JP3476630B2 - Frequency stabilization method - Google Patents

Frequency stabilization method

Info

Publication number
JP3476630B2
JP3476630B2 JP25342296A JP25342296A JP3476630B2 JP 3476630 B2 JP3476630 B2 JP 3476630B2 JP 25342296 A JP25342296 A JP 25342296A JP 25342296 A JP25342296 A JP 25342296A JP 3476630 B2 JP3476630 B2 JP 3476630B2
Authority
JP
Japan
Prior art keywords
frequency
value
power
generator
settling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25342296A
Other languages
Japanese (ja)
Other versions
JPH10108368A (en
Inventor
孝広 ▲たか▼橋
靖之 小和田
康博 上窪
益男 束田
正道 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Mitsubishi Electric Corp
Original Assignee
Chubu Electric Power Co Inc
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Mitsubishi Electric Corp filed Critical Chubu Electric Power Co Inc
Priority to JP25342296A priority Critical patent/JP3476630B2/en
Publication of JPH10108368A publication Critical patent/JPH10108368A/en
Application granted granted Critical
Publication of JP3476630B2 publication Critical patent/JP3476630B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Eletrric Generators (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、電力系統の連系
線に分離が生じた場合や発電機が脱落した場合等に発生
する周波数異常を適正な周波数に制御する周波数安定化
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a frequency stabilizing method for controlling a frequency abnormality, which occurs when a disconnection occurs in an interconnection line of a power system or when a generator falls out, to an appropriate frequency. is there.

【0002】[0002]

【従来の技術】図7は、例えば「電力系統の保護制御シ
ステム−太田宏次著、電気書院」に示された従来方法に
よる周波数異常制御装置の構成図である。図において、
1〜4は電力系統の母線、5は本系統と母線1間を連系
する送電線(連系線)、6〜8は各母線1〜4間を連系
する送電線、9は母線1に接続された負荷、10は母線
2に接続された負荷、11は母線3に接続された発電
機、12は母線4に接続された発電機、13〜16は遮
断器である。
2. Description of the Related Art FIG. 7 is a block diagram of a frequency abnormality control apparatus according to a conventional method shown in, for example, "Protective control system for electric power system-Koji Ohta, Denki Shoin". In the figure,
1 to 4 are bus lines of the power system, 5 is a transmission line (interconnection line) that interconnects the main system and the bus line 1, 6 to 8 are transmission lines that interconnect each of the bus lines 1 to 4, and 9 is a bus line 1. Is a load connected to the bus bar 2, 11 is a generator connected to the bus bar 3, 12 is a generator connected to the bus bar 4, and 13 to 16 are circuit breakers.

【0003】また、17は送電線5に流れる電流Iを検
出する変流器、18は送電線5に印加される電圧Vを検
出する変成器、19は電流I及び電圧Vに基づいて送電
線5に流れる潮流値Pを計測するとともに、系統の周波
数fを計測する計測用端末、20は発電機11,12の
系統容量W0 (負荷量)を収集する中央給電指令所、2
1は潮流値P,周波数f及び系統容量W0 に基づいて必
要な制御量を演算し、その制御量に基づいてトリップ信
号を出力する中央演算装置、22〜25は中央演算装置
21よりトリップ信号を出力されるとそれぞれ遮断器1
3〜16をトリップする制御端末である。
Further, 17 is a current transformer for detecting a current I flowing through the power transmission line 5, 18 is a transformer for detecting a voltage V applied to the power transmission line 5, and 19 is a power transmission line based on the current I and the voltage V. A measurement terminal that measures the power flow value P flowing in 5 and the frequency f of the grid, 20 is a central power supply command station that collects the grid capacity W 0 (load amount) of the generators 11 and 2, 2
1 is a central processing unit that calculates a necessary control amount based on the power flow value P, frequency f, and system capacity W 0 , and outputs a trip signal based on the control amount. 22 to 25 are trip signals from the central processing unit 21. Circuit breaker 1
It is a control terminal that trips 3 to 16.

【0004】次に動作について説明する。まず、計測用
端末19は、変流器17により検出された電流I及び変
成器18により検出された電圧Vに基づいて送電線5に
流れる潮流値Pを計測するとともに、系統の周波数fを
計測する。
Next, the operation will be described. First, the measurement terminal 19 measures the power flow value P flowing through the power transmission line 5 based on the current I detected by the current transformer 17 and the voltage V detected by the transformer 18, and also measures the frequency f of the grid. To do.

【0005】これにより、中央演算装置21は、計測用
端末19により計測された潮流値Pと周波数fを取り込
むとともに、中央給電指令所20により収集された系統
容量W0 を取り込み、電力系統の周波数を適正な値に制
御するのに必要な制御量を下記に示すように演算する。
As a result, the central processing unit 21 takes in the power flow value P and the frequency f measured by the measuring terminal 19, and also takes in the system capacity W 0 collected by the central power feeding command station 20 to obtain the frequency of the power system. Is calculated as shown below to control the amount required to control the value.

【0006】 QL =(P−KL ・Δf・W0 )/(1−KL ・ΔfL ) …(1) QP =−P−KH ・ΔfH ・W0 …(2) QL :必要負荷制限量 QP :必要電源制限量 P :連系線事故前潮流(受電を正とする) W0 :系統容量 KL :負荷制限時の系統定数 KH :電源制限時の系統定数 ΔfL :落ち着き先周波数偏差(負荷制限時) ΔfH :落ち着き先周波数偏差(電源制限時) 因に、式(1)は、負荷を系統から切り離すことによっ
て周波数を制御する場合の制御量QL を示す一方、式
(2)は、発電機を系統から切り離すことによって周波
数を制御する場合の制御量QP を示す。
Q L = (P−K L · Δf · W 0 ) / (1−K L · Δf L ) (1) Q P = −P−K H · Δf H · W 0 (2) Q L: necessary load shedding amount Q P: required power restriction rate P: tie-line before the accident trends (the power receiving a positive) W 0: line capacitance K L: line constants K H during load limiting: the system when the power limit Constant Δf L : Settlement destination frequency deviation (when load is limited) Δf H : Settlement destination frequency deviation (when power source is limited) In addition, the formula (1) is the control amount Q when the frequency is controlled by disconnecting the load from the grid. while showing L, and the formula (2) shows a control quantity Q P in the case of controlling the frequency by disconnecting the generator from the system.

