JPH07182877A - Method of erasing data of nonvolatile semiconductor storage device - Google Patents

Method of erasing data of nonvolatile semiconductor storage device

Info

Publication number
JPH07182877A
JPH07182877A JP32392893A JP32392893A JPH07182877A JP H07182877 A JPH07182877 A JP H07182877A JP 32392893 A JP32392893 A JP 32392893A JP 32392893 A JP32392893 A JP 32392893A JP H07182877 A JPH07182877 A JP H07182877A
Authority
JP
Japan
Prior art keywords
threshold value
erasing
voltage
erasure
memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32392893A
Other languages
Japanese (ja)
Inventor
Hiroki Shirai
浩樹 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP32392893A priority Critical patent/JPH07182877A/en
Publication of JPH07182877A publication Critical patent/JPH07182877A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the dispersion in a threshold value after erasure by repeating erasure operation and verification in a short period. CONSTITUTION:By implanting an electron into a floating gate electrode 3, the data are written. An drain voltage Vd is applied to a drain area 6, and a substrate voltage Vsub of 0V and source data Vs are applied to a semiconductor substrate 1 and a source area 7, respectively, and a gate voltage Vcg is applied to a control gate electrode 5. The potential of the electrode 3 is decided unequivocally from the voltages Vd, Vs, Vsub, Vcg by a capacitance ratio formed by a gate oxidized film 2 and a gate insulation film 4. The erasure of the data is performed by pulling out the electron from the electrode 3. Before the erasure, the whole bits are written. The maximum value of the threshold value after erasure is set, and the erasure and the verification by a short pulse are repeated until the whole memory cells are satisfied with the condition. By such a manner, the dispersion in the threshold value after erasure is put within a prescribed range.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、不揮発性半導体記憶装
置のデータ消去方法に関し、特に浮遊ゲート電極を有す
る電界効果トランジスタをメモリセルとし、これを多数
配置した不揮発性半導体記憶装置のデータ消去方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for erasing data in a non-volatile semiconductor memory device, and more particularly to a method for erasing data in a non-volatile semiconductor memory device in which a field effect transistor having a floating gate electrode is used as a memory cell. Regarding

【0002】[0002]

【従来の技術】電気的に書き換え可能な不揮発性半導体
記憶装置(EEPROM)のうち、複数の記憶素子(E
EPROM素子)を電気的に同時に一括して消去する機
能を有するものをフラッシュメモリという。このフラッ
シュメモリの構造の一例を図3に示す。
2. Description of the Related Art Among electrically rewritable nonvolatile semiconductor memory devices (EEPROM), a plurality of memory elements (E
A flash memory has a function of electrically erasing EPROM elements simultaneously at once. An example of the structure of this flash memory is shown in FIG.

【0003】図3において、フラッシュメモリは、p型
の半導体基板1の表面にn型のドレイン領域6およびソ
ース領域7が形成され、その両領域間のチャネル領域8
の上とドレイン領域6の端部9およびソース領域7の端
部10の上に、膜厚10nmのゲート酸化膜2、多結晶シ
リコンで形成される浮遊ゲート電極3、膜厚約25nmの
ゲート絶縁膜4、制御ゲート電極5が積層される構造で
ある。以下、このフラッシュメモリの動作について説明
する。
In the flash memory shown in FIG. 3, an n-type drain region 6 and a source region 7 are formed on the surface of a p-type semiconductor substrate 1, and a channel region 8 between the two regions is formed.
On the top and on the end portion 9 of the drain region 6 and the end portion 10 of the source region 7, a gate oxide film 2 having a film thickness of 10 nm, a floating gate electrode 3 formed of polycrystalline silicon, a gate insulation film having a film thickness of about 25 nm. This is a structure in which the film 4 and the control gate electrode 5 are laminated. The operation of this flash memory will be described below.

