JPH07183743A - Voltage-current conversion circuit - Google Patents
Voltage-current conversion circuitInfo
- Publication number
- JPH07183743A JPH07183743A JP32360193A JP32360193A JPH07183743A JP H07183743 A JPH07183743 A JP H07183743A JP 32360193 A JP32360193 A JP 32360193A JP 32360193 A JP32360193 A JP 32360193A JP H07183743 A JPH07183743 A JP H07183743A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- gate
- mosfet
- circuit
- source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Amplifiers (AREA)
- Control Of Amplification And Gain Control (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は電圧電流変換回路に関
し、特に半導体集積回路チップ上に形成された電界効果
MOSトランジスタ(MOSFET)を用いばらつき要
因を少なくし、直線性を向上させた電圧電流変換回路に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a voltage-current conversion circuit, and more particularly to a voltage-current conversion circuit which uses a field effect MOS transistor (MOSFET) formed on a semiconductor integrated circuit chip to reduce variation factors and improve linearity. Regarding the circuit.
【0002】[0002]
【従来の技術】従来のMOS型差動電圧電流変換回路に
ついて図面を用いて説明する。なお、本明細書中に用い
る各記号の意味は、I,ΔIが電流、V,ΔVが電圧、
Rが抵抗、rsがMOSトランジスタの内部ソース抵
抗、βがMOSFETの利得係数、gmが差動電圧電流
変換回路の相互コンダクタンスを示す。2. Description of the Related Art A conventional MOS differential voltage-current conversion circuit will be described with reference to the drawings. The symbols used in this specification mean that I and ΔI are currents, V and ΔV are voltages, and
R is the resistance, rs is the internal source resistance of the MOS transistor, β is the gain coefficient of the MOSFET, and gm is the mutual conductance of the differential voltage-current conversion circuit.
【0003】図6は従来の回路構成図の一例を示す。図
中、N1 ,N2 はそれぞれ第1,第2の差動NMOSF
ETを、V1 ,V2 はそれぞれ第1,第2の入力端子お
よび入力電圧を表し、I0 は定電流源、I1 ,I2 はそ
れぞれ第1,第2の出力電流を表している。更に、差動
出力電流ΔIを次の式(1)で定義する。FIG. 6 shows an example of a conventional circuit configuration diagram. In the figure, N 1 and N 2 are the first and second differential NMOSFs, respectively.
ET, V 1 and V 2 respectively represent the first and second input terminals and the input voltage, I 0 represents the constant current source, and I 1 and I 2 respectively represent the first and second output currents. . Further, the differential output current ΔI is defined by the following equation (1).
【0004】この回路構成における入出力特性を図7
(a)および式(2)に示し、図7(a)上で差動入力
電圧が0となり電流増幅率gmが最大値gnmaxをと
る(式(3)参照)点での接線bを求め、上記接線と入
出力特性曲線との差より求められる非直線性Eを式
(1),(2)を用い式(4)で定義し、図7(b)に
示す。The input / output characteristics of this circuit configuration are shown in FIG.
As shown in (a) and equation (2), the tangent line b at the point where the differential input voltage becomes 0 and the current amplification factor gm takes the maximum value gnmax (see equation (3)) in FIG. The nonlinearity E obtained from the difference between the tangent line and the input / output characteristic curve is defined by the equation (4) using the equations (1) and (2), and is shown in FIG. 7 (b).
【0005】 [0005]
【0006】ここで図7(a),(b)上に示す数値は
I0 =1mA、β=1×10-3A/V2 とした場合のも
のである。この図から、差動入力電圧ΔVが増加し差動
出力電圧ΔIが増加するにつれて、非直線性Eの絶対値
も増加していることがわかる。これはMOSFETのI
D −VGS特性において、MOSFETのゲート、ソース
間電圧VGSに対しドレイン電流ID の変化が比例しない
ために生じる現象である。Numerical values shown in FIGS. 7A and 7B are for I 0 = 1 mA and β = 1 × 10 -3 A / V 2 . From this figure, it can be seen that the absolute value of the non-linearity E also increases as the differential input voltage ΔV increases and the differential output voltage ΔI increases. This is I of MOSFET
This is a phenomenon that occurs in the D- V GS characteristic because the change in the drain current I D is not proportional to the gate-source voltage V GS of the MOSFET.