【0007】即ち、中央演算装置21は、系統の周波数
fが異常に低下した場合には、周波数を上昇させる必要
があるので、式(1)を演算して制御量QL を求め、そ
の制御量QL に相当する負荷量だけ遮断すべく、その負
荷量に見合った負荷を電力系統の負荷から選定する。
That is, the central processing unit 21 needs to raise the frequency f when the frequency f of the system is abnormally lowered. Therefore, the equation (1) is calculated to obtain the controlled variable QL and the control thereof is controlled. in order to cut off only the load corresponding to the amount Q L, to select a load commensurate with the load from the load of the power system.

【0008】一方、中央演算装置21は、系統の周波数
fが異常に上昇した場合には、周波数を下降させる必要
があるので、式(2)を演算して制御量QP を求め、そ
の制御量QP に相当する発電量だけ遮断すべく、その発
電量に見合った発電機を電力系統の発電機から選定す
る。
On the other hand, the central processing unit 21 needs to lower the frequency when the frequency f of the system rises abnormally. Therefore, the equation (2) is calculated to obtain the control amount Q P , and the control value is controlled. In order to cut off only the amount of power generation corresponding to the amount Q P , the generator that matches the amount of power generation is selected from the generators of the power system.

【0009】例えば、発電機11が制御量QP に相当す
る発電量に見合う場合には、この発電機11が選定さ
れ、中央演算装置21から制御端末24にトリップ信号
を出力する。そして、制御端末24は遮断器15をトリ
ップし、発電機11を系統から切り離し、系統の周波数
を適正な値に制御する。
For example, when the generator 11 is commensurate with the amount of power generation corresponding to the control amount Q P , this generator 11 is selected and the central processing unit 21 outputs a trip signal to the control terminal 24. Then, the control terminal 24 trips the circuit breaker 15, disconnects the generator 11 from the grid, and controls the frequency of the grid to an appropriate value.

【0010】[0010]

【発明が解決しようとする課題】従来の周波数安定化方
法は以上のように構成されているので、落ち着き先周波
数(過渡的な周波数動揺後に落ち着く周波数)を基準に
その時点での系統定数によって制御されるため、過渡的
な周波数変化に対応できず、そのために著しい需給アン
バランス時に認められる急激な周波数上昇または下降に
対して適切な制御ができないという課題があった。
Since the conventional frequency stabilizing method is constructed as described above, it is controlled by the system constant at that time with reference to the settling frequency (the frequency settling after the transient frequency fluctuation). Therefore, there is a problem that it is not possible to cope with a transitional frequency change, and therefore it is not possible to appropriately control a sudden frequency increase or decrease observed at the time of a significant supply and demand imbalance.

【0011】この発明は上記のような課題を解決するた
めになされたもので、需給アンバランス率と周波数偏差
の特性を使って、過渡的に上昇または下降する周波数,
落ち着き先周波数を求め、その周波数値からそれぞれ電
源制限量,負荷制限量を決定することで、発電機の安定
運転領域内に周波数を維持することのできる周波数安定
化方法を得ることを目的とする。
The present invention has been made to solve the above problems, and uses the characteristics of the supply and demand imbalance rate and the frequency deviation to transiently increase or decrease the frequency,
The objective is to obtain a frequency stabilization method that can maintain the frequency within the stable operation range of the generator by finding the settling frequency and determining the power supply limit amount and load limit amount from the frequency values. .

【0012】[0012]

【課題を解決するための手段】請求項1記載の発明に係
る周波数安定化方法は、系統分断発生前の制御対象系統
内発電量と連系線潮流に基づき予め需給アンバランス率
と周波数偏差の特性を過渡的な周波数最高値,最低値,
落ち着き先周波数について求めておき、この特性を用い
て系統分断時の過渡的な周波数最高値,最低値,落ち着
き先周波数値を算出し、それぞれの値から発電機安定運
転領域内に周波数を制御するようにしたものである。
A frequency stabilizing method according to a first aspect of the present invention is based on the amount of power generation in the controlled system and the power flow in the controlled system before the occurrence of the system disconnection and the supply and demand imbalance rate and the frequency deviation in advance. The characteristic is the transitional frequency maximum value, minimum value,
The settling frequency is calculated in advance, and the transient frequency maximum value, minimum value, and settling frequency value at the time of system division are calculated using this characteristic, and the frequency is controlled within the generator stable operation range from each value. It was done like this.

【0013】請求項2記載の発明に係る周波数安定化方
法は、需給アンバランス率と周波数偏差の特性をプラン
ト単体で求めておき、この特性を用いて系統分断時のプ
ラント単体の過渡的な周波数最高値,最低値,落ち着き
先周波数値を算出し、この各周波数を分離系統内に含ま
れる運転プラント分を発電量で加重平均して、分離系統
の過渡的な周波数最高値,最低値,落ち着き先周波数を
算出するものである。
In the frequency stabilizing method according to the second aspect of the present invention, the characteristics of the supply and demand imbalance rate and the frequency deviation are obtained for the plant alone, and the transient frequency of the plant alone at the time of system interruption is calculated using this characteristic. Calculate the maximum value, the minimum value, and the settling frequency value, and weight the average of the operating plants included in the isolated system by the amount of power generation for each frequency to determine the maximum, minimum, and settled transient frequency of the isolated system. The destination frequency is calculated.

【0014】請求項3記載の発明に係る周波数安定化方
法は、プラント単体の需給アンバランス率と周波数偏差
の特性を発電機出力をパラメータとして求めておき、こ
の特性を用いて系統分断発生時の過渡的な周波数最高
値,最低値,落ち着き先周波数を算出するものである。
In the frequency stabilizing method according to the third aspect of the present invention, the characteristics of the supply and demand imbalance ratio and the frequency deviation of the plant alone are obtained by using the generator output as a parameter, and this characteristic is used to detect the occurrence of system disconnection. It calculates the transient maximum and minimum frequencies and the settling frequency.

【0015】請求項4記載の発明に係る周波数安定化方
法は、過渡的な周波数最高値、落ち着き先周波数値が周
波数上昇側で発電機の安定運転領域を越えた場合に、周
波数値を安定領域内に下げるために、電源制限対象プラ
ント単体の周波数値を加重平均から除くことで電源制限
量を求めるものである。
In the frequency stabilizing method according to the fourth aspect of the present invention, when the transient maximum frequency value and the settling frequency value exceed the stable operation range of the generator on the frequency rising side, the frequency value is set to the stable range. In order to reduce the power consumption to within the range, the frequency limit value of the plant subject to power restriction is removed from the weighted average to determine the power restriction amount.