【0004】データの書き込みとは、浮遊ゲート電極3
に電子を注入することである。そのためには、ドレイン
領域6に例えば+7Vのドレイン電圧Vd を印加し、半
導体基板1およびソース領域7にそれぞれ0V(接地電
位)の基板電圧Vsub およびソース電圧Vs を印加し、
さらに制御ゲート電極5に例えば+12Vのゲート電圧V
cgを印加する。浮遊ゲート電極3は外部の電源に接続さ
れていないので、その電位はゲート酸化膜2およびゲー
ト絶縁膜4により形成される静電容量比により、ドレイ
ン電圧Vd 、ソース電圧Vs 、基板電圧Vsub およびゲ
ート電圧Vcgから一義的に決定される。通常、浮遊ゲー
ト電極3の電位がドレイン領域6の電位(ドレイン電圧
Vd)と同程度になったときに、ドレイン領域6とソース
領域7の間に流れる電流により発生するホットな電子
(ゲート酸化膜2の絶縁エネルギーを上回るエネルギー
をもつ電子)が浮遊ゲート電極3に注入される量が最大
になる。上述した各電圧例はその状態となる値である。
そのとき、電子が浮遊ゲート電極3に注入され、浮遊ゲ
ート電極3の電位を負のレベルにまで押し下げるので、
メモリセルのしきい値、すなわち制御ゲート電極5から
みたしきい値が正の方向にシフトする。通常、メモリセ
ルのしきい値は約+7V以上に設定される。
Data writing means floating gate electrode 3
Is to inject electrons into. For that purpose, for example, a drain voltage Vd of + 7V is applied to the drain region 6, and a substrate voltage Vsub and a source voltage Vs of 0V (ground potential) are applied to the semiconductor substrate 1 and the source region 7, respectively.
Further, for example, a gate voltage V of + 12V is applied to the control gate electrode 5.
Apply cg. Since the floating gate electrode 3 is not connected to an external power source, its potential depends on the capacitance ratio formed by the gate oxide film 2 and the gate insulating film 4, and the drain voltage Vd, the source voltage Vs, the substrate voltage Vsub, and the gate voltage Vsub. It is uniquely determined from the voltage Vcg. Usually, when the potential of the floating gate electrode 3 becomes approximately equal to the potential of the drain region 6 (drain voltage Vd), hot electrons (gate oxide film) generated by the current flowing between the drain region 6 and the source region 7 are generated. The maximum amount of electrons having an energy exceeding the insulation energy of 2) is injected into the floating gate electrode 3. Each of the voltage examples described above is a value that is in that state.
At that time, electrons are injected into the floating gate electrode 3 and push down the potential of the floating gate electrode 3 to a negative level.
The threshold of the memory cell, that is, the threshold seen from the control gate electrode 5 shifts in the positive direction. Normally, the threshold value of the memory cell is set to about + 7V or higher.

【0005】一方、データの消去とは、浮遊ゲート電極
3に注入された電子を引き抜くことである。そのために
は、例えばソース電圧Vs を+12V、基板電圧Vsub お
よびゲート電圧Vcgをそれぞれ0V(接地電位)に設定
し、ドレイン領域6はオープン状態にする。データが書
き込まれた状態では、浮遊ゲート電極3が負電位になっ
ているのでその分の電位差がさらにかかり、ソース領域
7と浮遊ゲート電極3との間のゲート酸化膜2にはかな
り強い電界(上記の各電圧例では10MV/cm以上)が
印加されることになる。このような強い電界のもとで
は、ゲート酸化膜2中に量子力学的なトンネル効果に基
づくファウラー・ノードハイム電流(以下「FN電流」
という。)が流れる。その効果を利用して浮遊ゲート電
極3からソース領域7へ電子を引き抜くことによりデー
タの消去が行われる。
On the other hand, erasing data means extracting the electrons injected into the floating gate electrode 3. For that purpose, for example, the source voltage Vs is set to +12 V, the substrate voltage Vsub and the gate voltage Vcg are set to 0 V (ground potential), and the drain region 6 is opened. In the state where the data is written, the floating gate electrode 3 is at a negative potential, and therefore a potential difference is further applied, and a considerably strong electric field (() is applied to the gate oxide film 2 between the source region 7 and the floating gate electrode 3. In the above voltage examples, 10 MV / cm or more) is applied. Under such a strong electric field, Fowler-Nordheim current (hereinafter referred to as “FN current”) in the gate oxide film 2 based on quantum mechanical tunnel effect.
Say. ) Flows. Data is erased by utilizing this effect to extract electrons from the floating gate electrode 3 to the source region 7.

【0006】なお、本明細書では、浮遊ゲート電極3に
電子を注入してメモリセルのしきい値を正方向にシフト
させた状態を「書き込み」、浮遊ゲート電極3から電子
を引き抜いてメモリセルのしきい値を負方向にシフトさ
せた状態を「消去」と定義するが、書き込みおよび消去
の状態はメモリセルの異なった2種類の状態を表してい
ればよく、必ずしもこの表現に限られるわけではない。
In this specification, a state in which electrons are injected into the floating gate electrode 3 to shift the threshold value of the memory cell in the positive direction is “writing”, and electrons are extracted from the floating gate electrode 3 to cause the memory cell. The state in which the threshold value of is shifted in the negative direction is defined as "erase", but the write and erase states need only represent two different states of the memory cell, and are not necessarily limited to this expression. is not.