【0007】また、この回路のgmはMOSトランジス
タのソース内部抵抗rsで決まり、連続的なgmの設定
は困難である。定電流I0 を可変にしてgmを変えるこ
ともできるが、差動トランジスタのゲート・ソース間電
圧の変化による定電流源の両端子間の電圧の変化に伴う
特性の変化や、gmは定電流のルートに比例し制御しに
くい等の問題がある。The gm of this circuit is determined by the source internal resistance rs of the MOS transistor, and it is difficult to set the continuous gm. Although it is possible to change gm by varying the constant current I 0 , a change in characteristics due to a change in voltage between both terminals of the constant current source due to a change in gate-source voltage of the differential transistor, and gm is a constant current. There is a problem that it is proportional to the route of and difficult to control.
【0008】この特性は、第1,第2のMOSFETを
PMOSFETに置き換えた場合も同様に考えることが
できる。This characteristic can be similarly considered when the first and second MOSFETs are replaced with PMOSFETs.
【0009】図8は他の従来例の回路図を示す。図中、
第1,第2の差動NMOSFETN1 ,N2 のソース
に、ソース抵抗2R0 を設けた場合を表している。ま
た、I01,I02はそれぞれ第1,第2の定電流源、
I1 ,I2 はそれぞれ第1,第2の出力電流を表してい
る。ここで定電流I00,差動出力電流ΔIを次の式
(5)で定義する。この回路構成における入出力特性
を、図9(a)および式(6)に示し、図9(a)上で
差動入力電圧が0となり電流増幅率gmが最大値gnm
axをとる(式(7)参照)点での接線bを求め、この
接線と入出力特性曲線との差により求められる非直線性
Eを式(5),(6)を用い式(8)で定義し、図9
(b)に示す。FIG. 8 shows a circuit diagram of another conventional example. In the figure,
This shows the case where the source resistance 2R 0 is provided at the sources of the first and second differential NMOSFETs N 1 and N 2 . In addition, I 01 and I 02 are the first and second constant current sources, respectively.
I 1 and I 2 represent the first and second output currents, respectively. Here, the constant current I 00 and the differential output current ΔI are defined by the following equation (5). The input / output characteristics in this circuit configuration are shown in FIG. 9A and equation (6), and the differential input voltage is 0 and the current amplification factor gm is the maximum value gnm in FIG. 9A.
The tangent line b at the point where ax is taken (see the equation (7)) is obtained, and the non-linearity E obtained from the difference between this tangent line and the input / output characteristic curve is given by the equation (8) using the equations (5) and (6). Defined in Fig. 9
It shows in (b).
【0010】 [0010]
【0011】ここで図9(a),(b)上に示す数値は
I00=1mA、β=1×10-3A/V2 、R0 =1kΩ
とした場合のものである。この図9(a),(b)から
差動入力電圧ΔVが増加し、差動出力電流ΔIが増加す
るにつれて、非直線性Eの絶対値も増加していることが
わかる。これはMOSのID −VGS特性においてMOS
FETのゲート、ソース間電圧VGSに対しドレインID
の変化が比例しないため、つまり、式(6)のように差
動入力電圧ΔVとソース抵抗の両端の電圧ΔVR (差動
出力電流ΔI)とが比例しないために生じる現象であ
る。Here, the numerical values shown in FIGS. 9A and 9B are I 00 = 1 mA, β = 1 × 10 -3 A / V 2 , R 0 = 1 kΩ.
And when. From FIGS. 9A and 9B, it can be seen that as the differential input voltage ΔV increases and the differential output current ΔI increases, the absolute value of the nonlinearity E also increases. This is due to the MOS characteristic of the I D -V GS characteristic.
Drain I D for the gate-source voltage V GS of the FET
Is not proportional to each other, that is, the differential input voltage ΔV is not proportional to the voltage ΔV R (differential output current ΔI) across the source resistance as shown in equation (6).
【0012】また、このときのgmはソース抵抗Rおよ
びMOSトランジスタのrsとの直列抵抗で決まり、特
にソース抵抗Rとrsが同程度の場合には、gmのばら
つき要因は上記2種類となり差動回路を複数用いる場
合、回路相互のgmの比を一定に保つことが困難にな
る。At this time, gm is determined by the source resistance R and the series resistance with the rs of the MOS transistor. Especially, when the source resistances R and rs are about the same, the factors of variation of gm are the above two types. When using a plurality of circuits, it becomes difficult to keep the ratio of gm between the circuits constant.
【0013】つまり、例えばR,rsが増加する方向に
30%ばらつき、設計値R、rsに対し実際の値が
R′、rs′とすれば R′=1.3R ………(9) rs′=1.3rs ……(10) R′+rs′=1.3(R+rs)……(11) となる。ここで、もしR>>rsならば、式(11)は
次式(12)となり R′+rs′=1.3R ……(12) ばらつき要因はほとんどRのみであると考えてよい。That is, for example, if R and rs are varied by 30% in the increasing direction and the actual values are R'and rs 'with respect to the design values R and rs, then R' = 1.3R ... (9) rs ′ = 1.3 rs (10) R ′ + rs ′ = 1.3 (R + rs) (11) Here, if R >> rs, the equation (11) becomes the following equation (12) R '+ rs' = 1.3R (12) It can be considered that the variation factor is almost only R.
