JPH07184324A - Frequency stabilizing method - Google Patents

Frequency stabilizing method

Info

Publication number
JPH07184324A
JPH07184324A JP5326520A JP32652093A JPH07184324A JP H07184324 A JPH07184324 A JP H07184324A JP 5326520 A JP5326520 A JP 5326520A JP 32652093 A JP32652093 A JP 32652093A JP H07184324 A JPH07184324 A JP H07184324A
Authority
JP
Japan
Prior art keywords
frequency
value
power
maximum
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5326520A
Other languages
Japanese (ja)
Other versions
JP2869320B2 (en
Inventor
Kiyoshi Akiyama
清 秋山
Shigenori Kurimoto
繁徳 栗本
Kazuo Shiraishi
一雄 白石
Yoshihiro Miyamoto
喜弘 宮本
Kazuhito Kibi
和仁 吉備
Hideji Oshida
秀治 押田
Masanori Nakamura
正則 中村
Toshiki Hattori
俊樹 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Electric Power Co Inc
Mitsubishi Electric Corp
Original Assignee
Shikoku Electric Power Co Inc
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Electric Power Co Inc, Mitsubishi Electric Corp filed Critical Shikoku Electric Power Co Inc
Priority to JP5326520A priority Critical patent/JP2869320B2/en
Publication of JPH07184324A publication Critical patent/JPH07184324A/en
Application granted granted Critical
Publication of JP2869320B2 publication Critical patent/JP2869320B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PURPOSE:To realize highly accurate stabilization of frequency by calculating the highest frequency when the power generated from a system separated from a power system is excessive whereas calculating the lowest frequency when the generated power is deficient and controlling the transient frequency to be confined within the stable region of a generator. CONSTITUTION:Generators 1A, 1B linked with a main system 100 deliver information, measured by a normal sensor 5, to a CPU 4N through a terminal 4A. The CPU 4N is also fed with power flow information from an linked line at a predetermined period. When the sensor 5 detects that the generators 1A, 1B are disconnected from the main system 100 due to some cause, the CPU 4N calculates excess or deficiency of power generated from the generators 1A, 1B with respect to loads 10A, 10B based on the transient fluctuation in the frequencies of the generators IA, 1B. The frequency is increased when power is generated excessively while decreased when power is generated insufficiently thus confining the frequency within a stable region. This method realizes highly accurate stabilization of frequency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、電力系統が系統分断
発生によって分離された場合に認められる周波数異常を
電源制限または負荷制限によって制御する周波数安定化
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a frequency stabilizing method for controlling a frequency abnormality, which is recognized when a power system is separated due to the occurrence of system disconnection, by limiting a power source or a load.

【0002】[0002]

【従来の技術】図7は、例えば「電力系統の保護制御シ
ステム−太田宏次著、電気書院」に示された従来方法に
よる周波数異常制御装置の構成図である。図において、
1A,1Bは発電機(発電所)、2A〜2Dは系統内の
母線、3A〜3Dは送電線であり、送電線3Aは本系統
100との連系線となる。4Aは計測用端末、4B〜4
Eは制御端末、4Nは中央演算装置、5は連系線ルート
断検出用のセンサ、6A〜6Dは遮断器、7A〜7Eは
コントロール・ケーブル、8A〜8E,8Nは情報信号
伝送路、9は中央給電指令所、10A,10Bは負荷で
ある。
2. Description of the Related Art FIG. 7 is a block diagram of a frequency abnormality control apparatus according to a conventional method shown in, for example, "Protective control system for electric power system-Koji Ohta, Denki Shoin". In the figure,
1A and 1B are generators (power plants), 2A to 2D are bus lines in the system, 3A to 3D are power transmission lines, and the power transmission line 3A is a connection line with the system 100. 4A is a measurement terminal, and 4B to 4
E is a control terminal, 4N is a central processing unit, 5 is a sensor for detecting disconnection of interconnection line route, 6A to 6D are circuit breakers, 7A to 7E are control cables, 8A to 8E and 8N are information signal transmission paths, 9 Is a central power supply command station, and 10A and 10B are loads.

【0003】次に動作について説明する。連系線ルート
断事故が発生した場合に、センサ5,計測用端末4Aを
通しての情報から中央演算装置4Nが起動し、中央給電
指令所9からの情報と予め求めた系統定数(周波数が落
ち着いた時点でのもの)から以下の式によって必要制限
量を算出する。 (1)負荷制限の場合
Next, the operation will be described. When an interconnection line route disconnection accident occurs, the central processing unit 4N is activated from the information through the sensor 5 and the measuring terminal 4A, and the information from the central power feeding command station 9 and the system constants (frequency which has been determined beforehand) have calmed down. The required limit amount is calculated by the following formula. (1) In case of load limitation

【0004】[0004]

【数1】 [Equation 1]

【0005】(2)電源制限の場合 QP =−P−KH ・ΔfH ・W0L :必要負荷制限量 QP :必要電源制限量 P :連系線事故前潮流(受電を正とする) W0 :系統容量 KL :負荷制限時の系統定数 KH :電源制限時の系統定数 fL :落ち着き先周波数(負荷制限時) fH :落ち着き先周波数(電源制限時) 算出された制限量に基づいて、中央演算装置4Nは制御
端末4B〜4Eに指令し、制御端末4B〜4Eはコント
ロール・ケーブル7B〜7Eを通して、遮断器6A〜6
Dにトリップ信号を出し、落ち着き先周波数を制御す
る。
[0005] (2) When the power limit Q P = -P-K H · Δf H · W 0 Q L: required load shedding amount Q P: required power restriction rate P: tie-line before the accident trends (the power receiving positive W 0 : System capacity K L : System constant when load is limited K H : System constant when power is limited f L : Settlement frequency (when load is limited) f H : Settlement frequency (when power is limited) Calculated Based on the limited amount, the central processing unit 4N commands the control terminals 4B to 4E, and the control terminals 4B to 4E pass through the control cables 7B to 7E and breakers 6A to 6A.
A trip signal is output to D to control the destination frequency.

【0006】[0006]

【発明が解決しようとする課題】従来の周波数安定化方
法は以上のように、落ち着き先周波数を基準にその時点
での系統定数によって行われるので、過渡的な周波数変
化に対応できず、そのために著しい需給アンバランス時
に認められる急激な周波数上昇または下降に対して適切
な制御ができないという問題点があった。
As described above, since the conventional frequency stabilization method is performed by the system constant at that time with reference to the settling frequency, it cannot cope with the transient frequency change. There is a problem that it is not possible to properly control the sudden frequency increase or decrease that is recognized when there is a significant supply and demand imbalance.

【0007】この発明は上記のような課題を解決するた
めになされたものであり、過渡的に上昇または下降する
周波数を算出して、その最高値,最低値からそれぞれ電
源制限量,負荷制限量を決定することで、発電機の安定
運転領域内に周波数を維持することを目的とする。
The present invention has been made in order to solve the above problems. It calculates a frequency that rises or falls transiently, and determines the power supply limit amount and the load limit amount from the highest value and the lowest value, respectively. By determining, the frequency is maintained within the stable operation region of the generator.

【0008】[0008]

【課題を解決するための手段】この発明に係る周波数安
定化方法は、電力系統分断時に認められる周波数変化の
過渡的な変化に着目し、分断系統が発電力過剰の場合に
は周波数最高値を、発電力不足の場合には周波数最低値
を算出し、それぞれの値から発電機安定運転領域内に過
渡的な周波数を制御するようにしたものである。
The frequency stabilizing method according to the present invention focuses on the transient change of the frequency change observed at the time of power system disconnection, and when the power supply of the disconnection system is excessive, the maximum frequency value is set. In the case of insufficient power generation, the minimum frequency value is calculated, and the transient frequency is controlled within the generator stable operation range from each value.

【0009】また、請求項2では、等価発電機の出力を
その慣性定数で割った値(正規化発電量)及び系統間の
連系線潮流値と、周波数最高時および最低時の発電機系
統定数との関係が線形近似できることを利用して、系統
分断発生前の制御対象系統内発電量と連系線潮流値とに
基づき予め周波数最高時および最低時における等価発電
機の系統定数を求めておき、この系統定数を用いて系統
分断発生時の過渡周波数最高値,最低値を算出するもの
である。なお、等価発電機とは、系統内の複数の発電機
を等価一機に縮約して表したものであり、その慣性定数
は各発電機の慣性定数の和となる。また、周波数最高時
および最低時における等価発電機の系統定数とは、従来
の系統定数の概念を周波数最高時および最低時に適用し
たもので、系統内の周波数が最高値または最低値に達し
た時点での系統定数を意味している。
Further, according to claim 2, a value obtained by dividing the output of the equivalent generator by its inertia constant (normalized power generation amount) and the interconnection line power flow value between the systems, and the generator system at the highest and lowest frequencies. By utilizing the fact that the relationship with the constant can be linearly approximated, the system constants of the equivalent generator at the maximum and minimum frequencies are calculated in advance based on the power generation amount in the controlled system before the grid disconnection and the interconnection line power flow value. Then, the system constant is used to calculate the maximum and minimum values of the transient frequency when the system disconnection occurs. The equivalent generator is a plurality of generators in the system that are reduced to an equivalent one, and the inertia constant is the sum of the inertia constants of the generators. The system constant of the equivalent generator at the highest and lowest frequencies is the conventional concept of system constants applied at the highest and lowest frequencies, and is the time when the frequency in the system reaches the maximum or minimum value. Means the systematic constant in.

【0010】更に、請求項3では、前記過渡周波数最高
値の算出式を電源制限量を含むように変形して、過渡周
波数最高値が発電機の安定運転領域を越えた場合に、周
波数最高値を安定領域内に下げるために必要な電源制限
量を求めるものである。
Further, in claim 3, the formula for calculating the maximum value of the transient frequency is modified so as to include the power supply limiting amount, and when the maximum value of the transient frequency exceeds the stable operation region of the generator, the maximum value of the frequency is set. The power supply limit amount required to lower the power supply to the stable region is obtained.