【0007】このようにしてメモリセルの書き込みおよ
び消去が行われるが、フラッシュメモリの場合、書き込
みは上述した方法で行われるのに対して、消去はマトリ
ックス状に配列したメモリセルアレイのソースを共通に
接続した状態でソースに電圧を同時に印加して行う。そ
の結果、同時に一括して消去することができ、記憶装置
の記憶容量が大きくなった場合でも消去時間の短縮を図
ることができる。
Writing and erasing of memory cells are performed in this way. In the case of a flash memory, writing is performed by the above-described method, whereas erasing is performed by sharing the sources of memory cell arrays arranged in a matrix. The voltage is simultaneously applied to the sources in the connected state. As a result, it is possible to erase all at once, and it is possible to shorten the erase time even when the storage capacity of the storage device becomes large.

【0008】しかし、フラッシュメモリにおいて、FN
電流によって浮遊ゲート電極3からソース領域7へ電子
を引き抜く消去方法には、消去後の各メモリセルのしき
い値にばらつきが生じる問題があった。その理由は、印
加された電圧に対するFN電流が、ゲート酸化膜2の膜
厚やソース領域7と浮遊ゲート電極3の重なり領域の面
積によって決定され、複数のメモリセルでFN電流が必
ずしも一致しないことによる。そのために、複数のメモ
リセルに対して同時に消去動作が行われても、各浮遊ゲ
ート電極3からソース領域7へ引き抜かれる電子の量が
ばらつき、各浮遊ゲート電極3の電位が一定にならず、
消去後の各メモリセルのしきい値がばらつくということ
である。
However, in the flash memory, the FN
The erasing method of drawing electrons from the floating gate electrode 3 to the source region 7 by a current has a problem that the threshold value of each memory cell after erasing varies. The reason is that the FN current with respect to the applied voltage is determined by the film thickness of the gate oxide film 2 and the area of the overlapping region of the source region 7 and the floating gate electrode 3, and the FN currents do not always match in a plurality of memory cells. by. Therefore, even if the erasing operation is simultaneously performed on a plurality of memory cells, the amount of electrons extracted from each floating gate electrode 3 to the source region 7 varies, and the potential of each floating gate electrode 3 does not become constant,
This means that the threshold value of each memory cell after erasing varies.

【0009】従来のフラッシュメモリにおける消去後の
しきい値のばらつきを測定した結果を図4に示す。
FIG. 4 shows the result of measuring the variation in threshold value after erasing in the conventional flash memory.

【0010】図において、横軸は消去後のしきい値
(V)、縦軸は累積度数である。従来の消去後のしきい
値のばらつきは正規分布に近い形を示し、2V程度の幅
の広がりをもっていることがわかる。すなわち、例えば
256キロビット(32キロバイト)のメモリセルを同時に
消去する場合に、最も消去の早いメモリセルと最も消去
の遅いメモリセルの間では、消去後のしきい値に2V程
度の差が生じることになる。そのようなしきい値のばら
つきを考慮すれば、フラッシュメモリのようにある規模
のメモリセルアレイを同時に消去するものでは、最も消
去の早いメモリセルのしきい値が0V以下になる前に全
体の消去を止めなければならない。なぜならば、しきい
値が0V以下になると、そのメモリセルに接続している
ビット線(列線)の電位を上げることができず、そのビ
ット線に接続するすべてのメモリセルは書き込むことも
読み出すこともできなくなってしまうからである。
In the figure, the horizontal axis is the threshold value (V) after erasing, and the vertical axis is the cumulative frequency. It can be seen that the conventional variation in threshold value after erasing has a shape close to a normal distribution and has a width of about 2V. Ie, for example
When erasing memory cells of 256 kilobits (32 kilobytes) at the same time, a difference of about 2V occurs between the erased memory cells and the erased memory cells. Considering such variations in the threshold value, in the case of simultaneously erasing a memory cell array of a certain scale such as a flash memory, the entire erasing should be performed before the threshold value of the memory cell that is erased earliest becomes 0 V or less. I have to stop. This is because when the threshold value becomes 0 V or less, the potential of the bit line (column line) connected to the memory cell cannot be raised, and all memory cells connected to the bit line can be written and read. Because you can't do that either.