【0016】[0016]

【発明の実施の形態】以下、この発明の実施の一形態を
説明する。 実施の形態1.図1はこの発明の基本原理について説明
する電力系統分断時における周波数の変化波形図であ
る。図において、tf 時点が系統分断発生を表し、分断
系統が発電力過剰の場合は、図1(a)のように過渡的
な最高値を記録したのちに、発電機の調速機(以下、ガ
バナと記す)の時定数に従って落ち着き先周波数値に至
る。同様に発電力不足の場合は、図1(b)のように過
渡的な最低値を経て落ち着き先周波数値に至る。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below. Embodiment 1. FIG. 1 is a frequency change waveform diagram at the time of power system division for explaining the basic principle of the present invention. In the figure, the time point t f represents the occurrence of grid disconnection, and when the grid grid has excessive power generation, the transient maximum value is recorded as shown in FIG. , Governor) and reach the settled frequency value. Similarly, in the case of insufficient power generation, as shown in FIG. 1 (b), it reaches a settling frequency value through a transient minimum value.

【0017】これらを周波数最高値,最低値について需
給アンバランス率Ruと周波数偏差Δf1 の特性を表す
と図2(a)になる。また、落ち着き先周波数について
需給アンバランス率Ruと周波数偏差Δf2 の特性を表
すと図2(b)になる。
FIG. 2A shows the characteristics of the supply and demand imbalance rate Ru and the frequency deviation Δf 1 for the highest and lowest frequency values. 2B shows the characteristics of the supply and demand imbalance rate Ru and the frequency deviation Δf 2 for the settling frequency.

【0018】図3は、この発明の実施の形態1による周
波数安定化方法に基づいた周波数制御装置の構成例であ
る。図において、1〜4は電力系統の母線、5は本系統
と母線1間を連系する送電線(連系線)、6〜8は各母
線1〜4間を連系する送電線、9は母線1に接続された
負荷、10は母線2に接続された負荷、11は母線3に
接続された発電機、12は母線4に接続された発電機、
13〜16は遮断器である。
FIG. 3 is a structural example of a frequency control device based on the frequency stabilizing method according to the first embodiment of the present invention. In the figure, 1 to 4 are bus lines of the power system, 5 is a power transmission line (interconnection line) that interconnects the main system and the bus line 1, 6 to 8 are power transmission lines that interconnect each of the bus lines 1 to 4, and 9 Is a load connected to the busbar 1, 10 is a load connected to the busbar 2, 11 is a generator connected to the busbar 3, 12 is a generator connected to the busbar 4,
13 to 16 are circuit breakers.

【0019】また、17は送電線5に流れる電流Iを検
出する変流器、18は送電線5に印加される電圧Vを検
出する変成器、19は電流I及び電圧Vに基づいて送電
線5に流れる潮流値Pを計測するとともに、系統の周波
数fを計測する計測用端末、31は電力系統に接続され
た発電機11,12の運転情報(発電機の有無、発電量
等)を収集する中央給電指令所、32は中央給電指令所
31により収集された発電機11,12の運転情報及び
送電線5の潮流値Pに基づいて想定事故に対する最高周
波数値および最低周波数値,落ち着き周波数値を推定
し、後述するフローチャートに基づく動作により、この
発明の周波数安定化方法を実行する中央演算装置、22
〜25は中央演算装置32よりトリッブ信号を出力され
るとそれぞれ遮断器13〜16をトリップする制御端末
である。
Further, 17 is a current transformer for detecting a current I flowing in the power transmission line 5, 18 is a transformer for detecting a voltage V applied to the power transmission line 5, and 19 is a power transmission line based on the current I and the voltage V. A measurement terminal that measures the power flow value P flowing in 5 and measures the frequency f of the grid, and 31 collects operation information of the generators 11 and 12 connected to the power grid (presence or absence of the generator, power generation amount, etc.) The central power feeding command station, 32 is the highest frequency value, the lowest frequency value, and the calm frequency value for an expected accident based on the operation information of the generators 11 and 12 and the power flow value P of the power transmission line 5 collected by the central power feeding command station 31. And a central processing unit for executing the frequency stabilization method of the present invention by an operation based on a flowchart described later.
-25 are control terminals that trip the circuit breakers 13-16, respectively, when a trip signal is output from the central processing unit 32.

【0020】次に動作を図4のフローチャートについて
説明する。まず、計測用端末19が、従来のものと同様
に、変流器17により検出された電流I及び変成器18
により検出された電圧Vに基づいて送電線5に流れる潮
流値Pを計測するとともに、系統の周波数fを計測す
る。
Next, the operation will be described with reference to the flowchart of FIG. First, the measurement terminal 19 uses the current I detected by the current transformer 17 and the transformer 18 as in the conventional device.
The power flow value P flowing through the power transmission line 5 is measured based on the voltage V detected by, and the frequency f of the grid is measured.

【0021】これにより、中央演算装置32は、計測用
端末19により計測された系統周波数fを取り込み、基
準周波数に対する当該周波数fの変動量Δfを計算し、
その変動量に基づいて電力系統に制御すべき事故が発生
したか否かを判定する(ステップST1)。
As a result, the central processing unit 32 takes in the system frequency f measured by the measuring terminal 19, calculates the variation Δf of the frequency f with respect to the reference frequency,
Based on the fluctuation amount, it is determined whether or not an accident to be controlled in the power system has occurred (step ST1).