【0011】また、請求項4では、前記系統内の発電機
(通常は主な代表発電機)を等価一機に縮約し、調速
機,すなわちガバナの時定数を一次遅れで近似し、さら
に前記系統内の系統定数から等価発電機の周波数過渡特
性式を導き、その極値を求めることで過渡周波数最高
値,最低値を算出するものである。
Further, in claim 4, the generator (usually the main representative generator) in the system is reduced to an equivalent one, and the time constant of the governor, that is, the governor is approximated by a first-order lag, Further, the frequency transient characteristic formula of the equivalent generator is derived from the system constants in the system, and the extreme values thereof are obtained to calculate the maximum and minimum values of the transient frequency.

【0012】[0012]

【作用】この発明における周波数安定化方法は、電力系
統分断時の過渡的な周波数変化の最高値または最低値を
算出するので、従来の落ち着き先周波数(過渡的な周波
数動揺後に落ち着く周波数)に対する制御に比べて、よ
り精度の高い周波数安定化が可能となる。
In the frequency stabilizing method according to the present invention, the maximum value or the minimum value of the transient frequency change at the time of power system division is calculated, so that the control for the conventional settling frequency (the frequency settling after the transient frequency fluctuation) is calculated. It is possible to stabilize the frequency more accurately than in the case of.

【0013】また、請求項2においては、予め求めた周
波数最高時および最低時における発電機系統定数を用い
て過渡周波数最高値,最低値を算出するので、系統分断
発生時に容易に周波数最高値,最低値を求めることがで
きる。
Further, in the present invention, since the transient frequency maximum value and minimum value are calculated using the generator system constants at the maximum and minimum frequencies which are obtained in advance, the maximum frequency value and the transient frequency can be easily calculated when the system disconnection occurs. The lowest value can be determined.

【0014】更に、請求項3においては、前記過渡周波
数最高値の算出式を電源制限量を含むように変形して、
周波数最高値を安定領域内に下げるために必要な電源制
限量を求めるので、系統分断発生時の最高周波数を発電
機の安定運転領域まで容易に下げることができる。
Further, in the third aspect, the formula for calculating the maximum value of the transient frequency is modified so as to include the power supply limitation amount,
Since the power supply limit amount required to reduce the maximum frequency value to within the stable region is obtained, the maximum frequency at the time of grid disconnection can be easily reduced to the stable operation region of the generator.

【0015】また、請求項4においては、前記周波数過
渡特性式の極値を求めることで、落ち着き先周波数に制
御対象系統固有の係数を掛けるだけで容易に周波数最高
値,最低値が算出できる。
Further, according to the fourth aspect, by obtaining the extreme value of the frequency transient characteristic equation, the highest frequency value and the lowest frequency value can be easily calculated only by multiplying the settling frequency by a coefficient specific to the controlled system.

【0016】[0016]

【実施例】【Example】

実施例1.以下、この発明の実施例1を図に基づいて説
明する。まず、本発明の基本原理について説明する。図
1は、電力系統分断時における周波数の変化波形であ
る。図において、tf 時点が系統分断発生を表し、分断
系統が発電力過剰の場合は、同図(a)のように過渡的
な最高値を記録したのちに、発電機の調速機(以下、ガ
バナと記す)の時定数に従って落ち着き先周波数値に至
る。同様に発電力不足の場合は、同図(b)のように過
渡的な最低値を経て落ち着き先周波数値に至る。従来の
落ち着き先周波数値を基準とした制御とは異なり、過渡
的な周波数最高値または最低値を算出することにより、
精度の高い周波数制御が可能となる。
Example 1. Embodiment 1 of the present invention will be described below with reference to the drawings. First, the basic principle of the present invention will be described. FIG. 1 is a frequency change waveform when the power system is divided. In the figure, the time point t f represents the occurrence of system disconnection, and when the divided system has excessive power generation, after recording the transient maximum value as shown in (a) of the figure, the speed governor of the generator (hereinafter , Governor) and reach the settled frequency value. Similarly, in the case of insufficient power generation, the frequency reaches a settling point frequency value through a transient minimum value as shown in FIG. Unlike the conventional control based on the settling frequency value, by calculating the transient frequency maximum value or minimum value,
Highly accurate frequency control becomes possible.

【0017】図2は、本発明の周波数安定化方法に基づ
いた周波数異常制御装置の構成例である。図において、
1A,1Bは発電機(発電所)、2A〜2Dは系統内の
母線、3A〜3Dは送電線であり、送電線3Aは本系統
100との連系線となる。4Aは計測用端末、4B〜4
Eは制御端末、4Nは中央演算装置であり、この中央演
算装置4Nは従来と異なり、後述する図3のフローチャ
ートに基づき動作して、本発明の周波数安定化方法を実
行するものである。5は連系線ルート断検出用のセン
サ、6A〜6Dは遮断器、7A〜7Eはコントロール・
ケーブル、8A〜8E,8Nは情報信号伝送路、9は中
央給電指令所、10A,10Bは負荷である。
FIG. 2 is a structural example of a frequency abnormality control device based on the frequency stabilization method of the present invention. In the figure,
1A and 1B are generators (power plants), 2A to 2D are bus lines in the system, 3A to 3D are power transmission lines, and the power transmission line 3A is a connection line with the system 100. 4A is a measurement terminal, and 4B to 4
E is a control terminal, 4N is a central processing unit, and this central processing unit 4N is different from the conventional one and operates based on the flowchart of FIG. 3 described later to execute the frequency stabilizing method of the present invention. 5 is a sensor for detecting disconnection of the interconnection route, 6A to 6D are circuit breakers, and 7A to 7E are controls.
Cables, 8A to 8E and 8N are information signal transmission paths, 9 is a central power feeding command center, and 10A and 10B are loads.

【0018】次に本装置の動作について説明する。送電
線3Aの連系状態は常時センサ5で計測され、コントロ
ール・ケーブル7Aを通して計測用端末4Aに入力され
る。中央演算装置4Nは、常に計測用端末4Aからの情
報を伝送路8Aを通して取り込み、更に中央給電指令所
9から伝送路8Nを通して発電機1A,1Bの発電情
報,連系線潮流情報をある周期で取り込んでおく。中央
演算装置4Nは、必要に応じて電源制限信号,負荷制限
信号を制御端末4B〜4Eに出力し、制御端末4B〜4
Eでは、電源制限信号あるいは負荷制限信号に応じて、
受信した信号の内容から発電機1A,1B、負荷10
A,10Bを選択してトリップ信号を出力する。例え
ば、送電線3A(連系線)でルート断事故が発生した場
合、センサ5からの情報からルート断事故を検出したこ
とをキックとして、中央演算装置4Nは起動状態に入
り、図3に示したフローチャートに従って、安定化制御
(電源制限,負荷制限)を行う。すなわち、図3におい
て、ステップST1は故障発生検出による装置起動ブロ
ック、ステップST2は故障発生時点を基準とするため
の時刻リセットの処理ブロック、ステップST3は故障
除去の検出ブロックである。ステップST4では、中央
給電指令所9から取り込んだ情報を基に、連系線潮流値
が制御対象系統から見て送電か受電(ゼロ値を含む)か
を判定し、送電であるならステップST5に、それ以外
の時はステップST11へ進む。ステップST5では、
中央給電指令所9から取り込んだ連系線潮流値を基に予
め設定しておいたデータから過渡的最高周波数値および
落ち着き先周波数値を求める。ステップST6では、前
記ステップST5で求めた周波数値が電源制限の必要な
値を越えているか否かを判定し、電源制限が必要であれ
ばステップST7へ、それ以外の時はステップST17
へ進む。ステップST7では、安定化制御量(電源制限
量)を予め決めたアルゴリズムによって決定する。ステ
ップST8では、ステップST7で決定した電源制限量
に応じた発電機パターンが存在するか否かを判定し、存
在すればステップST9に、存在しなければステップS
T17へ進む。ステップST9では、ステップST7で
決定した電源制限量に対応した遮断パターンを発電機1
A,1Bから選択する。ステップST10では、前記ス
テップST9で決定した選択パターンに従って、制御端
末4B,4Cから遮断器6A,6Bにトリップ信号を出
力して、ステップST17へ進む。一方、ステップST
11では、中央給電指令所9から取り込んだ連系線潮流
値を基に、予め設定しておいたデータから過渡的最低周
波数値および落ち着き先周波数値を求める。ステップS
T12では、前記ステップST11で求めた周波数値が
負荷制限の必要な値を下回っているか否かを判定し、負
荷制限が必要であればステップST13へ、それ以外の
時はステップST17へ進む。ステップST13では、
安定化制御量(負荷制限量)を予め決めたアルゴリズム
によって決定する。ステップST14では、ステップS
T13で決定した負荷制限量に応じた負荷パターンが存
在するか否かを判定し、存在すればステップST15
に、存在しなければステップST17へ進む。ステップ
ST15では、ステップST13で決定した負荷制限量
に対応した遮断パターンを負荷10A,10Bから選択
する。ステップST16では、前記ステップST15で
決定した選択パターンに従って、制御端末4D,4Eか
ら遮断器6C,6Dにトリップ信号を出力して、ステッ
プST17へ進む。
Next, the operation of this apparatus will be described. The interconnection state of the power transmission line 3A is constantly measured by the sensor 5 and input to the measurement terminal 4A through the control cable 7A. The central processing unit 4N always fetches the information from the measuring terminal 4A through the transmission line 8A, and further, from the central power feeding command station 9 through the transmission line 8N, the power generation information of the generators 1A and 1B and the interconnection line flow information at a certain cycle. Capture it. The central processing unit 4N outputs a power supply limit signal and a load limit signal to the control terminals 4B to 4E as necessary, and the control terminals 4B to 4
In E, depending on the power limit signal or load limit signal,
From the contents of the received signal, the generators 1A, 1B, the load 10
Select A or 10B and output a trip signal. For example, when a route disconnection accident occurs on the power transmission line 3A (interconnection line), the central processing unit 4N enters into the start-up state with the detection of the route disconnection accident from the information from the sensor 5 as a kick, and is shown in FIG. Stabilization control (power supply limitation, load limitation) is performed according to the flowchart. That is, in FIG. 3, step ST1 is a device activation block upon detection of a failure occurrence, step ST2 is a time reset processing block based on a failure occurrence time point, and step ST3 is a failure removal detection block. In step ST4, it is determined whether the power flow value of the interconnection line is power transmission or power reception (including a zero value) when viewed from the control target system based on the information fetched from the central power feeding command station 9, and if it is power transmission, the process proceeds to step ST5. In other cases, the process proceeds to step ST11. In step ST5,
The transient maximum frequency value and the settling point frequency value are obtained from preset data based on the interconnection line power flow value taken from the central power feeding command station 9. In step ST6, it is determined whether or not the frequency value obtained in step ST5 exceeds a value that requires power supply restriction. If power supply restriction is required, the process proceeds to step ST7, otherwise step ST17.
Go to. In step ST7, the stabilization control amount (power supply limit amount) is determined by a predetermined algorithm. In step ST8, it is determined whether or not there is a generator pattern according to the power supply limitation amount determined in step ST7. If it exists, step ST9 is performed. If not, step S9 is performed.
Proceed to T17. In step ST9, the cutoff pattern corresponding to the power limit amount determined in step ST7 is set to the generator 1
Select from A and 1B. In step ST10, the control terminals 4B, 4C output trip signals to the circuit breakers 6A, 6B in accordance with the selection pattern determined in step ST9, and the process proceeds to step ST17. On the other hand, step ST
At 11, the transient minimum frequency value and the settling point frequency value are obtained from preset data based on the interconnection line power flow value taken from the central power feeding command station 9. Step S
At T12, it is determined whether or not the frequency value obtained at step ST11 is below a value required for load limitation, and if load limitation is required, the process proceeds to step ST13, otherwise proceeds to step ST17. In step ST13,
The stabilizing control amount (load limit amount) is determined by a predetermined algorithm. In step ST14, step S
It is determined whether or not there is a load pattern according to the load limit amount determined in T13, and if there is, a step ST15.
If it does not exist, the process proceeds to step ST17. In step ST15, the cutoff pattern corresponding to the load limiting amount determined in step ST13 is selected from the loads 10A and 10B. In step ST16, the trip signals are output from the control terminals 4D and 4E to the circuit breakers 6C and 6D according to the selection pattern determined in step ST15, and the process proceeds to step ST17.