【0011】このようなことから、最も消去の早いメモ
リセルのしきい値が0V以下になる前に全体の消去を止
めるが、実際にはそのしきい値を 0.5Vから1V程度に
設定するので、最も消去の遅いメモリセルのしきい値は
2.5Vから3V程度に設定されることになる。したがっ
て、書き込み/読み出しの際のワード線(行線)の電位
は、その最も消去の遅いメモリセルのしきい値よりも低
く設定することができなくなる。すなわち、従来の書き
込み/読み出し電圧は 2.5Vから3V以下には下げるこ
とができないことになる。そこで、フラッシュメモリの
低電圧化を図るために、各メモリセルのしきい値のばら
つきを小さくする工夫が種々検討されている。
For this reason, the entire erasing is stopped before the threshold voltage of the memory cell that is erased earliest becomes 0 V or less. However, the threshold value is actually set to about 0.5V to 1V. , The threshold of the slowest erased memory cell is
It will be set from 2.5V to 3V. Therefore, the potential of the word line (row line) at the time of writing / reading cannot be set lower than the threshold value of the memory cell that erases the latest. That is, the conventional write / read voltage cannot be lowered from 2.5V to 3V or less. Therefore, in order to reduce the voltage of the flash memory, various measures for reducing the variation in the threshold value of each memory cell have been studied.

【0012】以下その一例について、図5に示す消去ア
ルゴリズムを参照して説明する。なお、本アルゴリズム
は、文献(V.N.Kynett et al.,=A 90ns One-Million Er
ase/Program Cycle 1Mbit Flash Memory", IEEE Journa
l of Solid-State Circuits,vol.24,No.5,1989) に掲載
されているものである。
An example thereof will be described below with reference to the erasing algorithm shown in FIG. This algorithm is based on the literature (VNKynett et al., = A 90ns One-Million Er
ase / Program Cycle 1Mbit Flash Memory ", IEEE Journa
l of Solid-State Circuits, vol.24, No.5, 1989).

【0013】まず、消去前に全ビットの書き込みを行
う。これは、消去後のしきい値のばらつきを抑制するた
めに行われる。次に、消去後のしきい値の最大値を例え
ば 3.2Vに設定し、すべてのメモリセルがこの条件を満
たすまで短いパルスによる消去と、すべてのメモリセル
が消去できたか否かを確認する読み出し動作(ベリファ
イ)を繰り返す。このような消去を行うことにより、単
一のパルスで消去した場合と比較して種々のパラメータ
が変動しても、消去後のしきい値のばらつきを所定の範
囲内に収めることが可能となる。これは、例えばトンネ
ル膜厚がばらついてメモリセルの消去特性が変化して
も、消去とベリファイを繰り返すことにより吸収される
ためである。最後に、所定の制御ゲート電圧以下で電流
の流れるメモリセルが存在するか否かを判定するディプ
レッションチェックを行い、電流が流れるメモリセルが
存在すれば不良とし、なければそのまま終了する。
First, all bits are written before erasing. This is performed in order to suppress variations in threshold value after erasing. Next, set the maximum threshold value after erasing to, for example, 3.2 V, perform erasing with a short pulse until all memory cells satisfy this condition, and read to confirm whether all memory cells have been erased. The operation (verify) is repeated. By performing such erasing, it becomes possible to keep the variation in the threshold value after erasing within a predetermined range even if various parameters are changed as compared with the case of erasing with a single pulse. . This is because, for example, even if the tunnel film thickness varies and the erase characteristic of the memory cell changes, it is absorbed by repeating erase and verify. Finally, a depletion check is performed to determine whether or not there is a memory cell through which a current flows at a voltage equal to or lower than a predetermined control gate voltage. If a memory cell through which a current flows exists, it is determined to be defective.

【0014】[0014]

【発明が解決しようとする課題】ところで、図5のアル
ゴリズムで示される従来のデータ消去方法では、消去と
ベリファイの繰り返しによってしきい値のばらつきを所
定の範囲内に収めることができるが、過剰に消去される
記憶素子が生ずることがある。過剰消去セルが同一のビ
ット線上に1つでも生ずるとその後の書き込みを行うこ
とができず、そのビット線上のすべての記憶素子は不良
セルとなり、そのビット線を交換する以外に救済できな
くなる。
By the way, in the conventional data erasing method shown by the algorithm of FIG. 5, it is possible to keep the variation of the threshold value within a predetermined range by repeating the erasing and verifying operations. Some storage elements may be erased. If even one over-erased cell occurs on the same bit line, subsequent programming cannot be performed, and all the storage elements on that bit line become defective cells, which cannot be relieved except by exchanging the bit line.

【0015】また、一連の動作において、全体の消去時
間に対して消去前の全ビット書き込みの割合が高く、記
憶素子の集積度が増加するにつれて消去時間も大幅に増
加し、また消費電流も大きくなる問題があった。
Further, in a series of operations, the ratio of writing all bits before erasing is high with respect to the entire erasing time, the erasing time increases significantly as the integration degree of the memory element increases, and the current consumption also increases. There was a problem.

