JPH07186690A - Air quantity controller for air conditioner for vehicle - Google Patents

Air quantity controller for air conditioner for vehicle

Info

Publication number
JPH07186690A
JPH07186690A JP33776493A JP33776493A JPH07186690A JP H07186690 A JPH07186690 A JP H07186690A JP 33776493 A JP33776493 A JP 33776493A JP 33776493 A JP33776493 A JP 33776493A JP H07186690 A JPH07186690 A JP H07186690A
Authority
JP
Japan
Prior art keywords
air
temperature
blower fan
room temperature
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33776493A
Other languages
Japanese (ja)
Inventor
Akihiko Takano
明彦 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Corp
Original Assignee
Zexel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zexel Corp filed Critical Zexel Corp
Priority to JP33776493A priority Critical patent/JPH07186690A/en
Publication of JPH07186690A publication Critical patent/JPH07186690A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

PURPOSE:To suppress the increase of the air quantity and maintain the excellent air conditioning feeling by judging the shortage of the air conditioning faculty when the driving state of an air conditioner device is under a high thermal load environment in a stable state, and by regulating the upper limit of the blower fan voltage. CONSTITUTION:A control means 10 calculates the target blow-out temperature according to a program set by a microcomputer, from the signals of the sensors 11, 13-15 for the inside air, outside air, solar radiation and an evaporator, and the signal of a room temperature setting device 12, and outputs the blower fan voltage which is determined according to the above-described calculation, into a blower fan motor 9. Herein when it is judged that an air conditioner is in a stationary state, from the fact that the difference between the detected room temperature and the set temperature is within a prescribed range, and the target blow-out temperature is below the detected temperature, the generation of the high thermal load environment in a stable state is judged, and the increase of the blower fan voltage at present which is supplied to the drive circuit of the blower fan motor 9 is regulated. Accordingly, even in case of stagnation, etc., the rise of the temperature inside the car room due to the increase of the air quantity is suppressed, and the excellent feeling can be maintained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は車室内の検出室温や設
定室温および車室外の検出外気温度などに応じ車室内に
吹き出す風量を制御する車両用空調装置の風量制御装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air volume control device for an air conditioner for a vehicle, which controls the air volume blown into the vehicle compartment according to the detected room temperature in the vehicle compartment, the set room temperature, the detected outside air temperature outside the vehicle compartment, and the like.

【0002】[0002]

【従来の技術】従来の車両用空調装置には、例えば特開
平4−283116号、特開平2−299920、特開
平1−223016号、特開昭62−6832号などに
開示されているように、車室内の検出室温や車室内の設
定室温および車室外の外気温度どから目標温度を演算
し、この目標温度に応じブロアファン電圧をあらかじめ
定められたパターンから決定することによって車室内に
吹き出す空調風の風量を制御する風量制御装置が知られ
ている。
2. Description of the Related Art A conventional vehicle air conditioner is disclosed in, for example, JP-A-4-283116, JP-A-2-299920, JP-A1-223016, and JP-A-62-6832. The target temperature is calculated from the detected room temperature in the passenger compartment, the set room temperature in the passenger compartment, and the outside air temperature outside the passenger compartment, and the blower fan voltage is determined from the predetermined temperature according to this target temperature to blow air into the passenger compartment. An air volume control device for controlling the air volume is known.

【0003】[0003]

【発明が解決しようとする課題】この従来の車両用空調
装置の風量制御装置においては、例えば空調装置の駆動
状態が安定状態での冷房時には、目標温度がエバポレー
タを通過直後のエバポレータ吹き出し温度以下になる
と、ブロアファン電圧を高くして、車室内に吹き出す空
調風の風量を増加させ、車室内の空調状態が目標とする
空調状態となるようにしているが、交通渋滞時のように
車室内の熱負荷に対し空調装置の冷房能力が十分でな
い、高熱負荷環境においては、風量を増加させてもエバ
ポレータの冷房能力が低下していることから、エバポレ
ータ通過直後の冷風の温度つまりエバポレータ吹き出し
温度が上昇し、結果的に車室内の室温が上昇する。そし
て、内気センサが上昇した室温を制御装置にフィードバ
ックし、目標温度がますます低くなり、風量がますます
増加するという悪循環を招く。この悪循環に起因する風
量増加によって室温がさらに上昇し、ブロアファン電圧
が所定のパターンの最大値となり、車室内の空調状態の
フィーリングが低下するという問題が内在する。
In this conventional air volume control device for a vehicle air conditioner, for example, when cooling the air conditioner while the driving condition of the air conditioner is stable, the target temperature becomes equal to or lower than the evaporator outlet temperature immediately after passing through the evaporator. Then, the blower fan voltage is increased to increase the air volume of the conditioned air blown into the vehicle interior so that the air conditioning state in the vehicle interior becomes the target air conditioning state. In a high heat load environment where the cooling capacity of the air conditioner is not sufficient for the heat load, the cooling capacity of the evaporator is reduced even if the air volume is increased, so the temperature of the cool air immediately after passing through the evaporator, that is, the temperature at which the evaporator blows out, rises. As a result, the room temperature in the passenger compartment rises. Then, the room temperature of the inside air sensor is fed back to the control device, and the target temperature becomes lower and the air volume further increases, leading to a vicious circle. There is an inherent problem that the room temperature further rises due to the increase in the air volume due to this vicious circle, the blower fan voltage reaches the maximum value in a predetermined pattern, and the feeling of the air-conditioning state in the vehicle interior deteriorates.

【0004】この発明は上記課題を解決するためになさ
れたもので、空調装置の駆動状態が安定状態で、空調装
置の冷房能力が車室内の熱負荷に対し不足したときは、
風量の増加を抑制して車室内の空調状態のフィーリング
を良好に保つ車両用空調装置の風量制御装置を提供する
ことを目的する。
The present invention has been made to solve the above problems. When the air conditioner is in a stable driving state and the cooling capacity of the air conditioner is insufficient with respect to the heat load in the passenger compartment,
An object of the present invention is to provide an air volume control device for an air conditioning system for a vehicle, which suppresses an increase in the air volume and maintains a good feeling of an air conditioning state in a vehicle interior.