【0019】以上のように、この発明の実施例1によれ
ば、電力系統間の連系線ルート断時に認められる需給ア
ンバランスによる周波数異常の過渡的な周波数最高値ま
たは最低値を計算し、かつそれに応じた制限量を算出す
るので、より精度の高い安定化制御が可能となる。
As described above, according to the first embodiment of the present invention, the transient maximum or minimum value of the frequency abnormality of the frequency anomaly due to the supply and demand imbalance recognized when the interconnection line route between the power systems is cut off is calculated, In addition, since the limit amount is calculated in accordance therewith, more accurate stabilization control can be performed.

【0020】実施例2.実施例2においては、実施例1
の連系線ルート断時の最高周波数値および最低周波数値
算出のための具体的な手法を説明する(最高周波数値算
出手法を例にとって説明する)。連系線潮流値が送電で
あった場合に連系線がルート断事故を起こすと、系統周
波数は図1(a)のような波形を示し、その最高値ΔF
H1は次式によって求めることができる。
Example 2. In Example 2, Example 1
A specific method for calculating the maximum frequency value and the minimum frequency value when the interconnection line route is disconnected will be described (the maximum frequency value calculation method will be described as an example). When the interconnection line power flow value is power transmission and the interconnection line causes a route disconnection accident, the system frequency shows a waveform as shown in Fig. 1 (a), and its maximum value ΔF.
H1 can be calculated by the following equation.

【0021】[0021]

【数2】 [Equation 2]

【0022】ここに、KH1:最高周波数時の発電機(等
価発電機)の系統定数 KHL:負荷の系統定数 WOP:制御対象系統内の総発電量(等価発電機の出力) WOL:制御対象系統内の総負荷量 Lin:連系線潮流値 ここで、負荷の系統定数KHLは予め適当な手段によって
求めておくこととし、最高周波数時の発電機系統定数K
H1は以下のように求める。最高周波数時の発電機系統定
数KH1は、制御対象系統内の発電機の稼働状態(発電
量)および連系線潮流値によって左右されるため、図4
に示すように、制御対象系統内の総発電量WOPを稼動発
電機の慣性定数合計値Mで正規化した値(以後、正規化
総発電量と記す)と連系線潮流値Linで最高周波数時の
発電機系統定数KH1を表すと、以下に示す直線式で近似
できる。
Where K H1 is the system constant of the generator (equivalent generator) at the highest frequency, K HL is the system constant of the load, W OP is the total amount of power generation in the controlled system (the output of the equivalent generator) W OL : Total load amount in controlled system L in : Power flow value of interconnection line Here, the system constant K HL of load is to be obtained in advance by an appropriate means, and the generator system constant K at the highest frequency.
H1 is calculated as follows. Since the generator system constant K H1 at the highest frequency depends on the operating state (power generation amount) of the generator in the controlled system and the interconnection line flow value,
As shown in, the total power generation amount W OP in the controlled system is normalized by the total inertia constant value M of the operating generator (hereinafter, referred to as normalized total power generation amount) and the interconnection line power flow value L in . The generator system constant K H1 at the highest frequency can be approximated by the following linear equation.

【0023】[0023]

【数3】 [Equation 3]

【0024】つまり、(2)式の係数aおよびbを予め
シミュレーションで設定しておけば、最高周波数時の発
電機系統定数KH1は求めることができ、さらに(1)式
から容易に最高周波数値ΔFH1を求めることができる。
なお、上記では最高値の算出について説明したが、最低
値についても同様に算出することができる。
That is, if the coefficients a and b in the equation (2) are set in advance by simulation, the generator system constant K H1 at the maximum frequency can be obtained, and the maximum frequency can be easily calculated from the equation (1). The value ΔF H1 can be determined.
In addition, although the calculation of the maximum value has been described above, the calculation of the minimum value can be performed in the same manner.

【0025】以上、この発明の実施例2によれば、連系
線ルート断時に容易に周波数最高値,最低値を求めるこ
とができる。
As described above, according to the second embodiment of the present invention, the maximum frequency value and the minimum frequency value can be easily obtained when the interconnection line route is cut off.

【0026】実施例3.実施例3においては、実施例1
の最高周波数に対する電源制限量を算出する手法を説明
する。実施例2で求めた最高周波数値が発電機の安全運
転周波数を越えた場合に実施する電源制限量は次式によ
って算出することができる。
Example 3. In Example 3, Example 1
A method of calculating the power supply limitation amount for the highest frequency of will be described. The power supply restriction amount to be implemented when the maximum frequency value obtained in the second embodiment exceeds the safe operation frequency of the generator can be calculated by the following formula.

【0027】[0027]

【数4】 [Equation 4]

【0028】ここに、KH1:最高周波数時の発電機の系
統定数 KHL:負荷の系統定数 WOP:制御対象系統内の総発電量 WOL:制御対象系統内の総負荷量 Lin:連系線潮流値 Q :必要電源制限量 このように、実施例2の(1)式を上記のように変形す
ることで、図5のように最高周波数ΔFH1をΔFH1’に
下げることができるので、その時の必要電源制限量Qを
求めることができる。
Where K H1 is the system constant of the generator at the highest frequency K HL is the system constant of the load W OP is the total power generation in the controlled system W OL is the total load in the controlled system L in : Interconnection power flow value Q: Required power supply limiting amount In this way, by modifying the equation (1) of the second embodiment as described above, the maximum frequency ΔF H1 can be lowered to ΔF H1 'as shown in FIG. Therefore, the required power supply limit amount Q at that time can be obtained.

【0029】以上、本発明の実施例3によれば、連系線
ルート断時に最高周波数を発電機の安定運転領域まで容
易に下げることができる。
As described above, according to the third embodiment of the present invention, the maximum frequency can be easily lowered to the stable operation region of the generator when the interconnection route is cut off.

【0030】実施例4.前記実施例2では、最高周波数
時の系統定数を正規化総発電量で一次近似して定式化す
ることで最高周波数を求めたが、系統内の代表発電機を
等価一機で縮約し、発電機のガバナの時定数を一次遅れ
で近似することで、より容易に最高周波数を算出する手
法を説明する。図6は、制御対象系統を示したモデル系
統図である。ここで、ガバナの時定数TG を一次近似で
模擬すると、
Example 4. In the second embodiment, the maximum frequency was obtained by linearly approximating the system constant at the highest frequency with the normalized total power generation amount, but the representative generator in the system was reduced by an equivalent one machine, A method for more easily calculating the maximum frequency by approximating the time constant of the governor of the generator with a first-order delay will be described. FIG. 6 is a model system diagram showing a system to be controlled. Here, when the governor time constant T G is simulated by a first-order approximation,

【0031】[0031]

【数5】 [Equation 5]

【0032】で表せる。更に、連系線ルート断事故発生
後の発電機#1の動揺方程式は、
Can be expressed as Furthermore, the sway equation of generator # 1 after the disconnection of the interconnection route is

【0033】[0033]

【数6】 [Equation 6]

【0034】で表せる。ここで、(5)式をtで微分し
て、
It can be represented by Here, the equation (5) is differentiated by t,

【0035】[0035]

【数7】 [Equation 7]

【0036】(4)式を(6)式に代入すると、Substituting equation (4) into equation (6),

【0037】[0037]

【数8】 [Equation 8]

【0038】更に、(7)式に(5)式を代入するとFurther, by substituting the equation (5) into the equation (7),

【0039】[0039]

【数9】 [Equation 9]

【0040】よって、(10)式をΔfについて解くと
次式の周波数過渡特性式を得る。
Therefore, when the equation (10) is solved for Δf, the following frequency transient characteristic equation is obtained.