【0016】本発明は、複数の記憶素子の消去後のしき
い値のばらつきを小さくするとともに、過剰に消去され
た記憶素子の救済を可能とし、さらに消去時間の短縮お
よび消費電流の低減を図ることができる不揮発性半導体
記憶装置のデータ消去方法を提供することを目的とす
る。
According to the present invention, variations in threshold values after erasing a plurality of storage elements are reduced, and storage elements that have been over-erased can be relieved, and the erasing time and current consumption can be shortened. An object of the present invention is to provide a data erasing method for a non-volatile semiconductor memory device.

【0017】[0017]

【課題を解決するための手段】本発明のデータ消去方法
は次の手順により行う。 消去する複数の記憶素子(メモリセル)に対して所
定の電圧の電気パルスを同時に印加する消去動作と、記
憶素子の読み出しによって消去判定を行うベリファイと
を繰り返して各記憶素子のしきい値を所定のしきい値以
下に設定する。 所定の制御ゲート電圧以下で電流の流れる記憶素子
が存在するか否かを判定するディプレッションチェック
を行う。 ディプレッションチェックで電流が流れる記憶素子
が存在すれば、存在しなくなるまで制御ゲートに正電圧
を印加して記憶素子のしきい値を高める書き込みを行う
(FN書き込み)。 再度、記憶素子の読み出しによって消去判定を行う
ベリファイにより、各記憶素子のうち所定のしきい値を
越える記憶素子があれば、の消去動作以降を繰り返
す。
The data erasing method of the present invention is performed by the following procedure. The threshold value of each storage element is set to a predetermined value by repeating an erase operation in which electric pulses of a predetermined voltage are simultaneously applied to a plurality of storage elements (memory cells) to be erased and a verify for making an erase determination by reading the storage element. Set below the threshold of. A depletion check is performed to determine whether or not there is a storage element through which a current flows at a predetermined control gate voltage or less. If there is a memory element through which a current flows in the depletion check, a positive voltage is applied to the control gate until the memory element does not exist, and writing is performed to increase the threshold value of the memory element (FN writing). Once again, if there is a storage element that exceeds a predetermined threshold value among the storage elements by verifying that the erase determination is performed by reading the storage element, the erase operation and subsequent steps are repeated.

【0018】[0018]

【作用】消去動作とベリファイを短い周期で繰り返すこ
とにより、各記憶素子のしきい値を所定のしきい値以下
に設定することができる。引続きディプレッションチェ
ックを行い、所定の制御ゲート電圧以下でオンになる記
憶素子がなくなるまで制御ゲートに正電圧を印加して記
憶素子のしきい値を高める。さらに、もう一度ベリファ
イを行い、所定のしきい値を越える記憶素子があれば最
初の消去動作から繰り返すことにより、複数の記憶素子
のしきい値を所定の範囲内に収束させることができる。
By repeating the erase operation and the verify in a short cycle, the threshold value of each memory element can be set below a predetermined threshold value. A depletion check is continuously performed, and a positive voltage is applied to the control gate to increase the threshold value of the storage element until there is no storage element that is turned on below a predetermined control gate voltage. Further, the verify is performed again, and if there is a storage element that exceeds a predetermined threshold value, the threshold values of a plurality of storage elements can be converged within a predetermined range by repeating the first erase operation.

【0019】[0019]

【実施例】図1は、本発明方法の実施例のアルゴリズム
を示す。
1 shows the algorithm of an embodiment of the method according to the invention.

【0020】まず、例えばソース領域7に+12Vの電気
パルスを印加して消去を行う。このとき、全ビット中で
最もしきい値の高いメモリセルが所定のしきい値、例え
ば+3Vになるようにベリファイを行いつつ消去を行
う。この消去終了後に、所定の制御ゲート電圧以下で電
流の流れる(オンになる)メモリセルが存在するか否か
を判定するディプレッションチェックを行う。このと
き、電流が流れるメモリセルが存在しなければ、再度行
うベリファイを経て消去動作を完了する。
First, for example, an electric pulse of +12 V is applied to the source region 7 to erase it. At this time, erasing is performed while performing verification so that the memory cell having the highest threshold value among all bits has a predetermined threshold value, for example, + 3V. After this erasing is completed, a depletion check is performed to determine whether or not there is a memory cell in which a current flows (turns on) at a predetermined control gate voltage or less. At this time, if there is no memory cell through which a current flows, the erasing operation is completed through verification again.

【0021】一方、電流が流れるメモリセルが存在すれ
ば、ドレイン電圧Vd 、ソース電圧Vs 、基板電圧Vsu
b を接地電位とし、制御ゲート電極5に例えば+12Vを
印加して書き込み(以下「FN書き込み」という。)を
行う。このFN書き込みは、制御ゲート電極5に正電圧
を印加してメモリセルのしきい値を高め、電流が流れる
メモリセルが存在しなくなるまで行う。その後、電流が
流れるメモリセルが存在しなくなれば、再び全ビットの
消去が行われたか否かを判定するベリファイを行う。こ
のとき、例えばしきい値 3.5V以上のメモリセルが存在
すれば、再び消去動作に戻って一連の動作を繰り返す。
On the other hand, if there is a memory cell through which a current flows, the drain voltage Vd, the source voltage Vs, and the substrate voltage Vsu.
Writing is performed by applying +12 V to the control gate electrode 5 with b as the ground potential (hereinafter referred to as “FN writing”). This FN writing is performed until a positive voltage is applied to the control gate electrode 5 to raise the threshold value of the memory cell and no memory cell through which a current flows exists. After that, if there is no memory cell through which a current flows, verification is performed again to determine whether or not all bits have been erased. At this time, for example, if there is a memory cell having a threshold value of 3.5 V or higher, the erase operation is resumed and a series of operations is repeated.

【0022】本実施例のアルゴリズムにより消去動作を
行った後のしきい値のばらつきの様子を図4に示す。消
去を行った後にFN書き込みを行うことにより、しきい
値のばらつきが1V程度と小さくなることがわかる。ま
た、しきい値のばらつきが大きくてディプレッションの
メモリセルが存在しても、FN書き込みにより救済する
ことができる。
FIG. 4 shows how the threshold value varies after the erase operation is performed according to the algorithm of this embodiment. It can be seen that the variation in the threshold value is reduced to about 1 V by performing the FN writing after the erasing. Further, even if there is a depletion memory cell due to a large variation in threshold value, it can be relieved by FN writing.

【0023】また、消去前に書き込みを行う必要がない
ので消去に要する全時間も短縮することができ、それに
伴って消費電流も低減することができる。従来法による
消去時間と、本発明法による消去時間を図2に示す。従
来法では、16Mビット規模では、消去前の書き込みに1.
25秒、消去に0.01秒、ベリファイに2.55秒を要する。一
方、本発明法では、消去に0.01秒、ディプレッションチ
ェックに 0.1秒、FN書き込みに 0.1秒、ベリファイに
2.55秒を要する。このように、本発明法の消去に要する
時間は、ほぼ従来法で行われる消去前の書き込みにかか
る時間だけ短縮することができる。したがって、集積規
模の大きい64Mビットでは消去時間の短縮効果が大きく
なる。また、通常の消去後にFN書き込みを行うことに
よりしきい値のばらつきが抑制されてベリファイの回数
が少なくなるので、全体の消去時間をさらに短縮できる
可能性がある。
Further, since it is not necessary to perform writing before erasing, the total time required for erasing can be shortened and the current consumption can be reduced accordingly. FIG. 2 shows the erase time by the conventional method and the erase time by the method of the present invention. In the conventional method, in the case of 16 Mbit scale, 1.
It takes 25 seconds, 0.01 seconds to erase, and 2.55 seconds to verify. On the other hand, in the method of the present invention, 0.01 seconds for erasing, 0.1 seconds for depletion check, 0.1 seconds for FN writing, and 10 seconds for verifying.
It takes 2.55 seconds. Thus, the time required for erasing according to the method of the present invention can be shortened by the time required for writing before erasing, which is performed by the conventional method. Therefore, the effect of shortening the erasing time becomes large with the large integration scale of 64 Mbits. Further, by performing FN writing after normal erasing, the variation of the threshold value is suppressed and the number of times of verification is reduced, so that there is a possibility that the entire erasing time can be further shortened.

【0024】なお、以上の説明で用いた消去は、ソース
領域7に正電圧を印加するソース消去に限るものではな
い。浮遊ゲート電極3から電子を引き抜くのであれば他
の方法、例えばソース領域7に正電圧を印加し制御ゲー
ト電極5に負電圧を印加して消去するソースゲート消去
法、あるいは制御ゲート電極5に負電圧を印加し半導体
基板1に正電圧を印加するチャネル消去法でも、本発明
によるデータ消去方法の適用が可能である。
The erasing used in the above description is not limited to the source erasing in which a positive voltage is applied to the source region 7. If electrons are to be extracted from the floating gate electrode 3, another method is used, for example, a source gate erasing method in which a positive voltage is applied to the source region 7 and a negative voltage is applied to the control gate electrode 5, or a negative voltage is applied to the control gate electrode 5. The data erasing method according to the present invention can also be applied to the channel erasing method in which a voltage is applied and a positive voltage is applied to the semiconductor substrate 1.

【0025】[0025]

【発明の効果】以上説明したように本発明は、複数の記
憶素子の消去後のしきい値のばらつきを小さくすること
ができる。また、過剰に消去された記憶素子の救済が可
能となるので、歩留りを向上させることができる。ま
た、従来のアルゴリズムで行っていた消去前の書き込み
が不要となるので、消去時間の短縮および消費電流の低
減を図ることができる。
As described above, according to the present invention, it is possible to reduce variations in threshold values after erasing of a plurality of memory elements. In addition, since it becomes possible to rescue the memory elements that are excessively erased, the yield can be improved. In addition, since the writing before erasing, which is performed by the conventional algorithm, is unnecessary, it is possible to reduce the erasing time and the current consumption.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の実施例のアルゴリズムを示す図。FIG. 1 is a diagram showing an algorithm of an embodiment of the method of the present invention.

【図2】従来法と本発明法による消去時間を比較する
図。
FIG. 2 is a diagram comparing erasing times by the conventional method and the method of the present invention.

【図3】フラッシュメモリの構造の一例を示す図。FIG. 3 is a diagram showing an example of a structure of a flash memory.

【図4】従来法と本発明法による消去後のしきい値のば
らつきを比較する図。
FIG. 4 is a diagram comparing variations in threshold value after erasing by the conventional method and the method of the present invention.

【図5】従来のデータ消去方法のアルゴリズムを示す
図。
FIG. 5 is a diagram showing an algorithm of a conventional data erasing method.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 ゲート酸化膜 3 浮遊ゲート電極 4 ゲート絶縁膜 5 制御ゲート電極 6 ドレイン領域 7 ソース領域 8 チャネル領域 9 ドレイン領域の端部 10 ソース領域の端部 1 semiconductor substrate 2 gate oxide film 3 floating gate electrode 4 gate insulating film 5 control gate electrode 6 drain region 7 source region 8 channel region 9 edge of drain region 10 edge of source region

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 29/788 29/792 H01L 29/78 371 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location H01L 29/788 29/792 H01L 29/78 371

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 浮遊ゲートと制御ゲートの2層構造ゲー
トを有する記憶素子を複数配置して構成される不揮発性
半導体記憶装置のデータ消去方法において、 消去する複数の記憶素子のしきい値を所定のしきい値以
下に設定した後にディプレッションチェックを行い、電
流が流れる記憶素子が存在すれば、存在しなくなるまで
前記制御ゲートに正電圧を印加して記憶素子のしきい値
を高めることを特徴とする不揮発性半導体記憶装置のデ
ータ消去方法。
1. A data erasing method for a nonvolatile semiconductor memory device configured by arranging a plurality of memory elements having a two-layer structure gate of a floating gate and a control gate, wherein a threshold value of the plurality of memory elements to be erased is set to a predetermined value. When the depletion check is performed after setting the threshold value below, and if there is a storage element through which current flows, a positive voltage is applied to the control gate until the storage element does not exist, and the threshold value of the storage element is increased. Data erasing method for nonvolatile semiconductor memory device.
【請求項2】 浮遊ゲートと制御ゲートの2層構造ゲー
トを有する記憶素子を複数配置して構成される不揮発性
半導体記憶装置のデータ消去方法において、 消去する複数の記憶素子に対して同時に所定の電圧の電
気パルスを印加する消去動作と、記憶素子の読み出しに
よって消去判定を行うベリファイとを繰り返して各記憶
素子のしきい値を所定のしきい値以下に設定し、 所定の制御ゲート電圧以下で電流の流れる記憶素子が存
在するか否かを判定するディプレッションチェックを行
い、 前記ディプレッションチェックで電流が流れる記憶素子
が存在すれば、存在しなくなるまで前記制御ゲートに正
電圧を印加して記憶素子のしきい値を高める書き込みを
行い、 再度記憶素子の読み出しによって消去判定を行うベリフ
ァイにより、各記憶素子のうち所定のしきい値を越える
記憶素子があれば前記消去動作以降を繰り返すことを特
徴とする不揮発性半導体記憶装置のデータ消去方法。
2. A data erasing method for a non-volatile semiconductor memory device configured by arranging a plurality of memory elements having a two-layer structure gate of a floating gate and a control gate, wherein a predetermined number of memory elements are simultaneously erased. The threshold value of each memory element is set below a predetermined threshold value by repeating the erase operation of applying an electric pulse of voltage and the verification of erasing judgment by reading out the memory element. A depletion check is performed to determine whether or not a memory element through which a current flows is present. If a memory element through which a current flows is present in the depletion check, a positive voltage is applied to the control gate until the memory element does not exist. Each memory element is verified by verifying that writing is performed to increase the threshold value and then erasing is determined by reading the memory element again. Data erase method of a nonvolatile semiconductor memory device characterized by repeating the erase operation after if any memory element exceeds a predetermined threshold of.
JP32392893A 1993-12-22 1993-12-22 Method of erasing data of nonvolatile semiconductor storage device Pending JPH07182877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32392893A JPH07182877A (en) 1993-12-22 1993-12-22 Method of erasing data of nonvolatile semiconductor storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32392893A JPH07182877A (en) 1993-12-22 1993-12-22 Method of erasing data of nonvolatile semiconductor storage device