【0022】そして、電力系統に事故が発生していない
と判定した場合には、計測用端末19により計測された
潮流値Pと、中央給電指令所31により収集された発電
機11,12の運転情報を取り込み(ステップST
2)、想定事故に対する周波数最高値,最低値,落ち着
き先周波数値を図2(a),図2(b)の特性より下記
に示すように演算する(ステップST3)。 ΔfH1=KH1・Ru …(3) ΔfL1=KL1・Ru+Δf01 …(4) ΔfH2=KH2・Ru …(5) ΔfL2=KL2・Ru+Δf02 …(6) ここに、ΔfH1:周波数最高値 ΔfL1:周波数最低値 ΔfH2:上昇側落ち着き先周波数値 ΔfL2:下降側落ち着き先周波数値 Ru :需給アンバランス率=−P/P0G×100 P :連系線事故前潮流(受電を正とする) P0G :自系統内の発電機の総発電量 KH1 :最高周波数時の系統定数 KL1 :最低周波数時の系統定数 KH2 :上昇側落ち着き先周波数時の系統定数 KL2 :下降側落ち着き先周波数時の系統定数 Δf01:周波数最低値の係数 Δf02:下降側落ち着き先周波数の係数 ここで、定数KH1,KL1,KH2,KL2及び係数Δf01
Δf02は、予めシミュレーションで設定しておく。
When it is judged that no accident has occurred in the electric power system, the power flow value P measured by the measuring terminal 19 and the operation of the generators 11, 12 collected by the central power supply command station 31. Import information (step ST
2) The maximum frequency value, the minimum value, and the settling frequency value for the assumed accident are calculated as shown below from the characteristics of FIGS. 2A and 2B (step ST3). Δf H1 = K H1 · Ru (3) Δf L1 = K L1 · Ru + Δf 01 (4) Δf H2 = K H2 · Ru (5) Δf L2 = K L2 · Ru + Δf 02 (6) where Δf H1 : Frequency highest value Δf L1 : Frequency lowest value Δf H2 : Ascending side settling frequency value Δf L2 : Falling side settling frequency value Ru: Supply / demand imbalance rate = -P / P 0G × 100 P: Before interconnection line accident Power flow (Positive power reception is positive) P 0G : Total amount of power generated by the generator in the system K H1 : System constant at the highest frequency K L1 : System constant at the lowest frequency K H2 : System at the rising side settling frequency Constant K L2 : System constant at the falling side settling frequency Δf 01 : Coefficient of the lowest frequency Δf 02 : Coefficient of the falling side settling frequency where the constants K H1 , K L1 , K H2 , K L2 and the coefficient Δf 01
Δf 02 is set in advance by simulation.

【0023】そして、その周波数演算の結果から落ち着
き先周波数及び周波数最高値,最低値が発電機の安定運
転領域内か否かを判定し(ステップST4)、安定運転
領域内にない場合には、予め設定された複数の系統制御
パターン(系統制御パターンには、遮断する負荷及び発
電機の組み合わせ、並びに制御する発電機の出力量が登
録されている)のうち、任意の系統制御パターンを実施
したものと仮定し、落ち着き先周波数及び周波数最高
値,最低値を安定運転領域内に遷移できる系統制御パタ
ーンが見つかるまで繰り返し周波数演算及び判定を行う
(ステップST4,ST5,ST6)。
Then, from the result of the frequency calculation, it is judged whether or not the settling destination frequency and the highest and lowest values of the frequency are within the stable operation region of the generator (step ST4). Arbitrary system control pattern was implemented among a plurality of system control patterns set in advance (combinations of the load to be cut off and the generator, and the output amount of the generator to be controlled are registered in the system control pattern) It is assumed that the settled frequency and the highest and lowest values of the settling frequency are repeatedly calculated and determined until a system control pattern that can transit to the stable operation region is found (steps ST4, ST5, ST6).

【0024】即ち、当該制御パターンを実施した場合の
制御量をQL ,QP とし、制御後の予測周波数Δf’を
下記に示すように演算する。 ΔfH1’=KH1・Ru’ …(7) ΔfL1’=KL1・Ru’+Δf01 …(8) ΔfH2’=KH2・Ru’ …(9) ΔfL2’=KL2・Ru’+Δf02 …(10) ここに、ΔfH1’:制御後の周波数最高値 ΔfL1’:制御後の周波数最低値 ΔfH2’:制御後の上昇側落ち着き先周波数値 ΔfL2’:制御後の下降側落ち着き先周波数値 Ru’ :制御後の需給アンバランス率=(−(P−Q
L )−QP )/(P0G−QP )×100 P :連系線事故前潮流(受電を正とする) P0G :自系統内の発電機の総発電量 KH1 :最高周波数時の系統定数 KL1 :最低周波数時の系統定数 KH2 :上昇側落ち着き先周波数時の系統定数 KL2 :下降側落ち着き先周波数時の系統定数 Δf01 :周波数最低値の係数 Δf02 :下降側落ち着き先周波数の係数 QL :必要負荷制限量 QP :必要電源制限量
[0024] That is, the control amount in the case of carrying out the control pattern Q L, and Q P, and calculates the predicted frequency Delta] f 'after controlled as shown below. Δf H1 '= K H1 · Ru' (7) Δf L1 '= K L1 · Ru' + Δf 01 (8) Δf H2 '= K H2 · Ru' (9) Δf L2 '= K L2 · Ru' + Δf 02 (10) where Δf H1 ': maximum frequency value after control Δf L1 ': minimum frequency value after control Δf H2 ': rising side settling frequency value after control Δf L2 ': falling after control Side settling destination frequency value Ru ': Supply and demand imbalance rate after control = (-(P-Q
L ) -Q P ) / (P 0G -Q P ) × 100 P: Power flow before the interconnection line accident (reception is positive) P 0G : Total power generation of generators in the local system K H1 : At maximum frequency System constant K L1 : System constant at the lowest frequency K H2 : System constant at the rising side settling frequency K L2 : System side constant at the falling side settling frequency Δf 01 : Coefficient of the lowest frequency Δf 02 : Downside settling coefficient of the previous frequency Q L: required load shedding amount Q P: required power limit amount

【0025】具体的には、複数の系統制御パターンには
それぞれ優先順位が設定されているので、優先順位が高
い系統制御パターンから順次実施したものと仮定して電
力系統の周波数演算,安定領域判定を行い、落ち着き先
周波数及び周波数最高値,最低値を安定運転領域内に遷
移できる系統制御パターンが見つかった時点で、周波数
演算,安定領域判定を終了する。
Specifically, since a plurality of system control patterns are set with respective priorities, it is assumed that the system control patterns having higher priorities are sequentially executed, and frequency calculation and stable region determination of the power system are performed. The frequency calculation and the stable region determination are ended at the time when a system control pattern that allows transition of the settling frequency and the maximum and minimum values of the frequency to the stable operation region is found.

【0026】そして、中央演算装置32は、落ち着き先
周波数及び周波数最高値,最低値を安定運転領域内に遷
移できる系統制御パターンが見つかると、安定化制御テ
ーブルに、当該想定事故が現実に発生したときの事故処
理パターンとして当該系統制御パターンを登録する(ス
テップST7)。ただし、ステップST4において、落
ち着き先周波数及び周波数最高値,最低値が発電機の安
定運転領域内にあると判定し、系統制御パターンによる
安定運転領域判定を実施しなかった場合には、当該想定
事故が現実に発生しても制御する必要がない旨を安定化
制御テーブルに登録する。
Then, when the central processing unit 32 finds a system control pattern capable of transitioning the settling frequency, the maximum frequency value, and the minimum frequency value within the stable operation region, the assumed accident actually occurred in the stabilization control table. The system control pattern is registered as the accident handling pattern at that time (step ST7). However, in step ST4, when it is determined that the settling frequency and the maximum and minimum values of the frequency are within the stable operation range of the generator, and the stable operation range determination based on the system control pattern is not performed, the assumed accident The fact that there is no need to control even if occurs actually is registered in the stabilization control table.

【0027】一方、中央演算装置32は、ステップST
1において、電力系統に事故が発生していると判定した
場合には、潮流値P,有効電力,電圧V,周波数f等に
基づいて当該事故の事故点及び事故種別を特定する(ス
テップST8)。
On the other hand, the central processing unit 32 executes the step ST.
When it is determined that an accident has occurred in the power system in 1, the accident point and accident type of the accident are specified based on the power flow value P, active power, voltage V, frequency f, etc. (step ST8). .

【0028】そして、当該事故の事故点及び事故種別を
特定すると、以前、ステップST3において周波数演算
を行った想定事故のなかに、当該事故と一致する想定事
故が存在するか否かを判定し(ステップST9)、当該
事故と一致する想定事故が存在する場合には、安定化制
御テーブルを参照し、一致した想定事故の系統制御パタ
ーンを読み込む(ステップST10)。
Then, when the accident point and the accident type of the accident are specified, it is determined whether or not there is a predicted accident that coincides with the accident among the predicted accidents for which the frequency calculation was performed in step ST3 previously ( In step ST9), if there is a contingency accident that matches the accident, the stabilization control table is referenced and the system control pattern of the concurrence accident is read (step ST10).

【0029】そして、最後に、中央演算装置32は、一
致した想定事故の系統制御パターンを読み込むと、当該
系統制御パターンに基づいて制御端末22〜25にトリ
ップ信号あるいは発電機制御信号を出力する。これによ
り、制御端末22〜25は、負荷又は発電機を遮断し、
あるいは、発電機の出力量を制御する(ステップST1
1)。
Finally, when the central processing unit 32 reads the system control pattern of the coincident expected accident, it outputs a trip signal or a generator control signal to the control terminals 22 to 25 based on the system control pattern. Thereby, the control terminals 22 to 25 cut off the load or the generator,
Alternatively, the output amount of the generator is controlled (step ST1
1).

【0030】以上のように、この実施の形態1によれ
ば、想定事故に対する電力系統の周波数演算の結果から
落ち着き先周波数及び周波数最高値,最低値が発電機の
安定運転領域内にない場合には、予め設定された複数の
系統制御パターンのうち、任意の系統制御パターンを実
施したものと仮定して再度行った周波数演算の結果で発
電機を安定運転領域内に遷移できる系統制御パターンを
選択するようにしているので、周波数異常に伴って不安
定状態に至る発電機を安定状態に遷移させつつ、周波数
異常を適正な周波数に制御することができる。その結
果、電力系統を安定に保つことができる効果を奏する。
As described above, according to the first embodiment, when the settled destination frequency and the maximum and minimum values of the frequency are not within the stable operation region of the generator from the result of the frequency calculation of the power system with respect to the expected accident. Selects a system control pattern that can transition the generator into the stable operation range based on the result of frequency calculation performed again assuming that an arbitrary system control pattern has been implemented from among a plurality of preset system control patterns. Therefore, it is possible to control the frequency abnormality to an appropriate frequency while transitioning the generator, which is in an unstable state due to the frequency abnormality, to the stable state. As a result, there is an effect that the power system can be kept stable.

【0031】なお、ステップST1〜ステップST7に
よる系統制御テーブルの登録において、電力系統の状態
は時々刻々と変化し、電力系統の状態が変化すると、以
前に登録した系統制御テーブルは想定事故に対して適正
なものでなくなってしまう場合があるので、常に、適正
な系統制御テーブルを選択できるようにすべく、想定事
故に対する系統制御パターンの登録を、所定の周期(数
秒〜数分)ごとに更新するようにしている。
In the registration of the grid control table in steps ST1 to ST7, the state of the power system changes from moment to moment, and if the state of the power system changes, the previously registered system control table will be used for the expected accident. Since it may not be appropriate, the registration of the system control pattern for the expected accident is updated every predetermined period (several seconds to several minutes) so that the appropriate system control table can always be selected. I am trying.

【0032】これにより、電力系統の状態が時々刻々と
変化する場合でも、すべての発電機の状態を安定に維持
しつつ、周波数異常を適正な周波数に制御できるように
なる効果を奏する。
Thus, even if the state of the power system changes momentarily, the frequency abnormality can be controlled to an appropriate frequency while maintaining the state of all the generators stable.

【0033】実施の形態2.上記実施の形態1では、分
離系統の需給アンバランス率と周波数偏差の特性から周
波数最高値,最低値,落ち着き先周波数を予測演算し、
その予測周波数から発電機が安定運転領域内にあるか否
かを判定するものについて示したが、発電機プラント単
体の需給アンバランス率と周波数偏差の特性からプラン
ト単体の周波数最高値,最低値,落ち着き先周波数を予
測演算し、それを分離系統内の運転プラント分を発電量
で加重平均して分離系統の周波数を予測してもよく、上
記実施の形態1と同様の効果を奏する。
Embodiment 2. In the first embodiment, the frequency maximum value, the minimum value and the settling frequency are predicted and calculated from the characteristics of the supply and demand imbalance rate and the frequency deviation of the separated system,
We have shown the method of determining whether the generator is in the stable operation range from the predicted frequency. From the characteristics of the supply and demand imbalance ratio and frequency deviation of the generator plant alone, the maximum and minimum frequency values of the plant alone, The settling frequency may be predicted and calculated, and the frequency of the separated system may be predicted by weighting and averaging the operating plants in the separated system with the power generation amount, and the same effect as that of the first embodiment is obtained.

【0034】即ち、図2(a),図2(b)に示すよう
な需給アンバランス率と周波数偏差の特性を発電機プラ
ント毎に求めておき、その特性から求めた周波数最高
値,最低値,落ち着き先周波数から分離系統の周波数Δ
fを下記に示すように演算する。 Δf=(PG1・Δf1 +…・・・・+PG1・Δf1 )/P0G …(11) ここに、Δf :周波数最高値,最低値,落ち着き先周
波数 PG1 :各プラントの発電量 Δf1 :各プラントの周波数最高値,最低値,落ち着き
先周波数 P0G :自系統内の発電機の総発電量
That is, the characteristics of the supply and demand imbalance rate and the frequency deviation as shown in FIGS. 2 (a) and 2 (b) are obtained for each generator plant, and the highest and lowest frequency values obtained from the characteristics are obtained. , The frequency of the isolated system from the settling frequency Δ
f is calculated as shown below. Δf = (P G1 · Δf 1 + ... ··· + P G1 · Δf 1 ) / P 0G (11) where Δf is the highest frequency value, the lowest value, and the settling frequency P G1 is the power generation of each plant. Δf 1 : Maximum and minimum values of frequency of each plant, settling frequency P 0G : Total amount of power generated by generators in own system

【0035】以上のように、この実施の形態2によれ
ば、需給アンバランス率と周波数の特性を自系統に含ま
れる発電プラント単体の特性から求めることにより、電
力系統が時々刻々と変化する場合でも、すべての発電機
の状態を安定に維持しつつ、周波数異常を適正な周波数
に制御できる。
As described above, according to the second embodiment, when the power supply and demand imbalance rate and the frequency characteristics are obtained from the characteristics of the power plant alone included in the power system, the power system changes momentarily. However, it is possible to control the frequency abnormality to an appropriate frequency while maintaining the stable state of all the generators.

【0036】実施の形態3.上記実施の形態2では、プ
ラント単体の需給アンバランス率と周波数偏差の特性の
系統定数K及び係数Δf0 を固定値として扱い、系統定
数K及び係数Δf0の求め方については特に言及しなか
ったが、系統定数K及び係数Δf0 は、発電機出力PG
により特定されるので、これによって、適宜、系統定数
K及び係数Δf0 を求めれば、上記実施の形態2よりさ
らに精度よく、周波数を求めることが可能になる。
Embodiment 3. In the second embodiment, the system constant K and the coefficient Δf 0 of the characteristics of the supply and demand imbalance rate and frequency deviation of the plant alone are treated as fixed values, and the method for obtaining the system constant K and the coefficient Δf 0 is not particularly mentioned. However, the system constant K and the coefficient Δf 0 are determined by the generator output P G
Therefore, if the system constant K and the coefficient Δf 0 are appropriately obtained, the frequency can be obtained more accurately than in the second embodiment.

【0037】因に、系統定数Kは下式より特定され、系
統定数Kと発電機出力PG の間には図5に示す関係があ
る。
Incidentally, the system constant K is specified by the following equation, and the system constant K and the generator output P G have the relationship shown in FIG.

【0038】 KH1=aH1・PG +bH1 …(12) KH2=aH2・PG +bH2 …(13) ただし、aH1,bH1,aL1,bL1,aH2,bH2,aL2
L2は所定の係数であリ、シミュレーションの結果から
特定される。
K H1 = a H1 · P G + b H1 (12) K H2 = a H2 · P G + b H2 (13) where a H1 , b H1 , a L1 , b L1 , a H2 , b H2 , A L2 ,
b L2 is a predetermined coefficient and is specified from the result of simulation.

【0039】また、係数Δf0 は下式より特定され、係
数Δf0 と発電機出力PG の間には図5に示す関係があ
る。 Δf01=c1 ・PG +d1 …(14) Δf02=c2 ・PG +d2 …(15) ただし、c1 ,d1 ,c2 ,d2 は所定の係数であり、
シミュレーションの結果から特定化される。
The coefficient Δf 0 is specified by the following equation, and the coefficient Δf 0 and the generator output P G have the relationship shown in FIG. Δf 01 = c 1 · P G + d 1 ... (14) Δf 02 = c 2 · P G + d 2 ... (15) However, c 1, d 1, c 2, d 2 is a predetermined coefficient,
It is specified from the simulation result.

【0040】以上のように、この実施の形態3によれ
ば、発電プラント単体の需給アンバランス率と周波数の
特性を発電機出力をパラメータに求めることにより、精
度よく周波数異常を適正な周波数に制御できる。
As described above, according to the third embodiment, the frequency anomaly is accurately controlled to an appropriate frequency by determining the power supply / demand unbalance ratio and the frequency characteristics of the power generation plant by using the generator output as a parameter. it can.

【0041】実施の形態4.上記実施の形態2の発電機
の安定運転判定周波数に対する電源制限量を算出する手
法を説明する。実施の形態2で求めた周波数最高値,落
ち着き先周波数が発電機の安定運転領域を越えた場合に
実施する電源制限量は次式によって算出することができ
る。
Fourth Embodiment A method of calculating the power supply limitation amount for the stable operation determination frequency of the generator according to the second embodiment will be described. The power supply limit amount to be implemented when the maximum frequency value and the settling frequency determined in the second embodiment exceed the stable operation region of the generator can be calculated by the following equation.

【0042】 Δf’=(PG1・Δf1 ’+・・・・・・+PG1・Δf1 ’ −Q・ΔfQ ')/(P0G−Q) …(16) ここに、Δf’:制御後の周波数最高値,落ち着き先周
波数 PG1 :各プラントの発電量 Δf1 ’:制御後の各プラントの周波数最高値,落ち着
き先周波数 P0G :自系統内の発電機の総発電量 ΔfQ ’:制御後の電源制限対象プラントの周波数最高
値,落ち着き先周波数 Q :電源制限対象発電機の発電量 このように、実施の形態2の式(11)を上記のように
変形することで、図6のように周波数最高値ΔfH1,落
ち着き先周波数ΔfH2をΔfH1’,ΔfH2’に下げるこ
とができるので、その時の電源制限量Qを求めることが
できる。
Δf ′ = (P G1 · Δf 1 ′ + ··· + P G1 · Δf 1 ′ −Q · Δf Q ) / (P 0G −Q) (16) where Δf ′: Maximum frequency after control, settling frequency P G1 : Power generation amount Δf 1 'of each plant: Maximum frequency value of each plant after control, settling frequency P 0G : Total power generation amount Δf Q of generators in its own system ': The maximum frequency value of the power-supply-restricted target plant after control, the settling frequency Q: the power generation amount of the power-supply-restricted target generator In this way, by modifying the equation (11) of the second embodiment as described above, Since the maximum frequency value Δf H1 and the settling frequency Δf H2 can be lowered to Δf H1 ′ and Δf H2 ′ as shown in FIG. 6, the power supply limit amount Q at that time can be obtained.

【0043】以上のように、この実施の形態4によれ
ば、予測周波数の演算式電源制限量を含むようにしたこ
とにより、電源制限で電力系統が変化する場合でも、す
べての発電機の状態を安定に維持しつつ、周波数異常を
適正な周波数に制御できる。
As described above, according to the fourth embodiment, by including the arithmetic expression power source limit amount of the predicted frequency, even if the power system changes due to the power source limit, the states of all generators are changed. It is possible to control the frequency abnormality to an appropriate frequency while maintaining stable.

【0044】[0044]

【発明の効果】以上のように、請求項1記載の発明によ
れば、系統分断発生前の制御対象系統内発電量と連系線
潮流に基づき予め需給アンバランス率と周波数偏差の特
性を過渡的な周波数最高値,最低値,落ち着き先周波数
について求めておき、この特性を用いて系統分断時の過
渡的な周波数最高値,最低値,落ち着き先周波数値を算
出し、それぞれの値から発電機安定運転領域内に周波数
を制御するように構成したので、周波数異常に伴って不
安定状態に至る発電機を安定状態に遷移させつつ、周波
数異常を適正な周波数に制御することができ、その結
果、電力系統を安定に維持できる効果がある。
As described above, according to the first aspect of the present invention, the characteristics of the supply and demand imbalance rate and the frequency deviation are changed in advance based on the amount of power generation in the controlled system before the occurrence of system disconnection and the interconnection line power flow. The maximum frequency, the minimum value, and the settling frequency are calculated in advance, and the transient frequency maximum value, the minimum value, and the settling frequency value at the time of system division are calculated using these characteristics, and the generator frequency is calculated from each value. Since it is configured to control the frequency within the stable operation range, it is possible to control the frequency anomaly to an appropriate frequency while transitioning the generator that reaches an unstable state due to the frequency anomaly to the stable state. There is an effect that the power system can be stably maintained.

【0045】請求項2記載の発明によれば、需給アンバ
ランス率と周波数の特性を自系統に含まれる発電プラン
ト単体の特性から求めるように構成したので、電力系統
が時々刻々と変化する場合でも、すべての発電機の状態
を安定に維持しつつ、周波数異常を適正な周波数に制御
できる効果がある。
According to the second aspect of the invention, since the characteristics of the supply and demand imbalance rate and the frequency are obtained from the characteristics of the power plant alone included in the own system, even when the power system changes momentarily. There is an effect that the frequency abnormality can be controlled to an appropriate frequency while maintaining the stable states of all the generators.

【0046】請求項3記載の発明によれば、発電プラン
ト単体の需給アンバランス率と周波数の特性を発電機出
力をパラメータに求めるように構成したので、精度よく
周波数異常を適正な周波数に制御できる効果がある。
According to the third aspect of the invention, the power supply / demand unbalance rate and frequency characteristics of the power plant itself are determined by using the generator output as a parameter. Therefore, the frequency abnormality can be accurately controlled to an appropriate frequency. effective.

【0047】請求項4記載の発明によれば、過渡的な周
波数最高値、落ち着き先周波数値が周波数上昇側で発電
機の安定運転領域を越えた場合に、周波数値を安定領域
内に下げるために、電源制限対象プラント単体の周波数
値を加重平均から除くことで電源制限量を求めるように
構成したので、電源制限で電力系統が変化する場合で
も、すべての発電機の状態を安定に維持しつつ、周波数
異常を適正な周波数に制御できる効果がある。
According to the fourth aspect of the present invention, when the transient maximum frequency value and the settling frequency value exceed the stable operation range of the generator on the frequency increasing side, the frequency value is lowered to within the stable range. In addition, since the power limit amount is calculated by removing the frequency value of the plant subject to power limit from the weighted average, even if the power system changes due to the power limit, the state of all generators can be maintained stable. At the same time, the frequency abnormality can be controlled to an appropriate frequency.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の基本原理を示す連系線ルート断時
の周波数波形図である。
FIG. 1 is a frequency waveform diagram when the interconnection line route is broken, showing the basic principle of the present invention.

【図2】 この発明の基本原理を示す需給アンバランス
率と周波数偏差の特性図である。
FIG. 2 is a characteristic diagram of supply and demand imbalance rate and frequency deviation showing the basic principle of the present invention.

【図3】 この発明の実施の形態1による周波数異常制
御装置を示す構成図である。
FIG. 3 is a configuration diagram showing a frequency abnormality control device according to a first embodiment of the present invention.

【図4】 図3の装置における処理を示すフローチャー
トである。
FIG. 4 is a flowchart showing processing in the apparatus of FIG.

【図5】 この発明の実施の形態3による需給アンバラ
ンス率と周波数偏差を示す特性図である。
FIG. 5 is a characteristic diagram showing a supply and demand imbalance rate and a frequency deviation according to the third embodiment of the present invention.

【図6】 この発明の実施の形態4による電源制限時と
電源無制御時の波形を示す波形図である。
FIG. 6 is a waveform diagram showing waveforms during power supply limitation and power supply non-control according to Embodiment 4 of the present invention.

【図7】 従来の周波数異常制御装置の構成図である。FIG. 7 is a configuration diagram of a conventional frequency abnormality control device.

【符号の説明】[Explanation of symbols]

5 送電線(連系線)、11,12 発電機。 5 Transmission lines (interconnection lines), 11 and 12 generators.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上窪 康博 東京都千代田区丸の内二丁目2番3号 三菱電機株式会社内 (72)発明者 束田 益男 愛知県名古屋市東区東新町1番地 中部 電力株式会社内 (72)発明者 小島 正道 愛知県名古屋市東区東新町1番地 中部 電力株式会社内 (56)参考文献 特開 平8−103024(JP,A) 特開 昭62−160038(JP,A) 特開 平2−276423(JP,A) 特開 昭63−181617(JP,A) (58)調査した分野(Int.Cl.7,DB名) H02J 3/00 - 5/00 H02P 9/10 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuhiro Kamikubo 2-3-3 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Corporation (72) Inventor Masuo Tsukada 1 Higashishin-cho, Higashi-ku, Nagoya, Aichi Chubu Electric Power Co., Inc. Company (72) Inventor Masamichi Kojima 1 Higashishinmachi, Higashi-ku, Nagoya, Aichi Chubu Electric Power Co., Inc. (56) Reference JP-A-8-103024 (JP, A) JP-A-62-160038 (JP, A) JP-A-2-276423 (JP, A) JP-A-63-181617 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H02J 3/00-5/00 H02P 9/10

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 系統分断発生前の制御対象系統内発電量
と連系線潮流に基づき、予め需給アンバランス率と周波
数偏差の特性を、過渡的な周波数最高値,最低値,落ち
着き先周波数について求めておき、電力系統に系統分断
が生じて、分離された系統における発電機の発電力と負
荷の消費電力との間に不均衡が生じた場合、前記需給ア
ンバランス率と周波数偏差の特性を用いて発電力過剰時
には過渡的な周波数上昇の最高値を、また発電力不足時
には過渡的な周波数下降の最低値を、また落ち着き先周
波数を求め、その周波数値が発電機の安定運転領域を外
れると判定される時に、それぞれに応じた電源制限,負
荷制限を行って発電機安定運転領域内に周波数を制御す
ることを特徴とする周波数安定化方法。
1. The characteristics of supply and demand imbalance ratio and frequency deviation are preliminarily determined based on the amount of power generation in the controlled system before the occurrence of system disconnection and the interconnection line power flow with respect to the transient frequency maximum value, minimum value, and destination frequency. In advance, when the power system is divided into grids and an imbalance occurs between the power generation of the generator and the power consumption of the load in the separated grid, the characteristics of the supply and demand imbalance ratio and the frequency deviation are calculated. Use this to find the maximum value of the transient frequency rise when the power generation is excessive, the minimum value of the transient frequency decrease when the power generation is insufficient, and the settling frequency, and the frequency value is outside the stable operation range of the generator. When it is determined that the frequency is stabilized, the frequency is controlled within the generator stable operation region by limiting the power source and the load according to the respective conditions.
【請求項2】 需給アンバランス率と周波数偏差の特性
をプラント単体で求めておき、この特性を用いて系統分
断時のプラント単体の過渡的な周波数最高値,最低値,
落ち着き先周波数値を算出し、この各周波数値を分離系
統内に含まれる運転プラントの発電量で加重平均するこ
とで、分離系統の各周波数を算出することを特徴とする
請求項1記載の周波数安定化方法。
2. The characteristics of the supply and demand imbalance ratio and the frequency deviation are obtained for the plant alone, and the transient frequency maximum value, minimum value, and
The frequency of the separation system is calculated by calculating a settling frequency value and performing a weighted average of the respective frequency values with the power generation amount of the operating plant included in the separation system. Stabilization method.
【請求項3】 プラント単体の需給アンバランス率と周
波数偏差の特性を発電機出力をパラメータとして求めて
おき、この特性を用いて求めたプラント単体の各周波数
値を、分離系統に含まれる運転プラント分の発電量で加
重平均することで、分離系統の各周波数値を算出するこ
とを特徴とする請求項2記載の周波数安定化方法。
3. The characteristics of the supply and demand imbalance ratio and frequency deviation of the plant alone are obtained by using the generator output as a parameter, and the frequency values of the plant alone obtained by using these characteristics are the operating plants included in the separated system. The frequency stabilizing method according to claim 2, wherein each frequency value of the separated system is calculated by performing weighted averaging with the power generation amount of minutes.
【請求項4】 過渡的な周波数最高値,落ち着き先周波
数値が周波数上昇側で発電機の安定運転領域を越えた場
合に、周波数値を安定領域内に下げるために、電源制限
対象プラント単体の周波数値を加重平均から除くことで
電源制限量を求めることを特徴とする請求項2記載の周
波数安定化方法。
4. When the transient maximum frequency value and the settling frequency value exceed the stable operation range of the generator on the frequency rising side, in order to reduce the frequency value to within the stable range, the power source restricted plant alone The frequency stabilizing method according to claim 2, wherein the power supply limitation amount is obtained by removing the frequency value from the weighted average.
JP25342296A 1996-09-25 1996-09-25 Frequency stabilization method Expired - Lifetime JP3476630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25342296A JP3476630B2 (en) 1996-09-25 1996-09-25 Frequency stabilization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25342296A JP3476630B2 (en) 1996-09-25 1996-09-25 Frequency stabilization method

Publications (2)

Publication Number Publication Date
JPH10108368A JPH10108368A (en) 1998-04-24
JP3476630B2 true JP3476630B2 (en) 2003-12-10

Family

ID=17251180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25342296A Expired - Lifetime JP3476630B2 (en) 1996-09-25 1996-09-25 Frequency stabilization method

Country Status (1)

Country Link
JP (1) JP3476630B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022134639A (en) 2021-03-03 2022-09-15 株式会社日立製作所 Power system stabilization device and power system stabilization method

Also Published As

Publication number Publication date
JPH10108368A (en) 1998-04-24

Similar Documents

Publication Publication Date Title
US8390238B2 (en) Softstarter for controlling an asynchronous three-phase motor
EP2501014B1 (en) Method and apparatus for detecting islanding conditions of distributed generator
JPH0965588A (en) Electric power storage system
CA2623263C (en) Control method for direct-current transmission
CN110620495B (en) Method and device for restraining VSC short-circuit current
CA2623262A1 (en) Control method for direct current transmission by means of several power converters
JP5436958B2 (en) System stabilization system with post-correction function
JP2001103669A (en) Frequency-stabilizing device of power system
JP2001051734A (en) Reactive power compensation system
JP3476630B2 (en) Frequency stabilization method
US20110140433A1 (en) Method of controlling a variable speed wind turbine
CN117318132A (en) Method and system for improving grid stability
JP3084343B2 (en) Grid stabilization control method
RU2754351C1 (en) Method and apparatus for improved automatic frequency load shedding in electrical power systems
US11467197B2 (en) Electric power system voltage monitoring and control with energy packets
US11555839B2 (en) Rate of change of power element and enter service supervision method
JP3592565B2 (en) Frequency stabilization method and device for power system
JP4025095B2 (en) Voltage reactive power monitoring control device and voltage reactive power monitoring control program
SE517646C2 (en) Method and apparatus for detecting when power system is out of phase
JP3447549B2 (en) Frequency stabilization method for power system
JP2712092B2 (en) Voltage reactive power monitoring and control device
JPH04275029A (en) Load interrupting device at time of parallel off fault
JPS61106027A (en) System stabilizer
JPH1146447A (en) Frequency maintenance system for power system
JP2869320B2 (en) Frequency stabilization method

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100926

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term