【0041】[0041]

【数10】 [Equation 10]

【0042】更に、(11)式の極値を求めると、Further, when the extreme value of the equation (11) is calculated,

【0043】[0043]

【数11】 [Equation 11]

【0044】(13)式を(11)式に代入するとSubstituting equation (13) into equation (11),

【0045】[0045]

【数12】 [Equation 12]

【0046】従って、(14)式より最高周波数は、落
ち着き先周波数に係数をかけることにより算出すること
ができる。なお、上記では最高値の算出について説明し
たが、最低値についても同様に算出することができる。
Therefore, the maximum frequency can be calculated from the equation (14) by multiplying the settling frequency by a coefficient. In addition, although the calculation of the maximum value has been described above, the calculation of the minimum value can be performed in the same manner.

【0047】以上、本発明の実施例4によれば、落ち着
き先周波数に制御対象系統固有の係数を掛けることによ
って、容易に周波数最高値,最低値が算出でき、より精
度の高い制御が可能となる。
As described above, according to the fourth embodiment of the present invention, the highest frequency and the lowest frequency can be easily calculated by multiplying the settling frequency by the coefficient peculiar to the controlled system, and the control with higher accuracy can be performed. Become.

【0048】[0048]

【発明の効果】以上のように、この発明によれば、電力
系統分断時に認められる周波数変化の過渡的な変化に着
目し、分断系統が発電力過剰の場合には周波数最高値
を、発電力不足の場合には周波数最低値を算出し、それ
ぞれの値から発電機安定運転領域内に過渡的な周波数を
制御するようにしたので、従来の落ち着き先周波数に対
する制御に比べて、より精度の高い周波数安定化が可能
となる効果がある。
As described above, according to the present invention, attention is paid to the transient change of the frequency change observed at the time of power system disconnection, and when the power generation of the disconnection system is excessive, the maximum frequency value is If there is a shortage, the lowest frequency is calculated, and the transient frequency is controlled within each generator's stable operation range from each value.Therefore, it is more accurate than the conventional control for the settling frequency. There is an effect that the frequency can be stabilized.

【0049】また、請求項2では、正規化発電量及び連
系線潮流値と、周波数最高時および最低時の発電機系統
定数との関係が線形近似できることを利用して、系統分
断発生前の発電量と連系線潮流値とに基づき予め周波数
最高時および最低時の系統定数を求めておき、この系統
定数を用いて系統分断発生時の過渡周波数最高値,最低
値を算出するので、系統分断発生時に容易に周波数最高
値,最低値を求めることができる効果がある。
Further, in the second aspect, the fact that the relation between the normalized power generation amount and the interconnection line power flow value and the generator system constant at the time of the highest frequency and the lowest frequency can be linearly approximated is utilized before the occurrence of system disconnection. The system constants at the maximum and minimum frequencies are calculated in advance based on the power generation amount and the power flow value on the interconnection line, and the maximum and minimum transient frequencies at the time of system disconnection are calculated using these system constants. The effect is that the highest and lowest frequencies can be easily obtained when division occurs.

【0050】更に、請求項3では、前記過渡周波数最高
値の算出式を電源制限量を含むように変形して、周波数
最高値を安定領域内に下げるために必要な電源制限量を
求めるので、系統分断発生時の最高周波数を発電機の安
定運転領域まで容易に下げることができる効果がある。
Further, in claim 3, the formula for calculating the maximum value of the transient frequency is modified so as to include the power supply limiting amount, and the power supply limiting amount required to lower the maximum frequency value into the stable region is obtained. There is an effect that the maximum frequency at the time of system interruption can be easily lowered to the stable operation region of the generator.

【0051】また、請求項4では、等価発電機の周波数
過渡特性式の極値を求めることで、落ち着き先周波数に
制御対象系統固有の係数を掛けるだけで容易に過渡周波
数最高値,最低値を算出することができる効果がある。
Further, in claim 4, by obtaining the extreme value of the frequency transient characteristic equation of the equivalent generator, the transient frequency maximum value and minimum value can be easily obtained only by multiplying the settling frequency by a coefficient specific to the controlled system. There is an effect that can be calculated.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の基本原理を示す連系線ルート断時の
周波数波形図である。
FIG. 1 is a frequency waveform diagram when the interconnection line route is broken, showing the basic principle of the present invention.

【図2】この発明の実施例1を示す周波数異常制御装置
の構成図である。
FIG. 2 is a configuration diagram of a frequency abnormality control device showing the first embodiment of the present invention.

【図3】図2の装置における処理のフローチャートであ
る。
FIG. 3 is a flowchart of processing in the apparatus of FIG.

【図4】この発明の実施例2を示す正規化総発電量と最
高周波数時系統定数との関係を示す図である。
FIG. 4 is a diagram showing a relationship between a normalized total power generation amount and a maximum frequency time system constant showing a second embodiment of the present invention.

【図5】この発明の実施例3を示す電源制限時と無制御
時の波形図である。
FIG. 5 is a waveform diagram showing a third embodiment of the present invention when the power source is limited and when no control is performed.

【図6】この発明の実施例4を示すモデル系統図であ
る。
FIG. 6 is a model system diagram showing Embodiment 4 of the present invention.

【図7】従来の周波数異常制御装置の構成図である。FIG. 7 is a configuration diagram of a conventional frequency abnormality control device.

【符号の説明】[Explanation of symbols]

1A,1B 発電機(発電所) 2A〜2D 母線 3A 送電線(連系線) 3B〜3D 送電線 4A 計測用端末 4B〜4E 制御端末 4N 中央演算装置 5 ルート断検出用センサ 6A〜6D 遮断器 7A〜7E コントロール・ケーブル 8A〜8E,8N 情報信号伝送路 9 中央給電指令所 10A,10B 負荷 1A, 1B Generator (power plant) 2A-2D Busbar 3A Transmission line (interconnection line) 3B-3D Transmission line 4A Measurement terminal 4B-4E Control terminal 4N Central processing unit 5 Route disconnection detection sensor 6A-6D Circuit breaker 7A to 7E Control cable 8A to 8E, 8N Information signal transmission line 9 Central power supply command station 10A, 10B Load

【手続補正書】[Procedure amendment]

【提出日】平成6年4月25日[Submission date] April 25, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【書類名】 明細書[Document name] Statement

【発明の名称】 周波数安定化方法Title of frequency stabilization method

【特許請求の範囲】[Claims]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、電力系統が系統分断
発生によって分離された場合に認められる周波数異常を
電源制限または負荷制限によって制御する周波数安定化
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a frequency stabilizing method for controlling a frequency abnormality, which is recognized when a power system is separated due to the occurrence of system disconnection, by limiting a power source or a load.

【0002】[0002]

【従来の技術】図7は、例えば「電力系統の保護制御シ
ステム−太田宏次著、電気書院」に示された従来方法に
よる周波数異常制御装置の構成図である。図において、
1A,1Bは発電機(発電所)、2A〜2Dは系統内の
母線、3A〜3Dは送電線であり、送電線3Aは本系統
100との連系線となる。4Aは計測用端末、4B〜4
Eは制御端末、4Nは中央演算装置、5は連系線ルート
断検出用のセンサ、6A〜6Dは遮断器、7A〜7Eは
コントロール・ケーブル、8A〜8E,8Nは情報信号
伝送路、9は中央給電指令所、10A,10Bは負荷で
ある。
2. Description of the Related Art FIG. 7 is a block diagram of a frequency abnormality control apparatus according to a conventional method shown in, for example, "Protective control system for electric power system-Koji Ohta, Denki Shoin". In the figure,
1A and 1B are generators (power plants), 2A to 2D are bus lines in the system, 3A to 3D are power transmission lines, and the power transmission line 3A is a connection line with the system 100. 4A is a measurement terminal, and 4B to 4
E is a control terminal, 4N is a central processing unit, 5 is a sensor for detecting disconnection of interconnection line route, 6A to 6D are circuit breakers, 7A to 7E are control cables, 8A to 8E and 8N are information signal transmission paths, 9 Is a central power supply command station, and 10A and 10B are loads.

【0003】次に動作について説明する。連系線ルート
断事故が発生した場合に、センサ5,計測用端末4Aを
通しての情報から中央演算装置4Nが起動し、中央給電
指令所9からの情報と予め求めた系統定数(周波数が落
ち着いた時点でのもの)から以下の式によって必要制限
量を算出する。 (1)負荷制限の場合
Next, the operation will be described. When an interconnection line route disconnection accident occurs, the central processing unit 4N is activated from the information through the sensor 5 and the measuring terminal 4A, and the information from the central power feeding command station 9 and the system constants (frequency which has been determined beforehand) have calmed down. The required limit amount is calculated by the following formula. (1) In case of load limitation

【0004】[0004]

【数1】 [Equation 1]

【0005】(2)電源制限の場合 QP =−P−KH ・ΔfH ・W0L :必要負荷制限量 QP :必要電源制限量 P :連系線事故前潮流(受電を正とする) W0 :系統容量 KL :負荷制限時の系統定数 KH :電源制限時の系統定数 ΔfL :定常周波数から落ち着き先周波数までの下降値
(負荷制限時) ΔfH :定常周波数から落ち着き先周波数までの上昇値
(電源制限時) 算出された制限量に基づいて、中央演算装置4Nは制御
端末4B〜4Eに指令し、制御端末4B〜4Eはコント
ロール・ケーブル7B〜7Eを通して、遮断器6A〜6
Dにトリップ信号を出し、落ち着き先周波数を制御す
る。
[0005] (2) When the power limit Q P = -P-K H · Δf H · W 0 Q L: required load shedding amount Q P: required power restriction rate P: tie-line before the accident trends (the power receiving positive W 0 : System capacity K L : System constant when load is limited K H : System constant when power source is limited Δf L : Falling value from steady frequency to settling frequency (when load is limited) Δf H : From steady frequency Increased value up to the settling frequency (when the power source is limited) Based on the calculated limit amount, the central processing unit 4N commands the control terminals 4B to 4E, and the control terminals 4B to 4E cut off through the control cables 7B to 7E. Vessels 6A-6
A trip signal is output to D to control the destination frequency.