【0014】従って、Rがいくらかの違いを持つ複数の
差動回路が同一チップ上にあったとしても、そのgmは
Rのみに反比例するのでgmの比を一定に保つことがで
きる。Therefore, even if there are a plurality of differential circuits in which R has some difference on the same chip, its gm is inversely proportional to only R, so that the ratio of gm can be kept constant.
【0015】しかし、Rとrsが同程度であったとする
と、R=rsで、(11)は(13)となり、 R′+rs′=2.6R ……(13) Rまたはrsのみでは決まらず両者のばらつきを考慮し
て設計する必要がある。よって、差動回路相互のgmの
比は一定に保つことはできない。However, if R and rs are about the same, then R = rs, then (11) becomes (13), and R '+ rs' = 2.6R (13) R or rs alone cannot determine. It is necessary to design in consideration of variations in both. Therefore, the ratio of gm between the differential circuits cannot be kept constant.
【0016】また、この回路のgmはrsで決まり、
(I0 を一定とすると)連続的なgmの設定は困難であ
る。更に、Rが大きい場合には半導体集積回路チップ面
積の増大を招く。この特性は、第1,第2のNMOSF
ETをPMOSFETに置き換えた場合も同様に考える
ことができる。The gm of this circuit is determined by rs,
It is difficult to set continuous gm (when I 0 is constant). Further, when R is large, the area of the semiconductor integrated circuit chip is increased. This characteristic is that the first and second NMOSF
The same can be considered when ET is replaced with PMOSFET.
【0017】図10(a),(b)は従来例のさらに別
の回路図を示す。これは、特開昭60−7211号公
報、特開昭60−66510号公報で報告されているも
のであるが、差動出力端子間に設けたMOSトランジス
タのゲートに電圧を加えることにより差動利得を可変と
している。しかし、MOSトランジスタが出力端子間に
設けられており、明らかに本発明とは回路構成が異な
る。また、差動出力の直線性に関しては特に改善される
ものではない。FIGS. 10A and 10B show still another circuit diagram of the conventional example. This is reported in JP-A-60-7211 and JP-A-60-66510. However, differential voltage is applied to a gate of a MOS transistor provided between differential output terminals. The gain is variable. However, since the MOS transistor is provided between the output terminals, the circuit configuration is obviously different from that of the present invention. Further, the linearity of the differential output is not particularly improved.
【0018】図11は従来例のまた別の回路図を示す。
これは、特開平2−81505号公報で報告されている
ものであるが、差動バイポーラトランジスタのエミッタ
端子間に設けたMOSトラジスタのゲートに電圧を加え
ることにより差動利得を可変としている。FIG. 11 shows another circuit diagram of the conventional example.
This is reported in JP-A-2-81505, but the differential gain is made variable by applying a voltage to the gate of the MOS transistor provided between the emitter terminals of the differential bipolar transistor.
【0019】この回路は、MOSトランジスタとバイポ
ーラトランジスタの複合した回路構成であり、MOSト
ランジスタの利得係数が大きい領域ではgmのばらつき
要因が2種類となり回路相互のgmの比を一定に保つこ
とはやや困難になる。また、差動出力の直線性に関して
はバイポーラトランジスタ本来のベース・エミッタ間電
圧のエミッタ電流依存性が少ないことと、バイポーラト
ランジスタに対し直列に素子が接続されてないことによ
るもので特にMOSトランジスタを用いることで改善さ
れるものではない。This circuit has a composite circuit structure of a MOS transistor and a bipolar transistor, and in the region where the gain coefficient of the MOS transistor is large, there are two types of gm variation factors, and it is somewhat difficult to maintain a constant gm ratio between the circuits. It will be difficult. Regarding the linearity of the differential output, a MOS transistor is particularly used because the original base-emitter voltage of the bipolar transistor is less dependent on the emitter current and the element is not connected in series to the bipolar transistor. It doesn't improve.
【0020】[0020]
【発明が解決しようとする課題】上述したように従来例
の回路において、電流増幅率gmはソース抵抗RとMO
Sトランジスタのrsで決まってしまい、連続設定が困
難である。また、電流増幅率gmはソース抵抗RとMO
Sトランジスタのrsで決まり、特にRとrsが同程度
の場合には、gmのばらつき要因は上記2種類となり差
動回路を複数用いる場合、回路相互のgmの比を一定に
保つことが困難になる。また、ソース抵抗Rが大きい場
合は半導体集積回路のチップ面積の増大を招く。As described above, in the conventional circuit, the current amplification factor gm depends on the source resistance R and the MO.