【0005】[0005]

【課題を解決するための手段】[Means for Solving the Problems]

【0006】この発明に係る車両用空調装置の風量制御
装置は車室内の検出室温や設定室温および車室外の外気
温度などから演算した目標温度に応じブロアファン電圧
を決定して車室内に吹き出す空調風の風量を制御するも
のであって、制御手段は空調装置の駆動状態が安定状態
で高熱負荷環境に置かれたとき空調能力の不足を判断し
てブロアファン電圧の上限値を規制するように構成され
ている。
The air volume control device for a vehicle air conditioner according to the present invention determines the blower fan voltage according to the target temperature calculated from the detected room temperature in the vehicle compartment, the set room temperature and the outside air temperature outside the vehicle compartment, and blows it out into the vehicle compartment. The control means controls the upper limit of the blower fan voltage by determining the lack of air conditioning capacity when the driving condition of the air conditioner is stable and placed in a high heat load environment. It is configured.

【0007】[0007]

【作用】この発明の車両用空調装置の風量制御装置は、
空調装置の運転が開始され、目標吹き出し温度に応じた
空調風が空調装置から車室内に吹き出され、空調装置の
駆動状態が定常状態になった状態において、例えば、目
標吹き出し温度がエバポレータ通過直後の吹き出し温度
以下となり、空調装置の冷房能力が車室内の熱負荷に対
し不足した高熱負荷環境に置かれた場合に、ブロアファ
ンモータのドライブ回路に供給するブロアファン電圧を
現在値より上昇しないように規制する。
The air volume control device for the vehicle air conditioner of the present invention is
When the operation of the air conditioner is started, the conditioned air according to the target blowout temperature is blown from the air conditioner into the vehicle compartment, and the drive state of the air conditioner is in a steady state, for example, the target blowout temperature immediately after passing through the evaporator. When the temperature is below the blowout temperature and the cooling capacity of the air conditioner is placed in a high heat load environment where the heat load in the passenger compartment is insufficient, the blower fan voltage supplied to the drive circuit of the blower fan motor should not rise above the current value. regulate.

【0008】[0008]

【実施例】以下、この発明の一実施例としての車両用空
調装置の風量制御装置を図1乃至4を用いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An air flow controller for a vehicle air conditioner as an embodiment of the present invention will be described below with reference to FIGS.

【0009】図1は実施例の車両用空調装置の風量制御
手段を示す構成図、図2はこの実施例の風量推定マッ
プ、図3はこの実施例の車両用空調装置を示す構成図で
ある。
FIG. 1 is a block diagram showing an air volume control means of a vehicle air conditioner of this embodiment, FIG. 2 is an air volume estimation map of this embodiment, and FIG. 3 is a block diagram showing a vehicle air conditioner of this embodiment. .

