態を検知し、それを
信号として失速回避の手段やrv制御を施したとしても
、この機械の作用上の特性から制御の遅れを生じるので
ある、しかも、流体の流れの慣性等が手伝って、目的と
する失速回避を成し遂げることは不可能である、そして
、このターボ機械が一旦失速状態に入ると、ヒステリシ
ス特性により、前述の失速状態に移行する時の流量の限
界点よりも該流量を顕著に増加する措置をとらなければ
、その失速状態を解消することはできない。
As is clear from the diagram of the experimental results above, the time required for the development process from the initial occurrence of the rotating stall phenomenon to the starting point of the stall condition is instantaneous, corresponding to only a few revolutions in terms of the amount of rotation of the impeller. be. Therefore, even if a stall phenomenon or stall condition is detected at a late stage after the initial point of the turning stall phenomenon described above, and this is used as a signal to implement stall avoidance measures or RV control, due to the operational characteristics of this machine, the control will not be effective. Furthermore, due to the inertia of the fluid flow, it is impossible to achieve the desired stall avoidance, and once this turbomachine enters a stall state, the hysteresis characteristic The stall condition cannot be resolved unless measures are taken to significantly increase the flow rate above the limit point at which the stall condition occurs.

以上述べられたことで明らかなように、このターボ機械
の旋回失速状態を確実に回避するためには、すくなくと
も前記の旋回失速状態に突入する以前の極めて早い時期
にその兆候を予知し、しかも速やかにその失速状態を回
避する措置と制御をしなければならない、その一方で、
当該ターボ機械における流体の流れには基本的に複雑な
乱れがあり、この乱れた流体作用の中の瞬間的な出力波
形からその失速現象を予知することは不可能と云えよう
As is clear from what has been said above, in order to reliably avoid the rotating stall state of the turbomachinery, it is necessary to predict the symptoms at least at an extremely early stage before entering the above-mentioned rotating stall state, and to promptly measures and controls must be taken to avoid the stall condition, while
The fluid flow in the turbomachine basically has complex turbulence, and it can be said that it is impossible to predict the stall phenomenon from the instantaneous output waveform in this turbulent fluid action.

本発明は前記の解決すべき問題点に鑑み、ターボ機械の
運転中に旋回失速の生起の兆候が生じると、来るべき旋
回失速状態への移行を予知し、速やかにその措置にかか
わる制御を施し、旋回失速状態への突入を回避すること
を目的として成されたものである。
In view of the above problems to be solved, the present invention predicts the upcoming transition to a rotating stall state when a sign of a rotating stall occurs during operation of a turbomachine, and promptly implements control related to the countermeasure. This was done for the purpose of avoiding entering a turning stall state.

(問題点を解決するための手段) この発明は、旋回失速状態を予知するための要件の1つ
となる流体作用の時間的変化を調べるため、圧力センサ
(もしくは熱線流速計)を翼車のケーシングの内面等に
装備する。そして、前記の圧力センサの感圧信号を入力
するデータ入力部と感圧信号の追補に伴なって逐次統計
量が計算できる解析器とからなるコントローラを装備す
る。前記のコントローラには入力される感圧信号の圧力
変動(もしくは流速変化)の波形を翼車の回転に同期す
るとともに規則的に抽出してディジタル量に変換し、翼
車に相対的な定点における感圧信号走 の平均値2分散値、歪度および2点間の感圧信号Δ の相互相関などの統計量を計算する機能を備える、更に
コントローラには、古いデータを削除して最新の情報を
取り込む機能と、前記の統計量をそのつと再計算する機
能とを有し、情報を漸次更新する時間移動処理の使方を
備える。
(Means for Solving the Problems) This invention provides a pressure sensor (or hot wire current meter) installed in the casing of a blade wheel in order to investigate temporal changes in fluid action, which is one of the requirements for predicting a rotating stall state. Equipped on the inner surface of the The controller is equipped with a data input section that inputs the pressure-sensitive signal of the pressure sensor, and an analyzer that can sequentially calculate statistics as the pressure-sensitive signal is supplemented. The controller synchronizes the waveform of the pressure fluctuation (or flow velocity change) of the input pressure-sensitive signal with the rotation of the impeller, regularly extracts it, converts it into a digital quantity, and converts it into a digital quantity at a fixed point relative to the impeller. The controller has a function to calculate statistics such as the average value of the pressure-sensitive signal trace, the skewness, and the cross-correlation of the pressure-sensitive signal Δ between two points. It has a function to import the above-mentioned statistics, a function to recalculate the above-mentioned statistics, and a method for using time movement processing to gradually update the information.

上記の構成において、旋回失速の兆候を見出すための統
計量として好ましいのは相互相関値であると云えるが、
そのシステムを構成するには解析器に高度な解析能力が
要求されることから、解析作業が技術的に容易な分散値
や歪度等の統計量を情報として前記兆候を予知するよう
にしてもよい、更に、統計量を求めるための母集団のデ
ータの分量はこれが多過ぎると目的とする予知の時間的
感度が鈍くなり、少な過ぎると予知の精度が悪くなる傾
向がある。この点を考慮すれば望ましいデータの数量は
50〜500程度と云える。
In the above configuration, it can be said that the cross-correlation value is preferable as a statistic for finding signs of turning stall.
In order to configure such a system, the analyzer is required to have a high level of analytical ability, so even if it is possible to predict the above-mentioned symptoms by using statistics such as variance and skewness, which are technically easy to analyze, as information. Furthermore, if the amount of population data for calculating statistics is too large, the temporal sensitivity of the target prediction will become dull, and if it is too small, the accuracy of the prediction will tend to deteriorate. Considering this point, it can be said that the desirable amount of data is about 50 to 500.

この発明の特徴は、前記の構成によって、ターボ機械の
流量が旋回失速の初生点近くに至ると、ターボ機械内の
圧力データの統計量゛に前述の擾乱の兆候となる異変を
生じることに着目し、この兆候すなわち前記統計量を漸
次監視することを1手段として旋回失速状態の発生を予
知するところにある。
The feature of this invention is that, with the above-described configuration, when the flow rate of the turbomachine reaches near the initial point of rotational stall, an abnormality occurs in the statistics of the pressure data in the turbomachine, which is a sign of the above-mentioned disturbance. However, the occurrence of a turning stall condition can be predicted by gradually monitoring these signs, that is, the above-mentioned statistics.

本発明の今一つの特徴は、前記の検知される圧力データ
の基準となる統計量の設定条件として、しきい値すなわ
ち連続的に変化する現象に対してその値を越えることを
以って旋回失速生起の兆候が起こったことを判別する基
準値を設定し、該しきい値を基準とする統計量の相関値
により判別された結果発信される信号を制御手段として
、当該ターボ機械の流体圧もしくは流量を制御すること
により、前記の旋回失速状態の発生を事前に回避するこ
とにある。
Another feature of the present invention is that, as a setting condition for the statistical value that is the standard of the detected pressure data, a turning stall is determined by exceeding a threshold value for a continuously changing phenomenon. A reference value is set for determining whether a symptom has occurred, and the signal transmitted as a result of determination based on the correlation value of statistics based on the threshold value is used as a control means to control the fluid pressure or By controlling the flow rate, the purpose is to prevent the occurrence of the above-mentioned rotating stall condition.

本発明の今一つの特徴は、ターボ機械のハブ面もしくは
ケーシング面の適所に流体の流れを妨害しないように圧
力センサを埋め込み、該センサの感圧信号を、専用解析
器またはミニコンやマイコン等の汎用解析器(以下単に
解析器と云う)の指令により周期的(規則的)かつ適宜
に情報として抽出し、この情報なAD変換して順次解析
器に取り込み、その最新の情報により漸次、加算、二乗
加算、相互積加算、三乗加算などを行って相互相関や分
散値や歪度などの統計量を求め、この値を保有するとと
もに表示する構造に関する。(第1図参照) 更に本発明は、第3図の概念図で示すように、保有する
統計量をターボ機械の運転に従って漸次更新(この手続
きを時間移動処理と云う)し、この最新の統計量と前記
しきい値とを対比することを1手段として、当該ターボ
機械の旋回失速現象の発生を監視するとともに、有事の
際の制御信号の発信手段として用いることを特徴とする
Another feature of the present invention is that a pressure sensor is embedded at a suitable location on the hub surface or casing surface of a turbomachine so as not to obstruct the flow of fluid, and the pressure-sensitive signal of the sensor is transmitted to a dedicated analyzer or a general-purpose computer such as a minicomputer or microcomputer. The information is periodically (regularly) and appropriately extracted according to the instructions of the analyzer (hereinafter simply referred to as the analyzer), and this information is AD converted and sequentially imported into the analyzer, and the latest information is used to gradually add, square, etc. It relates to a structure that calculates statistical quantities such as cross-correlation, variance, and skewness by performing addition, cross-product addition, cube addition, etc., and stores and displays these values. (See Figure 1.) Furthermore, as shown in the conceptual diagram of Figure 3, the present invention gradually updates the stored statistics according to the operation of the turbomachine (this procedure is called time movement processing), and updates the latest statistics. The present invention is characterized in that the comparison between the amount and the threshold value is used as a means to monitor the occurrence of a rotating stall phenomenon in the turbomachine, and is also used as a means for transmitting a control signal in the event of an emergency.

(実施例) 以下、第1図の実施例に基づき、本発明の構成について
具体的に説明する。
(Example) Hereinafter, the configuration of the present invention will be specifically described based on the example shown in FIG.

ターボ機械lはケーシング2の中心部のハブ3に支承さ
れて回転する翼車4を有し、この翼車に適数の翼5を設
けている。前記の翼車はモータ6に連結されていてその
運転を制御される。前記のケーシング2の壁面には、回
転翼の通過によって生起する高周波の圧力変動に対して
充分に応答できる圧力センサ7を設ける。この圧力セン
サ7に接続してコントローラlOを装備する。このコン
トローラlOは、前記圧力センサの感圧信号を抽出する
とともにそのアナログ信号をデジタル信号に変換するデ
ータ入力部11、および翼車の回転に伴なう流体圧の変
化を漸次統計的に計算して処理する解析器12を持って
いる。前記の統計量に取り入れられるデータは抽出指令
によりて時間移動処理され、最新情報として前記コント
ローラlOの記憶装置部(メモリ)に入力して保有する
The turbomachine 1 has a blade wheel 4 which is supported by a hub 3 at the center of a casing 2 and rotates, and a suitable number of blades 5 are provided on this blade wheel. The aforementioned impeller is connected to a motor 6 and its operation is controlled. A pressure sensor 7 is provided on the wall surface of the casing 2, which can sufficiently respond to high-frequency pressure fluctuations caused by passage of the rotor blade. A controller IO is connected to this pressure sensor 7. This controller 1O includes a data input unit 11 that extracts the pressure-sensitive signal of the pressure sensor and converts the analog signal into a digital signal, and a data input unit 11 that gradually and statistically calculates changes in fluid pressure accompanying rotation of the impeller. It has an analyzer 12 for processing. The data incorporated into the statistics is subjected to time movement processing according to an extraction command, and is input and held as the latest information in the storage unit (memory) of the controller IO.

そして、この漸次更新されて保有される統計量と設定さ
れたしきい値との差が小さくなり、やがて前記統計量が
しきい値を越えたことを検知した時、前記コントローラ
10はターボ機械lの出力補正のための信号を発信する
ように構成する。
Then, when the difference between the gradually updated and held statistics and the set threshold value becomes smaller, and when it is detected that the statistics exceed the threshold value, the controller 10 is configured to transmit a signal for output correction.

(発明の作用) 以上の構成に基づき実施される本発明では、次の実験結
果の記録が示すとおり作用する。
(Operation of the Invention) The present invention implemented based on the above configuration operates as shown in the following record of experimental results.

データの抽出と統計量とは時u11の移動とデータの追
補に伴なって漸次処理される。第3図はその進行状態を
示したもので、横線で示すデータ■。
Data extraction and statistics are gradually processed as time u11 moves and data is supplemented. Figure 3 shows its progress, with data indicated by horizontal lines.

■、■のそれぞれは逐次読み込まれその統計量をオンラ
インで計算される過程を概念的に表わしたもので1時間
移動処理にかかわる作用が理解できる。
Each of (2) and (2) conceptually represents the process of sequentially reading and calculating the statistics online, allowing you to understand the effects involved in the 1-hour movement process.

統計量にかかわり、翼車のケーシング面に設けた圧力の
時間相関を調べた結果を第4図に示す。
Figure 4 shows the results of investigating the time correlation of the pressure provided on the casing surface of the impeller with regard to statistics.

第4図において、横軸は翼車の回転と同期させ2つの翼
が通過する時間を50等分に分割してその時間を設定し
、縦軸は横軸の50等分に対応する点の圧力データ群を
基準として、他の点のデータ群との相互相関係数をとっ
て示した図面である。
In Figure 4, the horizontal axis is synchronized with the rotation of the impeller, and the time taken by the two blades is divided into 50 equal parts, and the time is set, and the vertical axis is the point corresponding to the 50 equal parts of the horizontal axis. It is a drawing showing cross-correlation coefficients with data groups at other points based on a pressure data group.

この図の中でφは流量係数で、φ=0.500 (上図
)は正常な運転時、φ=0.324(下図)は旋回失速
の生起点に近づいた流量に対応する。
In this figure, φ is the flow coefficient; φ=0.500 (upper figure) corresponds to normal operation, and φ=0.324 (lower figure) corresponds to a flow rate approaching the starting point of a rotating stall.

なお図中ので=2.0は翼とケーシングとの隙間(単位
1鳳)、 EZZTと ITBは圧力センサの挿入位こ
とデータの抽出方法とを識別するために記入された記号
である。
In the figure, =2.0 is the gap between the blade and the casing (unit: 1), and EZZT and ITB are symbols written to identify the insertion position of the pressure sensor and the data extraction method.

上記の第4図で解るように、正常な運転では1つの翼が
通過するごとに相似形の相関値が現われ、翼に対する相
対流れ場では相隣る翼間の流動現象に強い相関があるが
、旋回失速直前では隣の翼との翼間の流れとの相関が小
さくなることが解る、この現象を利用して、翼が1ピツ
チだけ移動する時fJJ]間隔でデータを抽出して互い
のデータ群の相互相関値を監視すれば、旋回失速へ近づ
いたことが判定できる。前記と同様の原理で、ターボ機
ン 械のデイ域ユーザ内の旋回失速現象を検出するためには
、案内羽根lピッチだけ離れた2点の流体作用(圧力)
の空間相関を調べるとよい。
As can be seen in Figure 4 above, during normal operation, similar correlation values appear each time one blade passes, and in the relative flow field with respect to the blade, there is a strong correlation between the flow phenomena between adjacent blades. It can be seen that just before a rotating stall, the correlation between the flow between the adjacent blades becomes smaller.Using this phenomenon, data is extracted at intervals of fJJ] when the blade moves by one pitch, and By monitoring the cross-correlation values of the data group, it can be determined that the turning stall is approaching. Based on the same principle as above, in order to detect the rotating stall phenomenon in the day area user of a turbomachinery, the fluid action (pressure) at two points separated by one guide vane pitch is required.
It is useful to examine the spatial correlation of

t55図は流量係数に対して翼1ピッチ通過前後のデー
タ群の相互相関を調べたものであり、この図によれば流
量が失速状態へ近づくと相関値が急激に小さくなること
が解る。なお第5図においては横軸に流量係数をとり、
基準点の圧力データ群とχが1ピツチだけ移動した後の
圧力データ群に対する相互相関係数を示している。なお
図中工とIIとは翼車の種類を示している。
The t55 diagram examines the cross-correlation of data groups before and after passing one blade pitch with respect to the flow coefficient, and it can be seen from this diagram that the correlation value decreases rapidly as the flow rate approaches the stall state. In addition, in Fig. 5, the flow coefficient is plotted on the horizontal axis,
It shows the cross-correlation coefficient between the pressure data group at the reference point and the pressure data group after χ has moved by one pitch. It should be noted that the numbers "D" and "II" in the figure indicate the types of impellers.

第6図は翼との相対位置を定めた1点の圧力を周期的な
データの抽出によって収集してそのヒストグラムを調べ
たものであフて、翼車の回転と同期した1点の圧力デー
タ群の頻度数の分布を、平均値を中心としてヒストグラ
ムで表わした図面である。この図においては、正常な運
転では平均値に対して対称に近いヒストグラムを示し、
旋回失速状態の生起点に近づくとその値が前記平均値に
対して非対称になることを示している。このようなヒス
トグラムの形状は、統計量として歪度(3次積率)をと
ればよく解る。
Figure 6 shows a histogram of the pressure collected at one point whose relative position with the blade is determined by periodic data extraction. It is a drawing showing the distribution of frequency numbers of groups as a histogram centered on the average value. This figure shows a histogram that is nearly symmetrical with respect to the average value during normal operation.
This shows that when approaching the starting point of the turning stall state, the value becomes asymmetrical with respect to the average value. The shape of such a histogram can be easily understood by taking skewness (cubic moment) as a statistical quantity.

第7図は流量係数に対して歪度を調べたものであり、横
軸は流量係数、縦軸は翼と同期した1点の圧力データ群
の歪度で、上部に記入された記号はデータの抽出条件を
識別するための記号である、この図面で明らかなとおり
、流量が大きい場合には歪度はゼロに近いが、失速状態
の生起点が近づくとこの歪度が負の値となる。なお歪度
の代りに統計量として分散値を用いると、前記失速の生
起点が近づくと、該分散値が急激に大きくなることが解
る。
Figure 7 shows the skewness of the flow rate coefficient, where the horizontal axis is the flow rate coefficient, the vertical axis is the skewness of the pressure data group at one point synchronized with the blade, and the symbol written at the top indicates the data. This is a symbol used to identify the extraction conditions of . It should be noted that if the variance value is used as a statistical quantity instead of the skewness, it can be seen that the variance value increases rapidly as the stall point approaches.

第8図は翼車の回転と同期した基準点の圧力データ群と
翼が1ピツチ分だけ移動した後のデータ群との相互相関
を時間移動処理により求めたもので、時間とともに流量
を減じていて、その変化の様子が理解できる。
Figure 8 shows the cross-correlation between a group of pressure data at a reference point synchronized with the rotation of the impeller and a group of data after the blade has moved by one pitch, using time-shift processing. You can understand the changes.

(発明の効果) 以上述べられた機能と作用により、本発明には次の効果
かある。
(Effects of the Invention) Due to the functions and effects described above, the present invention has the following effects.

ターボ機械の流れは一般に乱れが大きいので、正常運転
時にも異常な圧力データの入る回走性かあるが、本発明
によれば統計的処理によってその影響をとり除くことが
できる。そして、旋回失速が近づくにつれて異常データ
の混入の割合か増加する傾向により、統計量が最初は徐
々に変化し、失速立直前で急激に変化する特性があるけ
れども、前記の時間移動処理を行うとともに当該ターボ
機械の用途に応じて適切なしきい値を設定するこの発生
を予知することが可能であり、該旋回失速を回避できる
効果がある。
Since the flow of a turbomachine is generally highly turbulent, there is a tendency for abnormal pressure data to occur even during normal operation, but according to the present invention, this influence can be removed by statistical processing. As the turning stall approaches, the percentage of abnormal data mixed in tends to increase, so the statistics change gradually at first, and then suddenly change just before the stall occurs. It is possible to predict this occurrence by setting an appropriate threshold value depending on the use of the turbomachine, which has the effect of avoiding the turning stall.

【図面の簡単な説明】[Brief explanation of drawings]

151図は本発明の実施例を示す簡略図、第2図はター
ボ機械の旋回失速時の出力波形を示す図面、第3図は時
間移動処理の説明図、第4図は翼が通過する時間に対応
する圧力データ群にかかわる相互相関を係数で示した図
面、第5図は基準となる圧力データ群とズが1ピツチだ
け移動した後の圧力データ群との相互相関係数を示した
図、第6図は圧力データ群の頻度数分布を平均値を基準
にヒストグラムで表わした図面、第7図は流量と歪度の
関係を示す図面、第8図は基準点の圧力データ群と翼が
1ピツチだけ移動した後のデータ群との相互相関が時間
の移動と流量変化に伴なって変化する様子を示す図面。 l・・・ターボ機械 3・e争ハブ 5・・・翼 7・・・圧力センサ 11・・・データ入力部 ・ケーシング ・翼車 ・モータ ・・コントローラ 解析器 2 ・ ・ 4 ・ ・ 6 ・ ・ 10  ・ 12・・・ 第 図 時間 データ追加 第 図 第 図 第 図
Fig. 151 is a simplified diagram showing an embodiment of the present invention, Fig. 2 is a drawing showing the output waveform when the turbomachine stalls in rotation, Fig. 3 is an explanatory diagram of time movement processing, and Fig. 4 is the time taken by the blade to pass. Fig. 5 is a diagram showing the cross-correlation coefficients for the pressure data group corresponding to the reference pressure data group and the pressure data group after moving by one pitch. , Figure 6 is a diagram showing the frequency distribution of the pressure data group as a histogram based on the average value, Figure 7 is a diagram showing the relationship between flow rate and skewness, and Figure 8 is a diagram showing the pressure data group at the reference point and the blade. A diagram showing how the cross-correlation with a data group after moving by one pitch changes with time and flow rate changes. l...Turbo machine 3...E-war hub 5...Blade 7...Pressure sensor 11...Data input section/casing/blade wheel/motor...Controller analyzer 2 ・ ・ 4 ・ ・ 6 ・ ・10 ・ 12... Figure Time data addition Figure Figure Figure

Claims (1)

【特許請求の範囲】[Claims] ターボ機械1と、このターボ機械の翼車の回転領域もし
くはその直前のケーシング面またはハブ面に装備されて
流体作用を検出するセンサ7と、前記センサが検出する
圧力変化もしくは流速変化にかかわる連続的出力信号を
抽出して入力するデータ入力部、および入力されたデー
タを漸次統計的に計算して処理するとともに時間移動処
理を成す解析器を持つコントローラ10とからなる、タ
ーボ機械の旋回失速を回避するための旋回失速予知装置
A turbomachine 1, a sensor 7 that is installed on the rotating region of the blade wheel of the turbomachine or on the casing surface or hub surface immediately before it and detects fluid action, and a continuous sensor 7 related to the pressure change or flow velocity change detected by the sensor A controller 10 that includes a data input section that extracts and inputs an output signal, and an analyzer that gradually statistically calculates and processes the input data and performs time movement processing to avoid rotational stall of a turbomachine. Turning stall prediction device for
JP1110396A 1989-04-28 1989-04-28 Stall predicting and preventing device for turbo machine Pending JPH02286899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1110396A JPH02286899A (en) 1989-04-28 1989-04-28 Stall predicting and preventing device for turbo machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1110396A JPH02286899A (en) 1989-04-28 1989-04-28 Stall predicting and preventing device for turbo machine

Publications (1)

Publication Number Publication Date
JPH02286899A true JPH02286899A (en) 1990-11-27

Family

ID=14534750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1110396A Pending JPH02286899A (en) 1989-04-28 1989-04-28 Stall predicting and preventing device for turbo machine

Country Status (1)

Country Link
JP (1) JPH02286899A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002364582A (en) * 2001-06-11 2002-12-18 Ishikawajima Harima Heavy Ind Co Ltd Stall predicting method for axial flow compressor
JP2008223624A (en) * 2007-03-13 2008-09-25 Ihi Corp Method for detecting sign of stall and engine control system
WO2010088516A3 (en) * 2009-01-30 2010-11-25 Chevron U.S.A. Inc. System and method for predicting fluid flow in subterranean reservoirs
US8972232B2 (en) 2011-02-17 2015-03-03 Chevron U.S.A. Inc. System and method for modeling a subterranean reservoir
US9031822B2 (en) 2012-06-15 2015-05-12 Chevron U.S.A. Inc. System and method for use in simulating a subterranean reservoir
WO2018157889A1 (en) * 2017-03-02 2018-09-07 Technische Universität Berlin Method and device for determining an indicator for a prediction of an instability in a compressor and use thereof
US11835053B2 (en) 2018-08-13 2023-12-05 Carrier Corporation System and method for predicting a surge of a centrifugal refrigeration compressor and air-conditioning unit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6118239U (en) * 1984-07-06 1986-02-01 太武産業株式会社 Bulk material dispensing device with dust scattering prevention structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6118239U (en) * 1984-07-06 1986-02-01 太武産業株式会社 Bulk material dispensing device with dust scattering prevention structure