The continuous setting is difficult because it is determined by the rs of the S transistor. The current amplification factor gm is the source resistance R and MO.
It is determined by the rs of the S transistor, and especially when R and rs are about the same, the factors of variation of gm become the above two types, and when a plurality of differential circuits are used, it becomes difficult to keep the ratio of gm between circuits constant. Become. Further, when the source resistance R is large, the chip area of the semiconductor integrated circuit is increased.
【0021】本発明の目的は、これらの問題を解決し、
電流増幅率gmを連続して設定できると共に、その特性
ばらつきを少なくした電流電圧変換回路を提供すること
にある。The object of the present invention is to solve these problems,
It is an object of the present invention to provide a current-voltage conversion circuit in which the current amplification factor gm can be continuously set and the characteristic variation is reduced.
【0022】[0022]
【課題を解決するための手段】本発明の構成は、それぞ
れのゲートを第1,第2の入力端子とし差動入力部を構
成する第1,第2のMOSFETと、これら第1,第2
のMOSFETの各ソースまたはドレインにソース(ま
たはドレイン)およびドレイン(またはソース)をそれ
ぞれ接続した第3のMOSFETと、前記第1,第2の
MOSFETのソースまたはドレインと前記第3のMO
SFETのソースおよびドレインとの各接続点と接地間
にそれぞれ接続した第1,第2の定電流源と、前記第
1,第2のMOSFETのゲート電圧を入力し前記第3
のMOSFETのゲート端子に電圧を供給するゲート電
圧制御回路と、前記各接続点の電圧をそれぞれ入力し前
記第3のMOSFETのバックゲートに制御電圧を供給
するバックゲート電圧制御回路とを有することを特徴と
する。According to the present invention, there are provided first and second MOSFETs having respective gates as first and second input terminals to form a differential input section, and first and second MOSFETs.
Third MOSFET in which a source (or drain) and a drain (or source) are connected to the respective sources or drains of the above MOSFETs, and the sources or drains of the first and second MOSFETs and the third MO
The first and second constant current sources respectively connected between the respective connection points of the source and drain of the SFET and the ground and the gate voltages of the first and second MOSFETs are input and the third voltage is input.
A gate voltage control circuit that supplies a voltage to the gate terminal of the MOSFET, and a back gate voltage control circuit that inputs the voltage at each of the connection points and supplies a control voltage to the back gate of the third MOSFET. Characterize.
【0023】[0023]
【実施例】図1は本発明の第1の実施例の差動電流電圧
変換回路の基本構成を示す回路図を示す。また、全ての
実施例について素子を表す記号、構成は共通で第1,第
2のMOSFET(N1 ,N2 またはP1 ,P2 )の各
ソース端子に第1,第2の定電流源I01,I02をそれぞ
れ接続し、第1,第2のMOSFETのソース端子間に
更に別の第3のMOSFETN0 のソース(またはドレ
イン)、ドレイン(またはソース)を接続した差動電圧
電流変換回路となっている。さらに、MOSFETN0
のゲート電圧制御回路11と、バックゲート電圧制御回
路12とを設けている。1 is a circuit diagram showing the basic configuration of a differential current / voltage conversion circuit according to a first embodiment of the present invention. Further, the symbols and configurations representing the elements are common to all the examples, and the first and second constant current sources are provided to the respective source terminals of the first and second MOSFETs (N 1 , N 2 or P 1 , P 2 ). Differential voltage-current conversion in which I 01 and I 02 are respectively connected, and the source (or drain) and drain (or source) of another third MOSFET N 0 are connected between the source terminals of the first and second MOSFETs. It is a circuit. Furthermore, MOSFET N 0
The gate voltage control circuit 11 and the back gate voltage control circuit 12 are provided.
【0024】図2は本発明の第2の実施例の回路図、図
3(a),(b)はその入出力特性図である。この回路
は、入力端子V1 ,V2 に直列に接続したR1 ,R2 の
接続点をN0 のゲート端子電圧の制御回路として接続し
ている。つまり次式で与えられるVG のバックゲート電
圧を加えている。FIG. 2 is a circuit diagram of a second embodiment of the present invention, and FIGS. 3A and 3B are input / output characteristic diagrams thereof. In this circuit, the connection point of R 1 and R 2 connected in series to the input terminals V 1 and V 2 is connected as a control circuit for the gate terminal voltage of N 0 . That is, the back gate voltage of V G given by the following equation is added.