【0010】図3において、車両用空調装置は装置本体
を構成するダクト1を有し、このダクト1の上流側には
車室外の外気を導入する外気導入口2と車室内の内気を
導入する内気導入口3とこれら両導入口2,3を開閉す
るインテークドア4とを有し、このインテークドア4の
下流側のダクト1内には両導入口2,3側から空気を吸
入してダクト1の下流側に送風するブロアファン5を有
し、このブロアファン5の下流側のダクト1内にはブロ
アファン5から送風された空気を図外のエンジンによっ
て駆動される図外のコンプレッサから供給される冷媒で
冷却するエバポレータ6を有し、このエバポレータ6の
下流側のダクト1内にはエバポレータ6で冷却された冷
風をエンジンの冷却水で加熱するヒータコア7を有し、
このヒータコア7とエバポレータ6との間のダクト1内
にはエバポレータ6で冷却された冷風のヒータコア7を
迂回する風量とヒータコア7に送る風量との割合を調整
するエアミックスドア8を有する。またエバポレータ6
で冷却される空気温度は、水蒸気が凍結しないように、
通常3℃程度にコンプレッサをオン・オフすることによ
り保たれている。この温度を目標エバ吹き出し温度とい
う。また図示は省略するが、ヒータコア7を迂回した冷
風とヒータコア7で暖められた暖風とが混合された空調
風を作るエアミックスチャンバ、空調風を車室内のウイ
ンドウガラスに向けて吹き出すデフロスタダクト、空調
風を車室内の乗員の胸部から上部に向けて吹き出すベン
トダクト、空調風を車室内の乗員の足元に向けて吹き出
すヒートダクトなどを有する。インテークドア4を開閉
する図外のインテークドアアクチュエータやブロアファ
ン5を回転するブロアファンモータ9およびエアミック
スドア8を開閉する図外のエアミックスドアアクチュエ
ータなどは制御手段10で制御される。この制御手段1
0には内気センサ11と室温設定器12と外気センサ1
3と日射センサ14およびエバポレータセンサ15など
が接続されている。内気センサ11は車室内の室温Ti
ncを検出し、その検出室温Tincに応じた信号を制
御手段10に出力する。室温設定器12は乗員が設定し
た車室内の設定室温Tsetに応じた信号を制御手段1
0に出力する。外気センサ13は車室外の外気温度Ta
mbを検出し、その検出外気温度Tambに応じた信号
を制御手段10に入力する。日射センサ14は車室外の
日射量Tsunを検出し、その検出日射量Tsunに応
じた信号を制御手段10に出力する。エバポレータセン
サ15はエバポレータから吹き出される空気の温度とし
ての吹き出し温度Tevaを検出し、その検出吹き出し
温度Tevaに応じた信号を制御手段10に出力する。
この制御手段10はマイクロコンピュータに構成され、
あらかじめ設定されたプログラムによって、検出室温T
incと設定室温Tsetおよび外気温度Tambおよ
び日射量Tsunなどの車室内外の熱環境情報から目標
温度としての目標吹き出し温度を演算し、この目標吹き
出し温度に応じブロアファン電圧Vfanを決定し、こ
の決定したブロアファン電圧Vfanをブロアファモー
タ9に出力することによって車室内に吹き出す空調風の
風量を制御するようになっている。
In FIG. 3, an air conditioner for a vehicle has a duct 1 which constitutes the main body of the apparatus, and an upstream side of the duct 1 is an outside air introduction port 2 for introducing outside air outside the passenger compartment and an inside air inside the passenger compartment. It has an inside air introduction port 3 and an intake door 4 that opens and closes both of these introduction ports 2 and 3. The duct 1 on the downstream side of the intake door 4 sucks air from both the introduction ports 2 and 3 to form a duct. 1 has a blower fan 5 for blowing air to the downstream side, and the air blown from the blower fan 5 is supplied to the duct 1 on the downstream side of the blower fan 5 from a compressor (not shown) driven by an engine (not shown). Has an evaporator 6 that cools with the refrigerant, and a duct 1 on the downstream side of the evaporator 6 has a heater core 7 that heats the cold air cooled by the evaporator 6 with the cooling water of the engine,
In the duct 1 between the heater core 7 and the evaporator 6, there is an air mix door 8 for adjusting the ratio of the amount of air that bypasses the heater core 7 of the cool air cooled by the evaporator 6 and the amount of air that is sent to the heater core 7. Also the evaporator 6
The temperature of the air cooled by
It is usually maintained by turning the compressor on and off at about 3 ° C. This temperature is called the target evaporation temperature. Although not shown in the drawings, an air mix chamber that creates an air-conditioned air that is a mixture of the cool air that bypasses the heater core 7 and the warm air that is warmed by the heater core 7, a defroster duct that blows the air-conditioned air toward the window glass in the passenger compartment, It has a vent duct that blows the conditioned air from the chest of the passenger in the passenger compartment toward the upper part, a heat duct that blows the conditioned air toward the feet of the passenger in the passenger compartment, and the like. The control means 10 controls an intake door actuator (not shown) that opens and closes the intake door 4, a blower fan motor 9 that rotates the blower fan 5, and an air mix door actuator (not shown) that opens and closes the air mix door 8. This control means 1
0 indicates an inside air sensor 11, a room temperature setting device 12, and an outside air sensor 1.
3, the solar radiation sensor 14, the evaporator sensor 15 and the like are connected. The inside air sensor 11 is a room temperature Ti in the passenger compartment.
nc is detected, and a signal corresponding to the detected room temperature Tinc is output to the control means 10. The room temperature setting device 12 controls the signal according to the set room temperature Tset in the passenger compartment set by the passenger.
Output to 0. The outside air sensor 13 is an outside air temperature Ta outside the vehicle compartment.
mb is detected, and a signal according to the detected outside air temperature Tamb is input to the control means 10. The solar radiation sensor 14 detects the solar radiation amount Tsun outside the vehicle compartment, and outputs a signal corresponding to the detected solar radiation amount Tsun to the control means 10. The evaporator sensor 15 detects the blowing temperature Teva as the temperature of the air blown from the evaporator, and outputs a signal according to the detected blowing temperature Teva to the control means 10.
The control means 10 is composed of a microcomputer,
Detection of room temperature T by a preset program
The target blowout temperature as the target temperature is calculated from the inc and the set room temperature Tset, the outside air temperature Tamb, and the thermal environment information inside and outside the vehicle such as the solar radiation amount Tsun, and the blower fan voltage Vfan is determined according to the target blowout temperature, and this determination is made. The blower fan voltage Vfan is output to the blower fan motor 9 to control the amount of conditioned air blown into the vehicle interior.

【0011】図1おいて、上記制御手段10は空調運転
状態検出手段20と高熱負荷検出手段21と吸い込み温
度推定手段22と風量推定手段23と冷房能力推定手段
24と吹き出し温度推定手段25と第1安定室温演算手
段26と第2安定室温演算手段27と比較手段28と電
圧増加規制手段29とを備え、インテークドアアクチュ
エータの駆動を決定する制御信号としてのインテークド
ア開度IDTと検出室温Tincと設定室温Tsetと
外気温度Tambとブロアファン電圧Vfanと日射量
Tsunおよび検出吹き出し温度Tevaなどの熱環境
情報から空調装置の駆動状態が安定状態で高熱負荷環境
に置かれたとき空調能力の不足を判断してブロアファン
電圧の上限値を規制する。
In FIG. 1, the control means 10 includes an air conditioning operation state detection means 20, a high heat load detection means 21, a suction temperature estimation means 22, an air volume estimation means 23, a cooling capacity estimation means 24, an outlet temperature estimation means 25, and a first air temperature estimation means 25. 1st stable room temperature calculating means 26, 2nd stable room temperature calculating means 27, comparing means 28 and voltage increase regulating means 29, and intake door opening IDT and detected room temperature Tinc as control signals for determining the drive of the intake door actuator. Judgment of insufficient air conditioning capacity when the air conditioner is operating in a stable and high heat load environment based on thermal environment information such as set room temperature Tset, outside air temperature Tamb, blower fan voltage Vfan, solar radiation amount Tsun, and detection outlet temperature Teva. Then, the upper limit of the blower fan voltage is regulated.

【0012】空調運転状態検出手段20は例えば検出室
温Tincと設定室温Tsetとの温度差があらかじめ
定められた規定範囲内に存在するときを空調装置の駆動
状態が定常状態であるとして検出するか、あるいは空調
装置の運転開始からの経過時間があらかじめ定められた
規定時間を越えたときを空調装置の駆動状態が定常状態
であるとして検出し、その定常状態検出信号を高熱負荷
検出手段21に出力する。
The air-conditioning operation state detecting means 20 detects, for example, when the temperature difference between the detected room temperature Tinc and the set room temperature Tset is within a predetermined specified range, as if the drive state of the air conditioner is a steady state. Alternatively, when the elapsed time from the start of operation of the air conditioner exceeds a predetermined specified time, the drive state of the air conditioner is detected as a steady state, and the steady state detection signal is output to the high heat load detection means 21. .

【0013】高熱負荷検出手段21は上記目標吹き出し
温度と検出吹き出し温度Tevaと目標エバ吹き出し温
度とを比較し、検出吹き出し温度が目標エバ吹き出し温
度以上で、かつ目標吹き出し温度が検出吹き出し温度T
eva以下の場合に高熱負荷検出信号を吸い込み温度推
定手段22と風量推定手段23とに出力する。
The high heat load detecting means 21 compares the target blow-out temperature, the detected blow-out temperature Teva and the target evaluation blow-out temperature, and the detected blow-out temperature is equal to or higher than the target evaluation blow-out temperature and the target blow-out temperature is the detected discharge temperature T.
When it is eva or less, a high heat load detection signal is output to the suction temperature estimation means 22 and the air volume estimation means 23.

【0014】吸い込み温度推定手段22は上記インテー
クドア開度IDTと検出室温Tincと検出外気温度T
ambとから内外気導入口側からエバポレータ6に吸い
込まれる空気の温度としての推定吸い込み温度Tint
を推定演算して冷房能力推定手段24と吹き出し温度推
定手段25とに出力する。この吸い込み推定手段22で
はインテークドア開度IDTが外気導入口2が閉塞され
内気導入口3が開放されたリサイクル信号のときは検出
室温Tincをそのまま吸い込み推定温度Tintとし
て使用し、インテークドア開度IDTが外気導入口2が
開放され内気導入口3が閉塞されたフレッシュ信号の場
合は外気温度Tambに例えば5℃などような一定の温
度を加算した温度(例えば外気温度+5℃)をエバポレ
ータ6への推定吸い込み温度Tintとして演算してい
る。
The intake temperature estimation means 22 is provided with the intake door opening IDT, the detected room temperature Tinc, and the detected outside air temperature T.
Estimated suction temperature Tint as the temperature of the air sucked into the evaporator 6 from the inside / outside air inlet side from amb
Is calculated and output to the cooling capacity estimation means 24 and the blowout temperature estimation means 25. When the intake door opening IDT is a recycle signal in which the outside air inlet 2 is closed and the inside air inlet 3 is opened, the intake estimation means 22 uses the detected room temperature Tinc as the intake estimated temperature Tint as it is, and the intake door opening IDT Is a fresh signal in which the outside air introduction port 2 is opened and the inside air introduction port 3 is closed, a temperature (for example, outside air temperature + 5 ° C.) obtained by adding a constant temperature such as 5 ° C. to the outside air temperature Tamb is sent to the evaporator 6. It is calculated as the estimated suction temperature Tint.

【0015】風量推定手段23はインテークドア開度I
DTと上記目標吹き出し温度から決定されたブロアファ
ン電圧Vfanとからブロアファン5の回転によって生
成される風量を推定演算して冷房能力推定手段24と第
2安定室温演算手段27とに出力する。この風量推定手
段23では図2に示すような風量推定マップ31をあら
かじめ記憶してある。この風量推定マップ31は横軸に
ブロアファン電圧Vfanを示し、縦軸にブロアファン
風量vfanを示し、インテークドア開度IDTがリサ
イクル信号の場合のブロアファン電圧Vfanに対する
ブロアファン風量vfanを規定するリサイクル特性3
2と、インテークドア開度IDTがフレッシュ信号の場
合のブロアファン電圧Vfanに対するブロアファン風
量vfanを規定するフレッシュ特性33とを有する。
この風量推定手段23はインテークドア開度IDTとし
てリサイクル信号が入力された場合は入力されたブロア
ファン電圧Vfanに応じてリサイクル特性32からブ
ロアファン風量vfanを抽出し、インテークドア開度
IDTとしてフレッシュ信号が入力された場合は入力さ
れたブロアファン電圧Vfanに応じてフレッシュ特性
33からブロアファン風量vfanを抽出し、その抽出
したブロアファン風量vfanに相当する信号を推定風
量vfanとして出力する。
The air flow rate estimating means 23 uses an intake door opening I
The air volume generated by the rotation of the blower fan 5 is estimated and calculated from DT and the blower fan voltage Vfan determined from the target blowout temperature and output to the cooling capacity estimation means 24 and the second stable room temperature calculation means 27. The air volume estimation means 23 stores an air volume estimation map 31 as shown in FIG. 2 in advance. This air volume estimation map 31 shows the blower fan voltage Vfan on the horizontal axis and the blower fan air volume vfan on the vertical axis, and recycles the blower fan air volume vfan with respect to the blower fan voltage Vfan when the intake door opening IDT is a recycle signal. Characteristic 3
2 and a fresh characteristic 33 that defines the blower fan air volume vfan with respect to the blower fan voltage Vfan when the intake door opening IDT is a fresh signal.
When the recycle signal is input as the intake door opening IDT, the air volume estimating means 23 extracts the blower fan air volume vfan from the recycle characteristic 32 according to the input blower fan voltage Vfan, and the fresh signal as the intake door opening IDT. Is input, the blower fan air flow rate vfan is extracted from the fresh characteristic 33 in accordance with the input blower fan voltage Vfan, and a signal corresponding to the extracted blower fan air flow rate vfan is output as the estimated air flow rate vfan.