【0006】[0006]

【発明が解決しようとする課題】従来の周波数安定化方
法は以上のように、落ち着き先周波数を基準にその時点
での系統定数によって行われるので、過渡的な周波数変
化に対応できず、そのために著しい需給アンバランス時
に認められる急激な周波数上昇または下降に対して適切
な制御ができないという問題点があった。
As described above, since the conventional frequency stabilization method is performed by the system constant at that time with reference to the settling frequency, it cannot cope with the transient frequency change. There is a problem that it is not possible to properly control the sudden frequency increase or decrease that is recognized when there is a significant supply and demand imbalance.

【0007】この発明は上記のような課題を解決するた
めになされたものであり、過渡的に上昇または下降する
周波数を算出して、その予測最高値,最低値からそれぞ
れ電源制限量,負荷制限量を決定することで、発電機の
安定運転領域内に周波数を維持することを目的とする。
The present invention has been made to solve the above problems, and calculates a frequency that transiently increases or decreases, and based on the predicted maximum value and minimum value, the power supply limiting amount and the load limiting amount, respectively. By determining the quantity, the aim is to maintain the frequency within the stable operating region of the generator.

【0008】[0008]

【課題を解決するための手段】この発明に係る周波数安
定化方法は、電力系統分断時に認められる周波数変化の
過渡的な変化に着目し、分断系統が発電力過剰の場合に
は周波数最高値を、発電力不足の場合には周波数最低値
を算出し、それぞれの値から発電機安定運転領域内に過
渡的な周波数を制御するようにしたものである。
The frequency stabilizing method according to the present invention focuses on the transient change of the frequency change observed at the time of power system disconnection, and when the power supply of the disconnection system is excessive, the maximum frequency value is set. In the case of insufficient power generation, the minimum frequency value is calculated, and the transient frequency is controlled within the generator stable operation range from each value.

【0009】また、請求項2では、等価発電機の出力を
その慣性定数で割った値(正規化発電量)及び系統間の
連系線潮流値と、周波数最高時および最低時の発電機系
統定数との関係が線形近似できることを利用して、系統
分断発生前の制御対象系統内発電量と連系線潮流値とに
基づき予め周波数最高時および最低時における等価発電
機の系統定数を求めておき、この系統定数を用いて系統
分断発生時の予測過渡周波数最高値,最低値を算出する
ものである。なお、等価発電機とは、系統内の複数の発
電機を等価一機に縮約して表したものであり、その慣性
定数は各発電機の慣性定数の和となる。また、周波数最
高時および最低時における等価発電機の系統定数とは、
従来の系統定数の概念を周波数最高時および最低時に適
用したもので、系統内の周波数が最高値または最低値に
達した時点での系統定数を意味している。
Further, according to claim 2, a value obtained by dividing the output of the equivalent generator by its inertia constant (normalized power generation amount) and the interconnection line power flow value between the systems, and the generator system at the highest and lowest frequencies. By utilizing the fact that the relationship with the constant can be linearly approximated, the system constants of the equivalent generator at the maximum and minimum frequencies are calculated in advance based on the power generation amount in the controlled system before the grid disconnection and the interconnection line power flow value. Then, using this system constant, the predicted transient frequency maximum and minimum values at the time of system disconnection are calculated. The equivalent generator is a plurality of generators in the system that are reduced to an equivalent one, and the inertia constant is the sum of the inertia constants of the generators. Also, with the system constant of the equivalent generator at the highest and lowest frequencies,
The conventional concept of the system constant is applied at the time of the highest frequency and the lowest frequency, and means the system constant at the time when the frequency in the system reaches the maximum value or the minimum value.

【0010】更に、請求項3では、前記過渡周波数最高
値の算出式を電源制限量を含むように変形して、予測過
渡周波数最高値が発電機の安定運転領域を越えた場合
に、周波数最高値を安定領域内に下げるために必要な電
源制限量を求めるものである。
Further, in claim 3, the formula for calculating the maximum value of the transient frequency is modified so as to include the power supply limit amount, and when the predicted maximum value of the transient frequency exceeds the stable operation region of the generator, the maximum frequency This is the amount of power supply limitation required to lower the value within the stable range.

【0011】また、請求項4では、前記系統内の発電機
(通常は主な代表発電機)を等価一機に縮約し、調速
機,すなわちガバナの時定数を一次遅れで近似し、さら
に前記系統内の系統定数から等価発電機の周波数過渡特
性式を導き、その極値を求めることで予測過渡周波数最
高値,最低値を算出するものである。
Further, in claim 4, the generator (usually the main representative generator) in the system is reduced to an equivalent one, and the time constant of the governor, that is, the governor is approximated by a first-order lag, Further, the maximum and minimum values of the predicted transient frequency are calculated by deriving a frequency transient characteristic formula of the equivalent generator from the system constants in the system and finding its extreme value.

【0012】[0012]

【作用】この発明における周波数安定化方法は、電力系
統分断時の過渡的な周波数変化の最高値または最低値を
算出するので、従来の落ち着き先周波数(過渡的な周波
数動揺後に落ち着く周波数)に対する制御に比べて、よ
り精度の高い周波数安定化が可能となる。
In the frequency stabilizing method according to the present invention, the maximum value or the minimum value of the transient frequency change at the time of power system division is calculated, so that the control for the conventional settling frequency (the frequency settling after the transient frequency fluctuation) is calculated. It is possible to stabilize the frequency more accurately than in the case of.

【0013】また、請求項2においては、予め求めた周
波数最高時および最低時における発電機系統定数を用い
て過渡周波数最高値,最低値を算出するので、系統分断
発生時に容易に周波数最高値,最低値を求めることがで
きる。
Further, in the present invention, since the transient frequency maximum value and minimum value are calculated using the generator system constants at the maximum and minimum frequencies which are obtained in advance, the maximum frequency value and the transient frequency can be easily calculated when the system disconnection occurs. The lowest value can be determined.

【0014】更に、請求項3においては、前記予測過渡
周波数最高値の算出式を電源制限量を含むように変形し
て、周波数最高値を安定領域内に下げるために必要な電
源制限量を求めるので、系統分断発生時の最高周波数を
発電機の安定運転領域まで容易に下げることができる。
Further, in the third aspect, the formula for calculating the predicted maximum value of the transient frequency is modified so as to include the power supply limiting amount, and the power supply limiting amount required to lower the maximum frequency value into the stable region is obtained. Therefore, it is possible to easily reduce the maximum frequency at the time of system disconnection to the stable operation region of the generator.

【0015】また、請求項4においては、前記周波数過
渡特性式の極値を求めることで、落ち着き先周波数に制
御対象系統固有の係数を掛けるだけで容易に予測周波数
最高値,最低値が算出できる。
Further, in claim 4, by obtaining the extreme value of the frequency transient characteristic equation, the predicted frequency maximum value and minimum value can be easily calculated only by multiplying the settling frequency by a coefficient specific to the controlled system. .

【0016】[0016]

【実施例】 実施例1.以下、この発明の実施例1を図に基づいて説
明する。まず、本発明の基本原理について説明する。図
1は、電力系統分断時における周波数の変化波形であ
る。図において、tf 時点が系統分断発生を表し、分断
系統が発電力過剰の場合は、同図(a)のように過渡的
な最高値を記録したのちに、発電機の調速機(以下、ガ
バナと記す)の時定数に従って落ち着き先周波数値に至
る。同様に発電力不足の場合は、同図(b)のように過
渡的な最低値を経て落ち着き先周波数値に至る。従来の
落ち着き先周波数値を基準とした制御とは異なり、過渡
的な周波数最高値または最低値を算出することにより、
精度の高い周波数制御が可能となる。
EXAMPLES Example 1. Embodiment 1 of the present invention will be described below with reference to the drawings. First, the basic principle of the present invention will be described. FIG. 1 is a frequency change waveform when the power system is divided. In the figure, the time point t f represents the occurrence of system disconnection, and when the divided system has excessive power generation, after recording the transient maximum value as shown in (a) of the figure, the speed governor of the generator (hereinafter , Governor) and reach the settled frequency value. Similarly, in the case of insufficient power generation, the frequency reaches a settling point frequency value through a transient minimum value as shown in FIG. Unlike the conventional control based on the settling frequency value, by calculating the transient frequency maximum value or minimum value,
Highly accurate frequency control becomes possible.

【0017】図2は、本発明の周波数安定化方法に基づ
いた周波数異常制御装置の構成例である。図において、
1A,1Bは発電機(発電所)、2A〜2Dは系統内の
母線、3A〜3Dは送電線であり、送電線3Aは本系統
100との連系線となる。4Aは計測用端末、4B〜4
Eは制御端末、4Nは中央演算装置であり、この中央演
算装置4Nは従来と異なり、後述する図3のフローチャ
ートに基づき動作して、本発明の周波数安定化方法を実
行するものである。5は連系線ルート断検出用のセン
サ、6A〜6Dは遮断器、7A〜7Eはコントロール・
ケーブル、8A〜8E,8Nは情報信号伝送路、9は中
央給電指令所、10A,10Bは負荷である。
FIG. 2 is a structural example of a frequency abnormality control device based on the frequency stabilization method of the present invention. In the figure,
1A and 1B are generators (power plants), 2A to 2D are bus lines in the system, 3A to 3D are power transmission lines, and the power transmission line 3A is a connection line with the system 100. 4A is a measurement terminal, and 4B to 4
E is a control terminal, 4N is a central processing unit, and this central processing unit 4N is different from the conventional one and operates based on the flowchart of FIG. 3 described later to execute the frequency stabilizing method of the present invention. 5 is a sensor for detecting disconnection of the interconnection route, 6A to 6D are circuit breakers, and 7A to 7E are controls.
Cables, 8A to 8E and 8N are information signal transmission paths, 9 is a central power feeding command center, and 10A and 10B are loads.