【0025】VG =(V1 +V2 )/2……(20) この回路の各素子を流れる電流を求めると、βsをN0
の利得係数として、次式(21)〜(24)のようにな
る。V G = (V 1 + V 2 ) / 2 (20) When the current flowing through each element of this circuit is obtained, βs is N 0
The following gain equations (21) to (24) are obtained.
【0026】 [0026]
【0027】続いて(21),(22),(24)より
Isを電圧を用いて表すと、Next, when Is is expressed using voltage from (21), (22) and (24),
【0028】 [0028]
【0029】続いて、(26),(27)より両者は等
しいので第1番目の{}を約して、V3 −V4 とV1 −
V2 の関係を求めると、次式が得られる。[0029] Then, (26), and promises of the first {} Since than both are equal (27), V 3 -V 4 and V 1 -
When the relationship of V 2 is obtained, the following equation is obtained.
【0030】 [0030]
【0031】続いて、V3 ,V4 を求める。(28)を
(21)、(22)に代入すると次のようになる。Then, V 3 and V 4 are obtained. Substituting (28) into (21) and (22) results in the following.
【0032】 [0032]
【0033】更に(31),(32),(21),(2
2)より出力電流I1 ,I2 を求めると、Further, (31), (32), (21), (2
When the output currents I 1 and I 2 are calculated from 2),
【0034】 [0034]
【0035】よって、(35),(36)より差動出力
電流ΔIは次式(37)となる。Therefore, from (35) and (36), the differential output current ΔI is given by the following equation (37).
【0036】 ΔI1 −I2 =(β/2){(1−α)ΔV(2VT +X)}……(37) さらに、従来例と同様に、図3(b)上でも差動電圧電
流変換回路の相互コンダクタンスgm、非直線性Eおよ
びその成立する範囲を式(38),(39)に定義す
る。ΔI 1 −I 2 = (β / 2) {(1-α) ΔV (2V T + X)} (37) Further, similar to the conventional example, the differential voltage is also shown in FIG. 3 (b). The mutual conductance gm of the current conversion circuit, the non-linearity E, and the established range are defined in equations (38) and (39).
【0037】 [0037]
【0038】この式(39)でVT が正であるので、第
1の従来例に比べて直線性も改善され、またばらつき要
因も抵抗Rに関するものがないため、複数の差動回路の
gmの比を調整し易くなる。Since V T is positive in this equation (39), linearity is improved as compared with the first conventional example, and there is no variation factor related to the resistance R. It becomes easier to adjust the ratio of.
【0039】本実施例は、NMOSFETをPMOSF
ETに、PMOSFETをNMOSFETに、定電流源
を逆方向に置き換えた場合も全く同様に考えることがで
きる。In this embodiment, the NMOSFET is a PMOSF.
The same can be considered when the ET is replaced with the PMOSFET by the NMOSFET and the constant current source is replaced by the reverse direction.
【0040】図4(a)は本発明の第3の実施例の回路
図で、入力端子V1 ,V2 それぞれにアノードを接続し
た2つのダイオードD1 ,D2 をカソード共通接続しN
0 のゲート端子電圧の制御回路11として接続してい
る。つまり次式で与えられるVG を加えている。FIG. 4A is a circuit diagram of the third embodiment of the present invention, in which two diodes D 1 and D 2 whose anodes are connected to the input terminals V 1 and V 2 are commonly connected to the cathode N.
The gate terminal voltage of 0 is connected as the control circuit 11. That is, V G given by the following equation is added.
【0041】VG =V1 (V1 >V2 )……(40) VG =V2 (V2 >V1 )……(41) ゲート電圧制御回路11の変形としては、図4(b)〜
(f)があり、それぞれほぼ同様の特性が得られるが、
基本的にV1 −V2 間に小量のリーク電流しか流れない
ので、入力端子に対し負荷が重いということはない。ま
た、従来例において差動入力ΔVが大きい領域で出力電
流ΔIの増加の割合が減少し直線性が減少するが、(4
0),(41)よりV1 ,V2 のうち高い方の電圧を出
力するのでN0 の伝導率は増加し、より直線性を向上す
る事ができる。V G = V 1 (V 1 > V 2 ) (40) V G = V 2 (V 2 > V 1 ) (41) A modification of the gate voltage control circuit 11 is shown in FIG. b) ~
There is (f), and almost the same characteristics are obtained, respectively,
Since only a small amount of leakage current basically flows between V 1 and V 2 , the load on the input terminal is not heavy. Further, in the conventional example, in a region where the differential input ΔV is large, the rate of increase of the output current ΔI is decreased and the linearity is decreased.