Publications (1)

Publication Number Publication Date
JPH07182877A true JPH07182877A (en) 1995-07-21

Family

ID=18160198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32392893A Pending JPH07182877A (en) 1993-12-22 1993-12-22 Method of erasing data of nonvolatile semiconductor storage device

Country Status (1)

Country Link
JP (1) JPH07182877A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5844847A (en) * 1995-12-08 1998-12-01 Nec Corporation Method and Nonvolatile semiconductor memory for repairing over-erased cells
US6356480B1 (en) 1999-08-26 2002-03-12 Mitsubishi, Denki, Kabushiki, Kaisha Nonvolatile semiconductor memory device capable of suppressing reduction of bit line potential in write-back operation and erase method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03230566A (en) * 1990-02-06 1991-10-14 Mitsubishi Electric Corp Nonvolatile semiconductor memory device
JPH04154000A (en) * 1990-10-15 1992-05-27 Mitsubishi Electric Corp Nonvolatile semiconductor memory
JPH05314783A (en) * 1992-05-13 1993-11-26 Sony Corp Erasure method for nonvolatile semiconductor memory provided with erasure function and writing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03230566A (en) * 1990-02-06 1991-10-14 Mitsubishi Electric Corp Nonvolatile semiconductor memory device
JPH04154000A (en) * 1990-10-15 1992-05-27 Mitsubishi Electric Corp Nonvolatile semiconductor memory
JPH05314783A (en) * 1992-05-13 1993-11-26 Sony Corp Erasure method for nonvolatile semiconductor memory provided with erasure function and writing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5844847A (en) * 1995-12-08 1998-12-01 Nec Corporation Method and Nonvolatile semiconductor memory for repairing over-erased cells
US6356480B1 (en) 1999-08-26 2002-03-12 Mitsubishi, Denki, Kabushiki, Kaisha Nonvolatile semiconductor memory device capable of suppressing reduction of bit line potential in write-back operation and erase method
US6466484B2 (en) 1999-08-26 2002-10-15 Mitsubishi Denki Kabushiki Kaisha Nonvolatile semiconductor memory device capable of suppressing reduction of bit line potential in write-back operation and erase method

Similar Documents

Publication Publication Date Title
US5295107A (en) Method of erasing data stored in flash type nonvolatile memory cell
US5696717A (en) Nonvolatile integrated circuit memory devices having adjustable erase/program threshold voltage verification capability
US6934194B2 (en) Nonvolatile memory having a trap layer
US5751636A (en) Semiconductor memory device having data erasing mechanism
JPH09162314A (en) Non-volatile semiconductor memory device and string method
US9484107B2 (en) Dual non-volatile memory cell comprising an erase transistor
JP2009540545A (en) Nonvolatile memory embedded in a conventional logic process and method of operating such a nonvolatile memory
JP2001325793A (en) Non-volatile semiconductor memory, and data holding method for non-volatile semiconductor memory
US9245644B2 (en) Method and apparatus for reducing erase disturb of memory by using recovery bias
JP3974778B2 (en) Nonvolatile semiconductor memory device and data erasing method thereof
JPH11233653A (en) Deletion method for nonvolatile semiconductor storage device
US6404681B1 (en) Method for erasing data from a non-volatile semiconductor memory device
JP3202545B2 (en) Semiconductor memory device and design method thereof
JP4517503B2 (en) Multilevel writing and reading method of nonvolatile semiconductor memory device
WO2002097821A1 (en) Nonvolatile semiconductor storage device
JP3658066B2 (en) Nonvolatile semiconductor memory device and rewriting method thereof
JP2755197B2 (en) Semiconductor nonvolatile storage device
JPH07182877A (en) Method of erasing data of nonvolatile semiconductor storage device
JPH0512889A (en) Nonvolatile semiconductor storage
JP3075544B2 (en) How to use nonvolatile memory
US6266280B1 (en) Method of programming nonvolatile semiconductor device at low power
JP2002367380A (en) Non-volatile semiconductor memory
US7554851B2 (en) Reset method of non-volatile memory
JPH04359476A (en) Method of rewriting nonvolatile semiconductor memory
JP3109379B2 (en) Nonvolatile memory cell, method of adjusting threshold value of transistor, method of adjusting threshold value of transistor, nonvolatile memory device, and operation method thereof

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970819