【0018】次に本装置の動作について説明する。送電
線3Aの連系状態は常時センサ5で計測され、コントロ
ール・ケーブル7Aを通して計測用端末4Aに入力され
る。中央演算装置4Nは、常に計測用端末4Aからの情
報を伝送路8Aを通して取り込み、更に中央給電指令所
9から伝送路8Nを通して発電機1A,1Bの発電情
報,連系線潮流情報をある周期で取り込んでおく。中央
演算装置4Nは、必要に応じて電源制限信号,負荷制限
信号を制御端末4B〜4Eに出力し、制御端末4B〜4
Eでは、電源制限信号あるいは負荷制限信号に応じて、
受信した信号の内容から発電機1A,1B、負荷10
A,10Bを選択してトリップ信号を出力する。例え
ば、送電線3A(連系線)でルート断事故が発生した場
合、センサ5からの情報からルート断事故を検出したこ
とをキックとして、中央演算装置4Nは起動状態に入
り、図3に示したフローチャートに従って、安定化制御
(電源制限,負荷制限)を行う。すなわち、図3におい
て、ステップST1は故障発生検出による装置起動ブロ
ック、ステップST2は故障発生時点を基準とするため
の時刻リセットの処理ブロック、ステップST3は故障
除去の検出ブロックである。ステップST4では、中央
給電指令所9から取り込んだ情報を基に、連系線潮流値
が制御対象系統から見て送電か受電(ゼロ値を含む)か
を判定し、送電であるならステップST5に、それ以外
の時はステップST11へ進む。ステップST5では、
中央給電指令所9から取り込んだ連系線潮流値を基に予
め設定しておいたデータから過渡的予測最高周波数値お
よび落ち着き先周波数値を求める。ステップST6で
は、前記ステップST5で求めた周波数値が電源制限の
必要な値を越えているか否かを判定し、電源制限が必要
であればステップST7へ、それ以外の時はステップS
T17へ進む。ステップST7では、安定化制御量(電
源制限量)を予め決めたアルゴリズムによって決定す
る。ステップST8では、ステップST7で決定した電
源制限量に応じた発電機パターンが存在するか否かを判
定し、存在すればステップST9に、存在しなければス
テップST17へ進む。ステップST9では、ステップ
ST7で決定した電源制限量に対応した遮断パターンを
発電機1A,1Bから選択する。ステップST10で
は、前記ステップST9で決定した選択パターンに従っ
て、制御端末4B,4Cから遮断器6A,6Bにトリッ
プ信号を出力して、ステップST17へ進む。一方、ス
テップST11では、中央給電指令所9から取り込んだ
連系線潮流値を基に、予め設定しておいたデータから過
渡的予測最低周波数値および落ち着き先周波数値を求め
る。ステップST12では、前記ステップST11で求
めた周波数値が負荷制限の必要な値を下回っているか否
かを判定し、負荷制限が必要であればステップST13
へ、それ以外の時はステップST17へ進む。ステップ
ST13では、安定化制御量(負荷制限量)を予め決め
たアルゴリズムによって決定する。ステップST14で
は、ステップST13で決定した負荷制限量に応じた負
荷パターンが存在するか否かを判定し、存在すればステ
ップST15に、存在しなければステップST17へ進
む。ステップST15では、ステップST13で決定し
た負荷制限量に対応した遮断パターンを負荷10A,1
0Bから選択する。ステップST16では、前記ステッ
プST15で決定した選択パターンに従って、制御端末
4D,4Eから遮断器6C,6Dにトリップ信号を出力
して、ステップST17へ進む。
Next, the operation of this apparatus will be described. The interconnection state of the power transmission line 3A is constantly measured by the sensor 5 and input to the measurement terminal 4A through the control cable 7A. The central processing unit 4N always fetches the information from the measuring terminal 4A through the transmission line 8A, and further, from the central power feeding command station 9 through the transmission line 8N, the power generation information of the generators 1A and 1B and the interconnection line flow information at a certain cycle. Capture it. The central processing unit 4N outputs a power supply limit signal and a load limit signal to the control terminals 4B to 4E as necessary, and the control terminals 4B to 4
In E, depending on the power limit signal or load limit signal,
From the contents of the received signal, the generators 1A, 1B, the load 10
Select A or 10B and output a trip signal. For example, when a route disconnection accident occurs on the power transmission line 3A (interconnection line), the central processing unit 4N enters into the start-up state with the detection of the route disconnection accident from the information from the sensor 5 as a kick, and is shown in FIG. Stabilization control (power supply limitation, load limitation) is performed according to the flowchart. That is, in FIG. 3, step ST1 is a device activation block upon detection of a failure occurrence, step ST2 is a time reset processing block based on a failure occurrence time point, and step ST3 is a failure removal detection block. In step ST4, it is determined whether the power flow value of the interconnection line is power transmission or power reception (including a zero value) when viewed from the control target system based on the information fetched from the central power feeding command station 9, and if it is power transmission, the process proceeds to step ST5. In other cases, the process proceeds to step ST11. In step ST5,
The transient predicted maximum frequency value and the settling point frequency value are obtained from preset data based on the interconnection line power flow value taken from the central power feeding command station 9. In step ST6, it is determined whether or not the frequency value obtained in step ST5 exceeds a value that requires power supply restriction. If power supply restriction is required, the process proceeds to step ST7, otherwise step S7.
Proceed to T17. In step ST7, the stabilization control amount (power supply limit amount) is determined by a predetermined algorithm. In step ST8, it is determined whether or not a generator pattern corresponding to the power supply restriction amount determined in step ST7 exists, and if it exists, the process proceeds to step ST9, and if it does not exist, the process proceeds to step ST17. In step ST9, the cutoff pattern corresponding to the power supply restriction amount determined in step ST7 is selected from the generators 1A and 1B. In step ST10, the control terminals 4B, 4C output trip signals to the circuit breakers 6A, 6B in accordance with the selection pattern determined in step ST9, and the process proceeds to step ST17. On the other hand, in step ST11, the transient predicted minimum frequency value and the settling destination frequency value are obtained from preset data based on the interconnection line power flow value taken from the central power feeding command station 9. In step ST12, it is determined whether or not the frequency value obtained in step ST11 is below a value that requires load limitation, and if load limitation is necessary, step ST13.
Otherwise, go to step ST17. In step ST13, the stabilization control amount (load limit amount) is determined by a predetermined algorithm. In step ST14, it is determined whether or not there is a load pattern according to the load limiting amount determined in step ST13. If it exists, the process proceeds to step ST15, and if it does not exist, the process proceeds to step ST17. In step ST15, the cutoff pattern corresponding to the load limiting amount determined in step ST13 is set to the load 10A, 1
Select from 0B. In step ST16, the trip signals are output from the control terminals 4D and 4E to the circuit breakers 6C and 6D according to the selection pattern determined in step ST15, and the process proceeds to step ST17.

【0019】以上のように、この発明の実施例1によれ
ば、電力系統間の連系線ルート断時に認められる需給ア
ンバランスによる周波数異常の過渡的な周波数最高値ま
たは最低値を計算し、かつそれに応じた制限量を算出す
るので、より精度の高い安定化制御が可能となる。
As described above, according to the first embodiment of the present invention, the transient maximum or minimum value of the frequency abnormality of the frequency anomaly due to the supply and demand imbalance recognized when the interconnection line route between the power systems is cut off is calculated, In addition, since the limit amount is calculated in accordance therewith, more accurate stabilization control can be performed.

【0020】実施例2.実施例2においては、実施例1
の連系線ルート断時の最高周波数値および最低周波数値
算出のための具体的な手法を説明する(最高周波数値算
出手法を例にとって説明する)。連系線潮流値が送電で
あった場合に連系線がルート断事故を起こすと、系統周
波数は図1(a)のような波形を示し、その最高値ΔF
H1は次式によって求めることができる。
Example 2. In Example 2, Example 1
A specific method for calculating the maximum frequency value and the minimum frequency value when the interconnection line route is disconnected will be described (the maximum frequency value calculation method will be described as an example). When the interconnection line power flow value is power transmission and the interconnection line causes a route disconnection accident, the system frequency shows a waveform as shown in Fig. 1 (a), and its maximum value ΔF.
H1 can be calculated by the following equation.

【0021】[0021]

【数2】 [Equation 2]

【0022】ここに、KH1:最高周波数時の発電機(等
価発電機)の系統定数 KHL:負荷の系統定数 WOP:制御対象系統内の総発電量(等価発電機の出力) WOL:制御対象系統内の総負荷量 Lin:連系線潮流値 ここで、負荷の系統定数KHLは予め適当な手段によって
求めておくこととし、最高周波数時の発電機系統定数K
H1は以下のように求める。最高周波数時の発電機系統定
数KH1は、制御対象系統内の発電機の稼働状態(発電
量)および連系線潮流値によって左右されるため、図4
に示すように、制御対象系統内の総発電量WOPを稼動発
電機の慣性定数合計値Mで正規化した値(以後、正規化
総発電量と記す)と連系線潮流値Linで最高周波数時の
発電機系統定数KH1を表すと、以下に示す直線式で近似
できる。
Where K H1 is the system constant of the generator (equivalent generator) at the highest frequency, K HL is the system constant of the load, W OP is the total amount of power generation in the controlled system (the output of the equivalent generator) W OL : Total load amount in controlled system L in : Power flow value of interconnection line Here, the system constant K HL of load is to be obtained in advance by an appropriate means, and the generator system constant K at the highest frequency.
H1 is calculated as follows. Since the generator system constant K H1 at the highest frequency depends on the operating state (power generation amount) of the generator in the controlled system and the interconnection line flow value,
As shown in, the total power generation amount W OP in the controlled system is normalized by the total inertia constant value M of the operating generator (hereinafter, referred to as normalized total power generation amount) and the interconnection line power flow value L in . The generator system constant K H1 at the highest frequency can be approximated by the following linear equation.