Since the higher voltage of V 1 and V 2 is output than 0) and (41), the conductivity of N 0 is increased and the linearity can be further improved.
【0042】本実施例も、NMOSFETをPMOSF
ETに、PMOSFETをNMOSFETに、定電流源
を逆方向に置き換えた場合も全く同様に考えることがで
きる。Also in this embodiment, the NMOSFET is replaced by the PMOSF.
The same can be considered when the ET is replaced with the PMOSFET by the NMOSFET and the constant current source is replaced by the reverse direction.
【0043】図5(a)は本発明の第4の実施例の回路
図で、ノードV3 ,V4 をそれぞれカソードに接続した
2つのダイオードD1 ,D2 をアノード共通接続し、N
0 のバックゲート端子電圧の制御回路12として接続し
ている。つまり次式で与えられるVB を加えている。FIG. 5A is a circuit diagram of a fourth embodiment of the present invention, in which two diodes D 1 and D 2 having nodes V 3 and V 4 respectively connected to the cathodes are connected in common to the anode, and N
It is connected as the control circuit 12 for the back gate terminal voltage of 0 . That is, V B given by the following equation is added.
【0044】VB =V4 (V1 >V2 )……(42) VB =V3 (V2 >V1 )……(43) このバックゲート電圧制御回路12の変形としては、図
5(c),(d)があり、それぞれほぼ同様の特性が得
られる。高速で使用しなければ、図5(b)の様な構成
でも許容でき、回路の簡略化が図れる。基本的にV3 −
V4 間に小量のリーク電流しか流れないので出力電流に
対し負荷が重いという事はない。この回路も第1または
第2の実施例の任意の回路と組み合わせて使用できる。V B = V 4 (V 1 > V 2 ) ... (42) V B = V 3 (V 2 > V 1 ) ... (43) As a modification of this back gate voltage control circuit 12, 5 (c) and 5 (d), almost the same characteristics are obtained. If it is not used at a high speed, the configuration shown in FIG. 5B is acceptable and the circuit can be simplified. Basically V 3 −
Load to the output current since only flow a small amount of leakage current between V 4 is never called heavy. This circuit can also be used in combination with any circuit of the first or second embodiment.
【0045】[0045]
【発明の効果】以上説明したように本発明の電流電圧変
換回路は、第1,第2のMOSFETのソース間に第3
のMOSFETのソース(またはドレイン)、ドレイン
(またはソース)を接続し、この第3のMOSトランジ
スタのゲートおよびバックゲート端子の電圧の制御回路
を設けることにより、電圧電流変換回路の相互コンダク
タンスgmをMOSFETの利得係数βのみで決めるこ
とができ、差動MOSFETと抵抗による回路に比べ、
ばらつき要因が少なく、また差動MOSFETの利得係
数βとそのソース間に接続されたMOSFETの利得係
数βの比で本回路の相互コンダクタンスgmが決まるの
で、利得係数βの形状に起因するばらつき要因の影響し
か受けないという特徴を持つ。さらに、ゲート電圧を印
加するゲート電圧制御回路によって、入力特性の直線性
も向上できる。As described above, in the current-voltage conversion circuit of the present invention, the third voltage is provided between the sources of the first and second MOSFETs.
The source (or drain) and drain (or source) of the MOSFET are connected to each other, and a control circuit for controlling the voltage of the gate and the back gate terminal of the third MOS transistor is provided. Can be determined only by the gain coefficient β of
There are few variations, and the transconductance gm of this circuit is determined by the ratio between the gain coefficient β of the differential MOSFET and the gain coefficient β of the MOSFET connected between the sources thereof. It has the characteristic that it is only affected. Further, the linearity of the input characteristic can be improved by the gate voltage control circuit that applies the gate voltage.
【0046】また、第3のMOSFETのゲート端子へ
出力する信号を変化させることにより、第3のMOSF
ETの相互コンダクタンスを変化させることができるの
で、電圧電流変換回路の相互コンダクタンスを必要に応
じて変化させることができる。Further, by changing the signal output to the gate terminal of the third MOSFET, the third MOSF
Since the mutual conductance of ET can be changed, the mutual conductance of the voltage-current conversion circuit can be changed as necessary.
【0047】さらに、本発明の回路構成は、バイポーラ
プロセス単体では構成不可能かまたはかなり困難であっ
たが、MOSプロセスの回路での回路設計が容易になっ
ており、高抵抗(低ゲイン)の領域で素子サイズの小型
化も可能となる。さらに、全回路をMOSプロセスで構
成できることから、プロセスの簡略化によりコストダウ
ンを図ることができる。Further, although the circuit structure of the present invention is impossible or considerably difficult to form by the bipolar process alone, the circuit design in the circuit of the MOS process becomes easy, and the high resistance (low gain) is obtained. It is also possible to reduce the element size in the area. Further, since all the circuits can be constructed by the MOS process, the cost can be reduced by simplifying the process.