【0016】冷房能力推定手段24はエバポレータ6通
過前後で変化した空気の熱量が空調装置の冷房能力つま
りエバポレータ6の冷房能力に相当することを利用して
冷房能力を推定するようにしたので、 Qeva=r・Cp・vfan(Tint−Teva)
………1 なる演算式をあらかじめ記憶してある。この演算式1中
において、 Qeva:推定冷房能力(kcal/s) r:空気の比重(kg/m3) Cp:空気の比熱(kcal/kg・℃) vfan:推定風量(m3/s) Tint:推定吸い込み温度(℃) Teva:検出吹き出し温度(℃) である。この冷房能力推定手段24では上記演算式1中
の空気の比重rと空気の比熱Cpとしては一般的な物理
量から定められた定数を入れておき、この演算式1中の
vfanに風量推定手段23から受け取った推定風量v
fanを代入し、この演算式1中のTintに吸い込み
推定手段22から受け取った推定吸い込み温度Tint
を代入し、この演算式1中のTevaに検出吹き出し温
度Tevaを代入して、推定冷房能力Qevaを推定演
算して吹き出し温度推定手段25に出力する。
The cooling capacity estimating means 24 estimates the cooling capacity by utilizing the fact that the heat quantity of the air changed before and after passing through the evaporator 6 corresponds to the cooling capacity of the air conditioner, that is, the cooling capacity of the evaporator 6. = R · Cp · vfan (Tint-Teva)
……… The arithmetic expression 1 is stored in advance. In this calculation formula 1, Qeva: Estimated cooling capacity (kcal / s) r: Specific gravity of air (kg / m3) Cp: Specific heat of air (kcal / kg · ° C) vfan: Estimated air volume (m3 / s) Tint: Estimated suction temperature (° C) Teva: Detection blow temperature (° C). In this cooling capacity estimating means 24, constants determined from general physical quantities are entered as the specific gravity r of air and the specific heat Cp of air in the above-mentioned arithmetic expression 1, and the air volume estimating means 23 is added to vfan in this arithmetic expression 1. Estimated air volume v received from
Substituting fan, the estimated suction temperature Tint received from the suction estimation unit 22 in Tint in the arithmetic expression 1.
Is substituted, the detected outlet temperature Teva is substituted for Teva in the arithmetic expression 1, the estimated cooling capacity Qeva is estimated and calculated, and is output to the outlet temperature estimation means 25.

【0017】吹き出し温度推定手段25はブロアファン
電圧Vfanが最大値maxHiになったときにエバポ
レータを通過した直後の空気の温度を推定するために推
定吹き出し温度Tevamaxを演算するものであっ
て、これは Tevamax=−Qeva/(r・Cp・vfanm
ax)+Tint………2 なる演算式2をあらかじめ記憶してある。この吹き出し
温度推定手段25では上記演算式2中の空気の比重rと
空気の比熱Cpとしては一般的な物理量から定められた
定数を入れておき、この演算式2中のvfanmaxに
インテークドア開度IDTに応じ風量推定マップ31か
らブロアファン電圧Vfanの最大値maxHiに対し
抽出した最大風量vfanmaxを代入し、この演算式
2中のTintに吸い込み推定手段22から受け取った
推定吸い込み温度Tintを代入して、ブロアファン電
圧Vfanが最大値maxHiとなったときの推定最大
吹き出し温度Tevamaxを推定演算して第1室温演
算手段26に出力する。
The blowout temperature estimating means 25 calculates the estimated blowout temperature Tevamax in order to estimate the temperature of the air immediately after passing through the evaporator when the blower fan voltage Vfan reaches the maximum value maxHi. Tevamax = -Qeva / (r · Cp · vfanm
ax) + Tint ......... 2 The arithmetic expression 2 is stored in advance. In the blowout temperature estimating means 25, a constant determined from a general physical quantity is entered as the specific gravity r of air and the specific heat Cp of air in the above-mentioned arithmetic expression 2, and the intake door opening degree is added to vfanmax in this arithmetic expression 2. The maximum air volume vfanmax extracted from the air volume estimation map 31 for the maximum value maxHi of the blower fan voltage Vfan according to the IDT is substituted, and the estimated suction temperature Tint received from the suction estimation means 22 is substituted for Tint in the arithmetic expression 2. , The estimated maximum outlet temperature Tevamax when the blower fan voltage Vfan reaches the maximum value maxHi is calculated and output to the first room temperature calculating means 26.

【0018】第1室温演算手段26は定常状態における
車室内の熱収支が Qac+Qsun+Qmen+Qtra+Qdra=0
………3 なる演算式3が平衡条件として成立することを利用して
ブロアファン電圧Vfanが最大値maxHiになると
きの車室内の室温を推定するために推定室温Troom
maxを演算するものであるので、これは上記演算式3
をあらかじめ記憶してある。この演算式3中において、 Qac:空調装置の吹き出しダクトから車室内に吹き出
される空気の室温に対する熱量差 Qsun:日射量による熱量 Qmen:乗員が発生する熱量 Qtra:外気からの伝熱 Qdra:空調装置の吹き出しダクト以外から車室内に
侵入する空気の室温に対する熱量差 である。また、 Qac=r・Cp・vfanmax(Tevamax−
Troommax)………4 Qtra=h0(Tamb−Troommax)、ただ
しh0:車両の熱伝達率………5 Qdra=r・Cp・vdra(Tamb−Troom
max)、ただしvdra:空調装置の吹き出しダクト
1以外から車室内に侵入する空気量………6 である。この第1室温演算手段26では演算式4中の空
気の比重rと空気の比熱Cpとしては一般的な物理量か
ら定められた定数を入れておき、この演算式4中のvf
anmaxにインテークドア開度IDTに応じ風量推定
マップ31から受け取った最大風量vfanmaxを代
入し、演算式4中のTevamaxに吹き出し温度推定
手段25から受け取ったブロアファン電圧Vfanが最
大となったときの推定最大吹き出し推定温度Tevam
axを代入して、空調装置の駆動状態が定常状態であっ
てブロアファン電圧Vfanが最大値maxHiになる
ときの車室内の最大推定室温Troommaxを推定演
算して比較手段28に出力する。
In the first room temperature calculating means 26, the heat balance in the passenger compartment in the steady state is Qac + Qsun + Qmen + Qtra + Qdra = 0.
……………………………………………………………………………………………………………………………………………… 3 3
This is the calculation of max.
Is stored in advance. In this calculation formula 3, Qac: Heat quantity difference of the air blown into the passenger compartment from the air-conditioning system with respect to room temperature Qsun: Heat quantity due to the amount of solar radiation Qmen: Heat quantity generated by the occupant Qtra: Heat transfer from outside air Qdra: Air conditioning It is the difference in heat value with respect to room temperature of the air that enters the passenger compartment from outside the blow-out duct of the equipment. In addition, Qac = r · Cp · vfanmax (Tevamax−
4 Qtra = h0 (Tamb-Troommax), where h0 is the heat transfer coefficient of the vehicle ... 5 Qdra = r.Cp.vdra (Tamb-Troom)
max), where vdra is the amount of air entering the vehicle interior from other than the blowout duct 1 of the air conditioner. In the first room temperature calculating means 26, a constant determined from a general physical quantity is inserted as the specific gravity r of air and the specific heat Cp of air in the arithmetic expression 4, and vf in the arithmetic expression 4 is entered.
Substituting the maximum air volume vfanmax received from the air volume estimation map 31 according to the intake door opening IDT for anmax, and estimating when the blower fan voltage Vfan received from the blowout temperature estimation means 25 becomes maximum in Tevamax in the arithmetic expression 4. Estimated maximum temperature Tevam
Substituting ax, the maximum estimated room temperature Roommaxmax in the vehicle interior when the blower fan voltage Vfan reaches the maximum value maxHi is estimated and output to the comparison means 28.

【0019】第2室温演算手段27は定常状態における
車室内の熱収支が上記演算式3が平衡条件として成立す
ることを利用して現在の車室内の室温を推定演算するも
のであるので、これは上記演算式3をあらかじめ記憶し
てある。その演算式3中において、 Qac=r・Cp・vfan(Teva−Troom)
………7 Qtra=h0(Tamb−Troom)………8 Qdra=r・Cp・vdra(Tamb−Troo
m)………9 である。この第2室温演算手段27では演算式7中の空
気の比重rと空気の比熱Cpとしては一般的な物理量か
ら定められた定数を入れておき、この演算式7中のvf
anに風量推定手段23から受け取った推定風量vfa
nを代入し、演算式7中のTevaに検出吹き出し温度
Tevaを代入して、空調装置の駆動状態が定常状態で
ある車室内の現在推定室温Troomを推定演算して比
較手段28に出力する。
Since the second room temperature calculating means 27 estimates and calculates the present room temperature of the vehicle by utilizing the fact that the heat balance in the vehicle interior in the steady state is satisfied by the above equation (3) as an equilibrium condition. Stores the above-mentioned arithmetic expression 3 in advance. In the arithmetic expression 3, Qac = r · Cp · vfan (Teva-Troom)
……… 7 Qtra = h0 (Tamb-Troom) ………… 8 Qdra = r · Cp · vdra (Tamb-Troo)
m) ......... 9. In the second room temperature calculating means 27, constants determined from general physical quantities are entered as the specific gravity r of air and the specific heat Cp of air in the arithmetic expression 7, and vf in the arithmetic expression 7 is set.
An estimated air volume vfa received from the air volume estimation unit 23
Substituting n, and substituting the detected blow-out temperature Teva into Teva in the arithmetic expression 7, the current estimated room temperature Troom in the vehicle compartment in which the drive state of the air conditioner is in a steady state is estimated and calculated and output to the comparison means 28.

【0020】比較手段28は第1室温演算手段26から
の最大推定室温Troommaxと第2室温演算手段2
7からの車室内の現在推定室温Troomとを比較し、
最大推定室温Troommaxが現在推定室温Troo
mよりも高い場合、空調装置の冷房能力の不足と判断
し、その判定結果を電圧増加規制手段29に出力する。
The comparison means 28 is the maximum estimated room temperature Troommax from the first room temperature calculation means 26 and the second room temperature calculation means 2.
Comparing with the current estimated room temperature Room in the passenger compartment from 7
Maximum estimated room temperature Troommax is currently estimated room temperature Troo
When it is higher than m, it is determined that the cooling capacity of the air conditioner is insufficient, and the determination result is output to the voltage increase regulating means 29.

【0021】電圧増加規制手段29は比較手段28から
の空調装置の冷房能力の不足なる判定結果によって現在
のブロアファンモータ9へのブロアファン電圧Vfan
を上限値とし、その現在のブロアファン電圧Vfanの
上昇を規制する信号をブロアファンモータ9の図外のド
ライブ回路に出力する。
The voltage increase regulating means 29 determines the present blower fan voltage Vfan to the blower fan motor 9 based on the result of the comparison result from the comparing means 28 that the cooling capacity of the air conditioner is insufficient.
Is set as an upper limit value, and a signal for controlling the increase of the current blower fan voltage Vfan is output to a drive circuit (not shown) of the blower fan motor 9.

【0022】次に上記実施例の車両用空調装置の風量制
御装置の動作を説明する。空調装置の運転が開始され、
制御手段10が車室内外の熱環境情報から演算した目標
吹き出し温度に応じブロアファン電圧Vfanを決定
し、この決定したブロアファン電圧Vfanをブロアフ
ァモータ9のドライブ回路に出力し、車室内に吹き出す
空調風の風量を制御し、例えば検出室温Tincと設定
室温Tsetとの温度差があらかじめ定められた規定範
囲内に存在するか、あるいは空調装置の運転開始からの
経過時間があらかじめ定められた規定時間を越えたこと
によって、空調装置の駆動状態が定常状態であるを検出
すると、目標吹き出し温度と検出吹き出し温度Teva
とを比較する。そして、目標吹き出し温度が検出吹き出
し温度Teva以下であると、空調装置の駆動状態が安
定状態で高熱負荷環境に置かれたことを意味するので、
インテークドア開度IDTと検出室温Tincと検出外
気温度Tambとから現在の推定吸い込み温度Tint
を推定演算し、インテークドア開度IDTとブロアファ
ン電圧Vfanとから推定風量vfanを推定演算し、
この推定風量vfanと推定吸い込み温度Tintとか
ら現在の推定冷房能力Qevaを推定演算し、この現在
の推定冷房能力Qevaと最大風量vfanmaxとか
らブロアファン電圧Vfanが最大値maxHiにおけ
る推定吹き出し温度Tevamaxを推定演算し、この
推定吹き出し温度Tevamaxからブロアファン電圧
Vfanが最大値maxHiになるときの車室内の最大
推定室温Troommaxを推定演算する一方、推定風
量vfanと検出吹き出し温度Tevaとから車室内の
現在推定室温Troomを推定演算する。そして、この
最大推定室温Troommaxが現在推定室温Troo
mよりも高い場合に、空調装置の冷房能力が不足してい
ることを意味するので、制御手段10がブロアファンモ
ータ9のドライブ回路に供給している現在のブロアファ
ン電圧Vfanの上昇を規制する。結果として、空調装
置の駆動状態が安定状態であって、目標吹き出し温度が
エバポレータ6通過直後の吹き出し温度以下となり、空
調装置の冷房能力が車室内の熱負荷に対し不足した高熱
負荷環境においても、ブロアファン電圧Vfanが現在
値より上昇しないので、空調装置のダクト1から車室内
に吹き出される空調風の風量が増加しない。よって、交
通渋滞時のように車室内の熱負荷に対し空調装置の冷房
能力が十分でない場合でも、エバポレータ6の冷房能力
が低下している状態での風量増加による車室内の室温上
昇の発生が阻止でき、空調状態の良好なフィーリングを
確保できる。
Next, the operation of the air volume control device of the vehicle air conditioner of the above embodiment will be described. The operation of the air conditioner is started,
The control unit 10 determines the blower fan voltage Vfan according to the target blowout temperature calculated from the thermal environment information inside and outside the vehicle compartment, outputs the determined blower fan voltage Vfan to the drive circuit of the blower motor 9, and blows it out into the vehicle compartment. For example, whether the temperature difference between the detected room temperature Tinc and the set room temperature Tset is within a predetermined specified range or the elapsed time from the start of operation of the air conditioner is a specified time When it is detected that the driving state of the air conditioner is in a steady state by exceeding the target temperature, the target outlet temperature and the detected outlet temperature Teva are detected.
Compare with. When the target outlet temperature is equal to or lower than the detected outlet temperature Teva, it means that the driving state of the air conditioner is stable and placed in a high heat load environment.
Current estimated intake temperature Tint from intake door opening IDT, detected room temperature Tinc, and detected outside air temperature Tamb
And the estimated air volume vfan from the intake door opening IDT and the blower fan voltage Vfan.
The current estimated cooling capacity Qeva is estimated and calculated from the estimated air volume vfan and the estimated intake temperature Tint, and the estimated blowout temperature Tevamax at the maximum value maxHi of the blower fan voltage Vfan is estimated from the current estimated cooling capacity Qeva and the maximum air volume vfanmax. The maximum estimated room temperature Roomommax in the vehicle interior when the blower fan voltage Vfan reaches the maximum value maxHi is estimated and calculated from the estimated blowout temperature Tevamax, while the current estimated room temperature in the vehicle compartment is calculated from the estimated air volume vfan and the detected blowout temperature Teva. Estimate and calculate the Room. This maximum estimated room temperature Troommax is the currently estimated room temperature Troo.
When it is higher than m, it means that the cooling capacity of the air conditioner is insufficient, so that the control means 10 regulates the rise of the current blower fan voltage Vfan being supplied to the drive circuit of the blower fan motor 9. . As a result, even in a high heat load environment in which the drive condition of the air conditioner is stable, the target outlet temperature is equal to or lower than the outlet temperature immediately after passing through the evaporator 6, and the cooling capacity of the air conditioner is insufficient for the heat load in the passenger compartment, Since the blower fan voltage Vfan does not rise above the current value, the amount of conditioned air blown from the duct 1 of the air conditioner into the passenger compartment does not increase. Therefore, even when the cooling capacity of the air conditioner is not sufficient for the heat load in the passenger compartment, such as during traffic congestion, the room temperature in the passenger compartment may rise due to the increase in the air volume when the cooling capacity of the evaporator 6 is reduced. It can be prevented, and a good feeling of air conditioning can be secured.

【0023】なお、上記演算式6,9中におけるvdr
aは車体のドアを閉じた状態、車体のドアの開度、ウン
インドウガラスの開度などによって異なるが、それぞれ
の状態を想定した風量を実験で求め、この求めた風量を
目安とした近似値を演算するようにすればよい。また、
上記実施例では一例としてブロアファン電圧Vfanが
最大値maxHiにおける室温を第1推定室温とした
が、これを現在よりも所定値だけ高いブロアファン電圧
Vfanもしくはブロアファン風量vfanにおける推
定室温としてもよい。
Note that vdr in the above equations 6 and 9
a is different depending on the state of the vehicle body door closed, the vehicle body door opening degree, the window window opening degree, etc., but the air volume assuming each state was experimentally determined and an approximate value based on the obtained air volume was used as a guide. Should be calculated. Also,
In the above embodiment, as an example, the room temperature at which the blower fan voltage Vfan has the maximum value maxHi is set as the first estimated room temperature, but this may be set as the estimated room temperature at the blower fan voltage Vfan or the blower fan air volume vfan which is higher than the present value by a predetermined value.

【0024】[0024]

【発明の効果】以上説明したようにこの発明によれば、
車両用空調装置の駆動状態が定常状態になった状態にお
いて、例えば、目標吹き出し温度がエバポレータ通過直
後の吹き出し温度以下となり、空調装置の冷房能力が車
室内の熱負荷に対し不足した高熱負荷環境に置かれた場
合に、ブロアファンモータのドライブ回路に供給するブ
ロアファン電圧を現在値より上昇しないように規制する
ように構成したので、交通渋滞時のように車室内の熱負
荷に対し空調装置の冷房能力が十分でない場合でも、風
量増加による車室内の室温上昇の発生を阻止でき、空調
状態の良好なフィーリングを確保できるという効果があ
る。結果として、例えば車室内の室温をエアミックスド
アの開度とブロアファン電圧とで駆動するサーボ系統で
制御する場合のような能力限界を越える目標値をとった
とき発散制御となるという不都合を解消でき、またクー
ルダウン初期のブロアファンの遅延制御を行わなくても
好適なクールダウン初期制御も達成できる利点がある。
As described above, according to the present invention,
In the state where the driving state of the vehicle air conditioner is in a steady state, for example, the target blowout temperature becomes equal to or lower than the blowout temperature immediately after passing through the evaporator, and the cooling capacity of the air conditioner becomes a high heat load environment insufficient for the heat load in the vehicle interior. When it is installed, the blower fan voltage supplied to the drive circuit of the blower fan motor is regulated so that it does not rise above the current value. Even if the cooling capacity is not sufficient, it is possible to prevent the room temperature from increasing in the vehicle interior due to the increase in the air volume, and it is possible to ensure a good feeling in the air-conditioned state. As a result, the inconvenience of divergence control being taken when a target value exceeding the capacity limit is taken, for example, when the room temperature in the vehicle compartment is controlled by the servo system driven by the opening of the air mix door and the blower fan voltage, is eliminated. In addition, there is an advantage that suitable cool-down initial control can be achieved without performing delay control of the blower fan at the initial stage of cool-down.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の空調装置の風量制御手段を示す構成図
である。
FIG. 1 is a configuration diagram showing an air volume control means of an air conditioner of an embodiment.

【図2】実施例の風量推定マップである。FIG. 2 is an air volume estimation map of the embodiment.

【図3】実施例の空調装置を示す構成図である。FIG. 3 is a configuration diagram showing an air conditioner of an embodiment.

【符号の説明】[Explanation of symbols]

1 装置本体を構成するダクト 5 ブロアファン 6 エバポレータ 10 制御手段 20 空調運転状態検出手段 21 高熱負荷検出手段 22 吸い込み温度推定手段 23 風量推定手段 24 冷房能力推定手段 25 吹き出し温度推定手段 26 第1安定室温演算手段 27 第2安定室温演算手段 28 比較手段 29 電圧増加規制手段 DESCRIPTION OF SYMBOLS 1 Duct which comprises the apparatus main body 5 Blower fan 6 Evaporator 10 Control means 20 Air conditioning operating state detection means 21 High heat load detection means 22 Suction temperature estimation means 23 Air volume estimation means 24 Cooling capacity estimation means 25 Outlet temperature estimation means 26 1st stable room temperature Calculation means 27 Second stable room temperature calculation means 28 Comparison means 29 Voltage increase regulation means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 車室内の検出室温や車室内の設定室温お
よび車室外の検出外気温度などから目標温度を演算し、
この目標温度に応じブロアファン電圧を決定して車室内
に吹き出す空調風の風量を制御する車両用空調装置の風
量制御装置において、 空調装置の駆動状態が安定状態で高熱負荷環境に置かれ
たとき空調能力の不足を判断してブロアファン電圧の上
限値を規制する制御手段を設けたことを特徴とする車両
用空調装置の風量制御装置。
1. A target temperature is calculated from the detected room temperature in the vehicle compartment, the set room temperature in the vehicle compartment, the detected outside air temperature outside the vehicle compartment, and the like,
In an air volume control device for a vehicle air conditioner that determines the blower fan voltage according to this target temperature and controls the air flow rate of the air conditioning air blown into the vehicle compartment, when the drive condition of the air conditioner is stable and placed in a high heat load environment. An air flow control device for an air conditioning system for a vehicle, comprising a control means for determining an upper limit value of a blower fan voltage by judging insufficient air conditioning capacity.
JP33776493A 1993-12-28 1993-12-28 Air quantity controller for air conditioner for vehicle Pending JPH07186690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33776493A JPH07186690A (en) 1993-12-28 1993-12-28 Air quantity controller for air conditioner for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33776493A JPH07186690A (en) 1993-12-28 1993-12-28 Air quantity controller for air conditioner for vehicle

Publications (1)

Publication Number Publication Date
JPH07186690A true JPH07186690A (en) 1995-07-25

Family

ID=18311750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33776493A Pending JPH07186690A (en) 1993-12-28 1993-12-28 Air quantity controller for air conditioner for vehicle

Country Status (1)

Country Link
JP (1) JPH07186690A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120198865A1 (en) * 2011-02-07 2012-08-09 GM Global Technology Operations LLC Vehicle air conditioning control
JP2020147100A (en) * 2019-03-12 2020-09-17 株式会社Subaru Air conditioner control device
US11014424B2 (en) 2014-10-31 2021-05-25 Gentherm Incorporated Vehicle microclimate system and method of controlling same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120198865A1 (en) * 2011-02-07 2012-08-09 GM Global Technology Operations LLC Vehicle air conditioning control
US11014424B2 (en) 2014-10-31 2021-05-25 Gentherm Incorporated Vehicle microclimate system and method of controlling same
US11718147B2 (en) 2014-10-31 2023-08-08 Gentherm Incorporated Vehicle microclimate system and method of controlling same
US11718146B2 (en) 2014-10-31 2023-08-08 Gentherm Incorporated Vehicle microclimate system and method of controlling same
JP2020147100A (en) * 2019-03-12 2020-09-17 株式会社Subaru Air conditioner control device

Similar Documents

Publication Publication Date Title
JP2780060B2 (en) Vehicle air conditioning controller
JPH0773971B2 (en) Blower temperature control device for automobile air conditioners
JPH1086637A (en) Air conditioner for vehicle
JPH08113026A (en) Air-conditioner
JPH09193643A (en) Air conditioner for vehicle
JPH01289712A (en) Air quantity controller of air conditioner for vehicle
JPH07186690A (en) Air quantity controller for air conditioner for vehicle
JP3429673B2 (en) Vehicle air conditioner
JP3533716B2 (en) Vehicle air conditioner
JPH111112A (en) Air conditioner for vehicle
JP2768177B2 (en) Automotive air conditioners
JP3322012B2 (en) Vehicle air conditioner
JP3669151B2 (en) Air conditioner for vehicles
JPH1086628A (en) Air conditioner for vehicle
JPS6226244Y2 (en)
JP3538903B2 (en) Air conditioner
JP2594602B2 (en) Vehicle air conditioner
JPH07172139A (en) Vehicular front and rear seat independent temperature regulation controller
JP3500644B2 (en) Automotive air conditioners
JP3677879B2 (en) Air conditioner for vehicles
JPH0454005Y2 (en)
JPH07186691A (en) Wind state controller for air conditioner for vehicle
JPH08318725A (en) Air conditioner for vehicle
JP2952533B2 (en) Vertical air distribution controller for vehicle air conditioners
JP3388183B2 (en) Vehicle air conditioner