【0023】[0023]

【数3】 [Equation 3]

【0024】つまり、(2)式の係数aおよびbを予め
シミュレーションで設定しておけば、最高周波数時の発
電機系統定数KH1は求めることができ、さらに(1)式
から容易に最高周波数値ΔFH1を求めることができる。
なお、上記では最高値の算出について説明したが、最低
値についても同様に算出することができる。
That is, if the coefficients a and b in the equation (2) are set in advance by simulation, the generator system constant K H1 at the maximum frequency can be obtained, and the maximum frequency can be easily calculated from the equation (1). The value ΔF H1 can be determined.
In addition, although the calculation of the maximum value has been described above, the calculation of the minimum value can be performed in the same manner.

【0025】以上、この発明の実施例2によれば、連系
線ルート断時に容易に周波数最高値,最低値を求めるこ
とができる。
As described above, according to the second embodiment of the present invention, the maximum frequency value and the minimum frequency value can be easily obtained when the interconnection line route is cut off.

【0026】実施例3.実施例3においては、実施例1
の最高周波数に対する電源制限量を算出する手法を説明
する。実施例2で求めた予測最高周波数値が発電機の安
全運転周波数を越えた場合に実施する電源制限量は次式
によって算出することができる。
Example 3. In Example 3, Example 1
A method of calculating the power supply limitation amount for the highest frequency of will be described. The power supply restriction amount to be executed when the predicted maximum frequency value obtained in the second embodiment exceeds the safe operation frequency of the generator can be calculated by the following formula.

【0027】[0027]

【数4】 [Equation 4]

【0028】ここに、KH1:最高周波数時の発電機の系
統定数 KHL:負荷の系統定数 WOP:制御対象系統内の総発電量 WOL:制御対象系統内の総負荷量 Lin:連系線潮流値 Q :必要電源制限量 このように、実施例2の(1)式を上記のように変形す
ることで、図5のように最高周波数ΔFH1をΔFH1’に
下げることができるので、その時の必要電源制限量Qを
求めることができる。
Where K H1 is the system constant of the generator at the highest frequency K HL is the system constant of the load W OP is the total power generation in the controlled system W OL is the total load in the controlled system L in : Interconnection power flow value Q: Required power supply limiting amount In this way, by modifying the equation (1) of the second embodiment as described above, the maximum frequency ΔF H1 can be lowered to ΔF H1 'as shown in FIG. Therefore, the required power supply limit amount Q at that time can be obtained.

【0029】以上、本発明の実施例3によれば、連系線
ルート断時に最高周波数を発電機の安定運転領域まで容
易に下げることができる。
As described above, according to the third embodiment of the present invention, the maximum frequency can be easily lowered to the stable operation region of the generator when the interconnection route is cut off.

【0030】実施例4.前記実施例2では、最高周波数
時の系統定数を正規化総発電量で一次近似して定式化す
ることで最高周波数を求めたが、系統内の代表発電機を
等価一機で縮約し、発電機のガバナの時定数を一次遅れ
で近似することで、より容易に最高周波数を算出する手
法を説明する。図6は、制御対象系統を示したモデル系
統図である。ここで、ガバナの時定数TG を一次近似で
模擬すると、
Example 4. In the second embodiment, the maximum frequency was obtained by linearly approximating the system constant at the highest frequency with the normalized total power generation amount, but the representative generator in the system was reduced by an equivalent one machine, A method for more easily calculating the maximum frequency by approximating the time constant of the governor of the generator with a first-order delay will be described. FIG. 6 is a model system diagram showing a system to be controlled. Here, when the governor time constant T G is simulated by a first-order approximation,

【0031】[0031]

【数5】 [Equation 5]

【0032】で表せる。更に、連系線ルート断事故発生
後の発電機#1の動揺方程式は、
Can be expressed as Furthermore, the sway equation of generator # 1 after the disconnection of the interconnection route is

【0033】[0033]

【数6】 [Equation 6]

【0034】で表せる。ここで、(5)式をtで微分し
て、
It can be represented by Here, the equation (5) is differentiated by t,

【0035】[0035]

【数7】 [Equation 7]

【0036】(4)式を(6)式に代入すると、Substituting equation (4) into equation (6),

【0037】[0037]

【数8】 [Equation 8]

【0038】更に、(7)式に(5)式を代入するとFurther, by substituting the equation (5) into the equation (7),

【0039】[0039]

【数9】 [Equation 9]

【0040】よって、(10)式をΔfについて解くと
次式の周波数過渡特性式を得る。
Therefore, when the equation (10) is solved for Δf, the following frequency transient characteristic equation is obtained.

【0041】[0041]

【数10】 [Equation 10]

【0042】更に、(11)式の極値を求めると、Further, when the extreme value of the equation (11) is calculated,

【0043】[0043]

【数11】 [Equation 11]

【0044】(13)式を(11)式に代入するとSubstituting equation (13) into equation (11),

【0045】[0045]

【数12】 [Equation 12]

【0046】従って、(14)式より最高周波数は、落
ち着き先周波数に係数をかけることにより算出すること
ができる。なお、上記では最高値の算出について説明し
たが、最低値についても同様に算出することができる。
Therefore, the maximum frequency can be calculated from the equation (14) by multiplying the settling frequency by a coefficient. In addition, although the calculation of the maximum value has been described above, the calculation of the minimum value can be performed in the same manner.

【0047】以上、本発明の実施例4によれば、落ち着
き先周波数に制御対象系統固有の係数を掛けることによ
って、容易に周波数最高値,最低値が算出でき、より精
度の高い制御が可能となる。
As described above, according to the fourth embodiment of the present invention, the highest frequency and the lowest frequency can be easily calculated by multiplying the settling frequency by the coefficient peculiar to the controlled system, and the control with higher accuracy can be performed. Become.

【0048】[0048]

【発明の効果】以上のように、この発明によれば、電力
系統分断時に認められる周波数変化の過渡的な変化に着
目し、分断系統が発電力過剰の場合には予測周波数最高
値を、発電力不足の場合には予測周波数最低値を算出
し、それぞれの値から発電機安定運転領域内に過渡的な
周波数を制御するようにしたので、従来の落ち着き先周
波数に対する制御に比べて、より精度の高い周波数安定
化が可能となる効果がある。
As described above, according to the present invention, attention is paid to the transient change of the frequency change observed at the time of power system disconnection, and when the power supply of the disconnection system is excessive, the predicted frequency maximum value is generated. When the power is insufficient, the predicted frequency minimum value is calculated, and the transient frequency is controlled from each value within the generator stable operation area, so it is more accurate than the conventional control for the destination frequency. This has the effect of enabling high frequency stabilization.

【0049】また、請求項2では、正規化発電量及び連
系線潮流値と、周波数最高時および最低時の発電機系統
定数との関係が線形近似できることを利用して、系統分
断発生前の発電量と連系線潮流値とに基づき予め周波数
最高時および最低時の系統定数を求めておき、この系統
定数を用いて系統分断発生時の過渡周波数最高値,最低
値を算出するので、系統分断発生時に容易に周波数最高
値,最低値を求めることができる効果がある。
Further, in the second aspect, the fact that the relation between the normalized power generation amount and the interconnection line power flow value and the generator system constant at the time of the highest frequency and the lowest frequency can be linearly approximated is utilized before the occurrence of system disconnection. The system constants at the maximum and minimum frequencies are calculated in advance based on the power generation amount and the power flow value on the interconnection line, and the maximum and minimum transient frequencies at the time of system disconnection are calculated using these system constants. The effect is that the highest and lowest frequencies can be easily obtained when division occurs.

【0050】更に、請求項3では、前記過渡予測周波数
最高値の算出式を電源制限量を含むように変形して、周
波数最高値を安定領域内に下げるために必要な電源制限
量を求めるので、系統分断発生時の最高周波数を発電機
の安定運転領域まで容易に下げることができる効果があ
る。
Further, in claim 3, the formula for calculating the maximum value of the transient predicted frequency is modified so as to include the power supply limiting amount, and the power supply limiting amount necessary for lowering the maximum frequency value into the stable region is obtained. There is an effect that the maximum frequency at the time of system disconnection can be easily lowered to the stable operation region of the generator.

【0051】また、請求項4では、等価発電機の周波数
過渡特性式の極値を求めることで、落ち着き先周波数に
制御対象系統固有の係数を掛けるだけで容易に過渡予測
周波数最高値,最低値を算出することができる効果があ
る。
Further, in claim 4, by obtaining the extreme value of the frequency transient characteristic equation of the equivalent generator, it is easy to multiply the settling frequency by the coefficient specific to the control target system to easily obtain the maximum and minimum values of the transient predicted frequency. There is an effect that can be calculated.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の基本原理を示す連系線ルート断時の
周波数波形図である。
FIG. 1 is a frequency waveform diagram when the interconnection line route is broken, showing the basic principle of the present invention.

【図2】この発明の実施例1を示す周波数異常制御装置
の構成図である。
FIG. 2 is a configuration diagram of a frequency abnormality control device showing the first embodiment of the present invention.

【図3】図2の装置における処理のフローチャートであ
る。
FIG. 3 is a flowchart of processing in the apparatus of FIG.