【図1】本発明の第1の実施例の基本構成を示す回路
図。FIG. 1 is a circuit diagram showing a basic configuration of a first embodiment of the present invention.
【図2】本発明の第2の実施例の回路構成図。FIG. 2 is a circuit configuration diagram of a second embodiment of the present invention.
【図3】第2の実施例の入出力特性および非直線性特性
を示す図。FIG. 3 is a diagram showing input / output characteristics and non-linearity characteristics of the second embodiment.
【図4】(a)〜(f)は本発明の第3の実施例の回路
構成図。4A to 4F are circuit configuration diagrams of a third embodiment of the present invention.
【図5】(a)〜(d)は本発明の第4の実施例の回路
構成図。5A to 5D are circuit configuration diagrams of a fourth embodiment of the present invention.
【図6】従来例の差動電圧電源変換回路の回路図。FIG. 6 is a circuit diagram of a conventional differential voltage power supply conversion circuit.
【図7】(a),(b)は図6の従来例の入出力特性お
よび非直線性特性を示す図。7A and 7B are diagrams showing input / output characteristics and non-linearity characteristics of the conventional example of FIG.
【図8】従来例の他の回路図。FIG. 8 is another circuit diagram of a conventional example.
【図9】(a),(b)は図8の入出力特性および非直
線性特性を示す図。9A and 9B are views showing the input / output characteristic and the non-linear characteristic of FIG.
【図10】(a),(b)は従来例の別の回路構成図。10A and 10B are other circuit configuration diagrams of a conventional example.
【図11】従来例のさらに別の回路構成図。FIG. 11 is still another circuit configuration diagram of the conventional example.
N0 〜N4 NチャネルMOSトランジスタ P1 〜P2 PチャネルMOSトランジスタ 2R0 ソース抵抗および抵抗値 I0 定電流源 I1 ,I2 出力電流 V1 ,V2 入力端子および電圧 VB N0 のバックゲート電圧 VG N0 のゲート電圧 11 N0 のバックゲート電圧制御回路 12 N0 のゲート電圧制御回路N 0 to N 4 N-channel MOS transistor P 1 to P 2 P-channel MOS transistor 2R 0 source resistance and the resistance value I 0 a constant current source I 1, I 2 output current V 1, V 2 input terminals and the voltage V B N 0 Back gate voltage V G N 0 gate voltage 11 N 0 back gate voltage control circuit 12 N 0 gate voltage control circuit
Claims (6)
子とし差動入力部を構成する第1,第2のMOSFET
と、これら第1,第2のMOSFETの各ソースまたは
ドレインにソース(またはドレイン)およびドレイン
(またはソース)をそれぞれ接続した第3のMOSFE
Tと、前記第1,第2のMOSFETのソースまたはド
レインと前記第3のMOSFETのソースおよびドレイ
ンとの各接続点と接地間にそれぞれ接続した第1,第2
の定電流源と、前記第1,第2のMOSFETのゲート
電圧を入力し前記第3のMOSFETのゲート端子に電
圧を供給するゲート電圧制御回路と、前記各接続点の電
圧をそれぞれ入力し前記第3のMOSFETのバックゲ
ートに制御電圧を供給するバックゲート電圧制御回路と
を有することを特徴とする電流電圧変換回路。1. A first and a second MOSFET having respective gates as first and second input terminals to form a differential input section.
And a third MOSFET in which a source (or drain) and a drain (or source) are connected to the sources or drains of the first and second MOSFETs, respectively.
T, and first and second connection points connected between the respective connection points of the sources or drains of the first and second MOSFETs and the sources and drains of the third MOSFET and the ground.
Of the constant current source, the gate voltage control circuit for inputting the gate voltage of the first and second MOSFETs to supply the voltage to the gate terminal of the third MOSFET, and the voltage for each of the connection points respectively A back-gate voltage control circuit that supplies a control voltage to the back gate of the third MOSFET.
へ出力電流を流し込む構造または流し出す構造とした請
求項1記載の電圧電流変換回路。2. A differential input section having first and second MOSFETs.
2. The voltage-current conversion circuit according to claim 1, which has a structure for flowing an output current into or out of the output current.
および第2の入力端子と第3のMOSFETのゲートと
の間にそれぞれ第1,第2の抵抗を接続したものである
請求項1記載の電圧電流変換回路。3. The gate voltage control circuit has first and second resistors connected between the first and second input terminals and the gate of the third MOSFET, respectively. The described voltage-current conversion circuit.
および第2の入力端子と第3のMOSFETのゲートと
の間にそれぞれ第1,第2のダイオードを接続したもの
である請求項1記載の電圧電流変換回路。4. The gate voltage control circuit comprises first and second diodes connected between the first and second input terminals and the gate of the third MOSFET, respectively. The described voltage-current conversion circuit.
力端子および第2の入力端子と第3のMOSFETのゲ
ートとの間にそれぞれ第1,第2のダイオードを接続し
たものである請求項1記載の電圧電流変換回路。5. The back gate voltage control circuit comprises first and second diodes connected between the first and second input terminals and the gate of the third MOSFET, respectively. 1. The voltage-current conversion circuit described in 1.
請求項3記載の電圧電流変換回路。6. The voltage-current conversion circuit according to claim 3, wherein the resistance values of the first and second resistors are equal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5323601A JP2661531B2 (en) | 1993-12-22 | 1993-12-22 | Voltage-current converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5323601A JP2661531B2 (en) | 1993-12-22 | 1993-12-22 | Voltage-current converter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07183743A true JPH07183743A (en) | 1995-07-21 |
JP2661531B2 JP2661531B2 (en) | 1997-10-08 |
Family
ID=18156538
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5323601A Expired - Fee Related JP2661531B2 (en) | 1993-12-22 | 1993-12-22 | Voltage-current converter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2661531B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009142147A (en) * | 2007-12-07 | 2009-06-25 | Hynix Semiconductor Inc | Bulk voltage detector |
JP2010114877A (en) * | 2008-10-06 | 2010-05-20 | Panasonic Corp | Operational amplifier circuit and display unit |
US7733192B2 (en) | 2007-08-22 | 2010-06-08 | Nec Electronics Corporation | Voltage controlled oscillator |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63175510A (en) * | 1987-01-16 | 1988-07-19 | Hitachi Ltd | Semiconductor circuit |
-
1993
- 1993-12-22 JP JP5323601A patent/JP2661531B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63175510A (en) * | 1987-01-16 | 1988-07-19 | Hitachi Ltd | Semiconductor circuit |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7733192B2 (en) | 2007-08-22 | 2010-06-08 | Nec Electronics Corporation | Voltage controlled oscillator |
JP2009142147A (en) * | 2007-12-07 | 2009-06-25 | Hynix Semiconductor Inc | Bulk voltage detector |
JP2010114877A (en) * | 2008-10-06 | 2010-05-20 | Panasonic Corp | Operational amplifier circuit and display unit |
Also Published As
Publication number | Publication date |
---|---|
JP2661531B2 (en) | 1997-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6211659B1 (en) | Cascode circuits in dual-Vt, BICMOS and DTMOS technologies | |
US4247824A (en) | Linear amplifier | |
JP2891297B2 (en) | Voltage-current converter | |
US20020089377A1 (en) | Constant transconductance differential amplifier | |
US5028881A (en) | Highly linear operational transconductance amplifier with low transconductance | |
US4538114A (en) | Differential amplifier | |
US4356453A (en) | Reduced noise-improved gain transistor circuit | |
US20020163385A1 (en) | Operation amplification circuit, constant voltage circuit and reference voltage circuit | |
JPH0738348A (en) | Semiconductor integrated circuit | |
US5136258A (en) | Circuit arrangement for enhancing the transconductance of a differential amplifier stage comprising MOS transistors | |
JP3081210B2 (en) | Linear gain amplifier | |
JP2661531B2 (en) | Voltage-current converter | |
US11742812B2 (en) | Output pole-compensated operational amplifier | |
JP3343168B2 (en) | Reference voltage circuit | |
US20020079966A1 (en) | Differential amplifier having active load device scaling | |
EP0394703B1 (en) | A circuit arrangement for enhancing the transconductance of a differential amplifier stage comprising MOS transistors | |
KR0158625B1 (en) | Bipola transistor circuit having free collector node | |
JP2560134B2 (en) | Adjustable gain differential amplifier | |
JP3037187B2 (en) | MOS differential voltage-current converter | |
JP3801412B2 (en) | MOS regulator circuit | |
JPH10112614A (en) | Bias current supply method and circuit | |
JPH10200348A (en) | Amplifier circuit | |
JP2661530B2 (en) | Voltage-current converter | |
JP2001325033A (en) | Constant-current circuit | |
JPH0645844A (en) | Differential amplifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19970513 |
|
LAPS | Cancellation because of no payment of annual fees |