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002364582A (en) * 2001-06-11 2002-12-18 Ishikawajima Harima Heavy Ind Co Ltd Stall predicting method for axial flow compressor
JP2008223624A (en) * 2007-03-13 2008-09-25 Ihi Corp Method for detecting sign of stall and engine control system
WO2010088516A3 (en) * 2009-01-30 2010-11-25 Chevron U.S.A. Inc. System and method for predicting fluid flow in subterranean reservoirs
US8972231B2 (en) 2009-01-30 2015-03-03 Chevron U.S.A. Inc. System and method for predicting fluid flow in subterranean reservoirs
US8972232B2 (en) 2011-02-17 2015-03-03 Chevron U.S.A. Inc. System and method for modeling a subterranean reservoir
US9031822B2 (en) 2012-06-15 2015-05-12 Chevron U.S.A. Inc. System and method for use in simulating a subterranean reservoir
WO2018157889A1 (en) * 2017-03-02 2018-09-07 Technische Universität Berlin Method and device for determining an indicator for a prediction of an instability in a compressor and use thereof
US11353034B2 (en) 2017-03-02 2022-06-07 Technische Universität Berlin Method and device for determining an indicator for a prediction of an instability in a compressor and use thereof
US11835053B2 (en) 2018-08-13 2023-12-05 Carrier Corporation System and method for predicting a surge of a centrifugal refrigeration compressor and air-conditioning unit

Similar Documents

Publication Publication Date Title
US9624936B2 (en) Turbocompressor antisurge control by vibration monitoring
EP3399376B1 (en) Plant-abnormality-monitoring method and computer program for plant abnormality monitoring
US6092029A (en) Method and apparatus for diagnosing and controlling rotating stall and surge in rotating machinery
US6059522A (en) Compressor stall diagnostics and avoidance
US8342794B2 (en) Stall and surge detection system and method
US6785635B2 (en) Apparatus and method for predicting failures of spinning disks in turbo-machinery
KR0139213B1 (en) Shrouded turbine blade vibration monitor
EP2385378B1 (en) Method to detect angle sensor performance degradation through dither monitoring
EP2888635A1 (en) Monitoring system and method for detecting the change of a mechanical system !and adapting the limit values associated to said mechanical system to reflect!the current conditions of the mechanical system
JPH08503757A (en) Method and apparatus for monitoring and controlling a compressor
JP3961018B2 (en) Monitoring system for technical equipment
US20190332102A1 (en) Machine health monitoring of rotating machinery
JPH02286899A (en) Stall predicting and preventing device for turbo machine
CN109779938B (en) Intelligent interlocking protection method for centrifugal compressor unit
JP2021076533A (en) Device and method for detecting rubbing of rotary machine
CN110382878B (en) Method and device for determining an indicator for predicting instability in a compressor and use thereof
JPH01101418A (en) Diagnosing device for rotary machine
US8342010B2 (en) Surge precursor protection systems and methods
EP0777828B1 (en) Compressor stall avoidance
GB2581467A (en) Combined system controller
JP2003293793A (en) Combustion vibration sign detector, gas turbine system, and combustion vibration sign detection method
JPH06264704A (en) Vibration diagnostic device for rotational machine
JP2004169624A (en) Shaft vibration monitoring/diagnosing device of rotary machine
JPH0894499A (en) Failure diagnostic system for rotating machine
JP3211957B2 (en) Device diagnostic method and diagnostic device