【図4】この発明の実施例2を示す正規化総発電量と最
高周波数時系統定数との関係を示す図である。
FIG. 4 is a diagram showing a relationship between a normalized total power generation amount and a maximum frequency time system constant showing a second embodiment of the present invention.

【図5】この発明の実施例3を示す電源制限時と無制御
時の波形図である。
FIG. 5 is a waveform diagram showing a third embodiment of the present invention when the power source is limited and when no control is performed.

【図6】この発明の実施例4を示すモデル系統図であ
る。
FIG. 6 is a model system diagram showing Embodiment 4 of the present invention.

【図7】従来の周波数異常制御装置の構成図である。FIG. 7 is a configuration diagram of a conventional frequency abnormality control device.

【符号の説明】 1A,1B 発電機(発電所) 2A〜2D 母線 3A 送電線(連系線) 3B〜3D 送電線 4A 計測用端末 4B〜4E 制御端末 4N 中央演算装置 5 ルート断検出用センサ 6A〜6D 遮断器 7A〜7E コントロール・ケーブル 8A〜8E,8N 情報信号伝送路 9 中央給電指令所 10A,10B 負荷[Explanation of Codes] 1A, 1B Generator (Power Plant) 2A to 2D Bus Bar 3A Transmission Line (Interconnection Line) 3B to 3D Transmission Line 4A Measurement Terminal 4B to 4E Control Terminal 4N Central Processing Unit 5 Route Break Detection Sensor 6A to 6D Circuit breaker 7A to 7E Control cable 8A to 8E, 8N Information signal transmission line 9 Central power supply command station 10A, 10B Load

───────────────────────────────────────────────────── フロントページの続き (72)発明者 白石 一雄 高松市丸の内2番5号 四国電力株式会社 内 (72)発明者 宮本 喜弘 高松市丸の内2番5号 四国電力株式会社 内 (72)発明者 吉備 和仁 神戸市兵庫区浜山通6丁目1番1号 三菱 電機エンジニアリング株式会社神戸事業所 内 (72)発明者 押田 秀治 神戸市兵庫区和田崎町1丁目1番2号 三 菱電機株式会社制御製作所内 (72)発明者 中村 正則 神戸市兵庫区和田崎町1丁目1番2号 三 菱電機株式会社制御製作所内 (72)発明者 服部 俊樹 神戸市兵庫区和田崎町1丁目1番2号 三 菱電機株式会社制御製作所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Kazuo Shiraishi 2-5 Marunouchi, Takamatsu-shi Shikoku Electric Power Co., Inc. (72) Inventor Yoshihiro Miyamoto 2-5 Marunouchi, Takamatsu-shi Shikoku Electric Power Co., Ltd. (72) Inventor Kazuhito Kibi 6-1-1, Hamayama-dori, Hyogo-ku, Kobe Mitsubishi Electric Engineering Co., Ltd. Kobe office (72) Inventor Shuji Oshida 1-2-1 Wadazaki-cho, Hyogo-ku, Kobe Sanritsu Electric Co., Ltd. (72) Masanori Nakamura 1-2-1 Wadasaki-cho, Hyogo-ku, Kobe Sanritsu Electric Co., Ltd. Control Works (72) Inventor Toshiki Hattori 1-2-1 Wadazaki-cho, Hyogo-ku, Kobe Sanryo Denki Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電力系統に系統分断が生じて、分離され
た系統における発電機の発電力と負荷の消費電力との間
に不均衡が生じた場合に、その需給アンバランス量から
発電力過剰時には過渡的な周波数上昇の最高値を、また
発電力不足時には過渡的な周波数下降の最低値を求め、
その周波数値が発電機の安定運転領域を外れると判定さ
れる時に、ぞれぞれに応じた電源制限,負荷制限を行う
ことを特徴とする周波数安定化方法。
1. When the power system is divided and an imbalance occurs between the power generation of the generator and the power consumption of the load in the separated system, the excess power generation due to the supply / demand imbalance amount. Sometimes the maximum value of the transient frequency rise is found, and when the power generation is insufficient, the minimum value of the transient frequency fall is calculated.
A frequency stabilization method characterized in that, when it is determined that the frequency value falls outside the stable operation range of the generator, power supply limitation and load limitation are performed according to each.
【請求項2】 前記過渡周波数最高値,最低値を算出す
るに際して、予め周波数最高時および最低時における等
価発電機の系統定数を求めるために、前記等価発電機の
出力をその慣性定数で割った正規化発電量及び系統間の
連系線潮流値と前記系統定数値との関係が線形近似でき
ることを利用し、系統分断発生前の制御対象系統内の発
電量と連系線潮流値とに基づき得られる系統定数を用い
て過渡周波数最高値,最低値を算出することを特徴とす
る請求項第1項記載の周波数安定化方法。
2. The output of the equivalent generator is divided by its inertia constant in order to obtain the system constants of the equivalent generator at the maximum and minimum frequencies in advance in calculating the maximum and minimum values of the transient frequency. Utilizing the fact that the relationship between the normalized power generation amount and the interconnection line power flow value between grids and the system constant value can be linearly approximated, and based on the amount of power generation and the interconnection line power flow value in the controlled system before the occurrence of system disconnection The frequency stabilizing method according to claim 1, wherein the transient frequency maximum value and minimum value are calculated using the obtained system constant.
【請求項3】 前記過渡周波数最高値が発電機の安定運
転領域を越えた場合に、周波数最高値を安定領域内に下
げるために、前記過渡周波数最高値の算出式を電源制限
量を含むように変形して電源制限量を求めることを特徴
とする請求項第2項記載の周波数安定化方法。
3. When the maximum transient frequency value exceeds the stable operation region of the generator, the formula for calculating the maximum transient frequency value includes a power supply limitation amount in order to lower the maximum frequency value within the stable region. 3. The frequency stabilizing method according to claim 2, further comprising the step of transforming into a power limiting amount.
【請求項4】 前記過渡周波数最高値,最低値を算出す
るに際して、前記系統内の発電機を等価一機に縮約し、
調速機の時定数を一次遅れで近似し、さらに前記系統内
の系統定数から等価発電機の周波数過渡特性式を導き、
その極値を求めることで過渡周波数最高値,最低値を算
出することを特徴とする請求項第1項記載の周波数安定
化方法。
4. When calculating the maximum value and the minimum value of the transient frequency, the generator in the system is reduced to an equivalent one,
Approximate the time constant of the governor with a first-order delay, and further derive the frequency transient characteristic equation of the equivalent generator from the system constant in the system,
2. The frequency stabilizing method according to claim 1, wherein the transient frequency maximum value and minimum value are calculated by obtaining the extreme values.
JP5326520A 1993-12-24 1993-12-24 Frequency stabilization method Expired - Fee Related JP2869320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5326520A JP2869320B2 (en) 1993-12-24 1993-12-24 Frequency stabilization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5326520A JP2869320B2 (en) 1993-12-24 1993-12-24 Frequency stabilization method

Publications (2)

Publication Number Publication Date
JPH07184324A true JPH07184324A (en) 1995-07-21
JP2869320B2 JP2869320B2 (en) 1999-03-10

Family

ID=18188753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5326520A Expired - Fee Related JP2869320B2 (en) 1993-12-24 1993-12-24 Frequency stabilization method

Country Status (1)

Country Link
JP (1) JP2869320B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109066726A (en) * 2018-08-07 2018-12-21 国电南瑞科技股份有限公司 A kind of urgent coordinating and optimizing control method of frequency security of comprehensive multiclass measure
CN114884086A (en) * 2022-04-24 2022-08-09 上海发电设备成套设计研究院有限责任公司 Control method, device and equipment based on wind storage system and storage medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109066726A (en) * 2018-08-07 2018-12-21 国电南瑞科技股份有限公司 A kind of urgent coordinating and optimizing control method of frequency security of comprehensive multiclass measure
CN109066726B (en) * 2018-08-07 2021-07-13 国电南瑞科技股份有限公司 Frequency safety emergency coordination optimization control method integrating multiple measures
CN114884086A (en) * 2022-04-24 2022-08-09 上海发电设备成套设计研究院有限责任公司 Control method, device and equipment based on wind storage system and storage medium

Also Published As

Publication number Publication date
JP2869320B2 (en) 1999-03-10

Similar Documents

Publication Publication Date Title
EP1134867B1 (en) Method and device for assessing the stability of an electric power transmission network
KR101637928B1 (en) Apparatus for controlling real time stability of voltage and power in hvdc system
US8400004B2 (en) Method for operating a wind turbine
JPH07184324A (en) Frequency stabilizing method
US12012933B2 (en) Methods and systems for improving grid stability
CN109004671B (en) Modal switching method, modal switching device and back-to-back equipment
US5539655A (en) Apparatus for detecting out of phase of power systems and method for detecting the same
CN111788755A (en) Device for connecting a sub-network to an AC voltage network and method for regulating the electrical power
JP3592565B2 (en) Frequency stabilization method and device for power system
JP2702857B2 (en) Grid stabilization control method
CN110112771B (en) Method and device for detecting running state of generator by excitation device of generator in nuclear power plant
JP3419970B2 (en) Power supply stabilization control method and control device
JP2712092B2 (en) Voltage reactive power monitoring and control device
JPH11215710A (en) Power system frequency stabilizer
JP4044512B2 (en) Power system stabilization control device and power system stabilization control method
JP3907832B2 (en) Power transmission end output control device for thermal power plant
JP3476630B2 (en) Frequency stabilization method
JP2001339862A (en) Power system stabilization method, power system stabilization apparatus and recording medium
JP2002034156A (en) Method of system stabilizing control
JPH0515136B2 (en)
JP2002010491A (en) Voltage stabilizer control method
JP2023176137A (en) System stabilization device, system stabilization method, and system stabilization program
JP5219979B2 (en) Power system stabilization device and power system stabilization method
JP2599744B2 (en) Power system stabilizer
JP2003250297A (en) Generator excitation controller

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071225

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081225

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091225

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091225

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101225

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111225

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees