JPH07181366A - Automatic focusing camera and automatic focusing method of camera - Google Patents

Automatic focusing camera and automatic focusing method of camera

Info

Publication number
JPH07181366A
JPH07181366A JP5324394A JP32439493A JPH07181366A JP H07181366 A JPH07181366 A JP H07181366A JP 5324394 A JP5324394 A JP 5324394A JP 32439493 A JP32439493 A JP 32439493A JP H07181366 A JPH07181366 A JP H07181366A
Authority
JP
Japan
Prior art keywords
optical system
focus
focus detection
photographing optical
image data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5324394A
Other languages
Japanese (ja)
Other versions
JP3574167B2 (en
Inventor
Yosuke Kusaka
洋介 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP32439493A priority Critical patent/JP3574167B2/en
Priority to US08/348,145 priority patent/US5532783A/en
Publication of JPH07181366A publication Critical patent/JPH07181366A/en
Application granted granted Critical
Publication of JP3574167B2 publication Critical patent/JP3574167B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To shorten the focus detecting arithmetic time during scanning drive, eliminate the missing of a subject even at a high-speed scanning drive, and surely detect the subject when the subject is out of the frame. CONSTITUTION:A pair of subject images formed by the luminous flux passed through a photographing optical system 3 is received and converted into a pair of subject image data according to the light intensity distribution, and the correlation degree is arithmetically operated while relatively shifting the subject image data to detect the focusing state of the photographing optical system 3. When the reliability of the detection result of the focusing state is high, the photographing optical system 3 is driven on the basis of the detected focusing state, and when the focusing state can not be detected, or the reliability of the detection result is low, the photographing optical system 3 is scanning- driven, and the quantity of the subject image data is more limited than during non-scanning drive to arithmetically operate the Correlation degree on the basis of the less subject image data, and the focusing of the photographing optical system 3 is detected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、焦点検出不能時に撮影
光学系を至近と無限の間で走査駆動する自動焦点調節カ
メラおよびカメラの自動焦点調節方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic focusing camera for driving a photographing optical system to scan between a near range and an infinity when focus detection is impossible, and an automatic focusing method for the camera.

【0002】[0002]

【従来の技術】焦点検出光学系によって形成された被写
体像を電荷蓄積型イメージセンサーを用いて受光し、イ
メージセンサーの出力を演算処理して撮影光学系の予定
焦点面に対する被写体像面のデフォーカス量を検出し、
このデフォーカス量に応じてフォーカシングレンズを駆
動することにより、撮影光学系の合焦を達成する自動焦
点調節カメラが知られている。この種のカメラでは、被
写体像のコントラストが不足しているためにデフォーカ
ス量の算出が不能であったり、あるいは算出されたデフ
ォーカス量の信頼性が低いと判定された場合には、被写
体像のコントラストが高く、信頼性の高いデフォーカス
量を算出できるフォーカシングレンズの位置をさがすた
め、フォーカシングレンズを至近端と無限端の間で走査
駆動し、焦点検出を行なっている。
2. Description of the Related Art A subject image formed by a focus detection optical system is received by a charge storage type image sensor, and an output of the image sensor is arithmetically processed to defocus a subject image plane with respect to a planned focal plane of a photographing optical system. Detect the amount,
There is known an automatic focusing camera that drives a focusing lens according to the defocus amount to achieve focusing of a photographing optical system. With this type of camera, the defocus amount cannot be calculated because the contrast of the subject image is insufficient, or when it is determined that the calculated defocus amount is unreliable, In order to find the position of the focusing lens that can calculate the defocus amount with high contrast and high reliability, the focusing lens is scanned and driven between the closest end and the infinite end to perform focus detection.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述し
た従来の自動焦点調節カメラには、次のような問題があ
る。焦点検出装置で検出できるデフォーカス量には限界
があるので、焦点検出から次の焦点検出までの焦点検出
間隔における撮影光学系のフォーカシングレンズの移動
量が大きいと、走査駆動中に被写体の合焦位置を見逃す
ことがある。
However, the above-described conventional automatic focusing camera has the following problems. There is a limit to the amount of defocus that can be detected by the focus detection device.Therefore, if the amount of movement of the focusing lens of the photographic optical system in the focus detection interval from focus detection to the next focus detection is large, the focus of the subject during scan You may miss a position.

【0004】図13により、この問題を詳細に説明す
る。図13は走査駆動中の撮影光学系のフォーカシング
レンズの位置を示す図であり、(a)は焦点検出間隔に
おけるフォーカシングレンズの移動量が検出可能デフォ
ーカス量に比較して小さい場合を示し、(b)は焦点検
出間隔におけるフォーカシングレンズの移動量が検出可
能デフォーカス量に比較して大きい場合を示す。図にお
いて、P1〜P6は走査駆動中の焦点検出時刻における
撮影光学系のフォーカシングレンズの位置を示す。ま
た、Wは各フォーカシングレンズ位置P1〜P6におけ
る検出可能デフォーカス量の範囲を示し、Qは被写体に
対するフォーカシングレンズの合焦位置を示す。図13
(a)に示すような走査駆動では、各フォーカシングレ
ンズ位置P1,P2,P3,P4における検出可能デフ
ォーカス量の範囲Wが互いに重なっているので、合焦位
置Qを見逃してしまうようなことはない。ところが、焦
点検出間隔におけるフォーカシングレンズの移動量が検
出可能なデフォーカス量よりも大きくなると、図13
(b)に示すように検出可能デフォーカス量の範囲Wの
重なりがなくなり、範囲Wの間に合焦位置Qが位置する
と合焦位置Qを見逃してしまうことがある。
This problem will be described in detail with reference to FIG. FIG. 13 is a diagram showing the position of the focusing lens of the photographic optical system during scanning drive, and FIG. 13A shows the case where the movement amount of the focusing lens in the focus detection interval is smaller than the detectable defocus amount. In b), the movement amount of the focusing lens in the focus detection interval is larger than the detectable defocus amount. In the figure, P1 to P6 indicate the position of the focusing lens of the photographing optical system at the focus detection time during scanning drive. W indicates the range of the defocus amount that can be detected at each of the focusing lens positions P1 to P6, and Q indicates the focus position of the focusing lens with respect to the subject. FIG.
In the scanning drive as shown in (a), since the ranges W of detectable defocus amounts at the focusing lens positions P1, P2, P3, and P4 overlap with each other, the focus position Q may not be missed. Absent. However, when the amount of movement of the focusing lens in the focus detection interval becomes larger than the detectable defocus amount, FIG.
As shown in (b), when the range W of the detectable defocus amount does not overlap and the focus position Q is located within the range W, the focus position Q may be missed.

【0005】瞳分割型像ズレ検出方式の自動焦点調節カ
メラでは、撮影光学系の射出瞳の異なる部分を通過した
光束により形成される一対の被写体像をイメージセンサ
ーで受光し、このイメージセンサーから出力される一対
の被写体像データを相対的にシフトして相関演算を行
い、検出された一対の被写体像の相対的位置関係からフ
ォーカシングレンズの焦点調節状態を検出している。し
たがって、走査駆動時に焦点検出演算時間が長いと図1
3(b)に示すような状態になる。
In an automatic focusing camera of the pupil division type image shift detection system, an image sensor receives a pair of object images formed by light fluxes passing through different parts of the exit pupil of the photographing optical system, and outputs from the image sensor. The pair of subject image data is relatively shifted to perform a correlation calculation, and the focus adjustment state of the focusing lens is detected from the relative positional relationship of the detected pair of subject images. Therefore, if the focus detection calculation time is long during scanning drive,
The state becomes as shown in 3 (b).

【0006】このような問題を解決するために、走査駆
動中はフォーカシングレンズの走査駆動方向に応じて焦
点検出相関演算のシフト範囲を制限し、焦点検出演算時
間を短縮するようにした自動焦点調節カメラが提案され
ている(例えば、特開昭63−172211号公報参
照)。つまり、走査駆動中も通常の焦点検出時と同じシ
フト量で相関演算を行なうと焦点検出演算時間が長くな
るので、焦点検出相関演算のシフト範囲を制限して焦点
検出演算時間を短縮している。
In order to solve such a problem, during the scanning drive, the shift range of the focus detection correlation calculation is limited in accordance with the scanning drive direction of the focusing lens to shorten the focus detection calculation time. A camera has been proposed (see, for example, JP-A-63-172211). That is, since the focus detection calculation time becomes long if the correlation calculation is performed with the same shift amount as during the normal focus detection even during the scanning drive, the shift range of the focus detection correlation calculation is limited to shorten the focus detection calculation time. .

【0007】ところが、走査駆動中にフォーカシングレ
ンズの走査駆動方向に応じて焦点検出相関演算における
シフト範囲を制限するだけでは、十分に演算時間短縮の
目的が達成されない場合がある。また、カメラを手で保
持して移動被写体を撮影する時は、移動被写体が焦点検
出領域から外れてしまう(以下、被写体フレーム外しと
呼ぶ)ために焦点検出不能となる場合もある。このよう
な場合、走査駆動方向のみにシフト範囲を制限すると、
走査駆動開始後に被写体が焦点検出領域に復帰しても焦
点検出不能となってしまう。
However, the object of shortening the calculation time may not be sufficiently achieved only by limiting the shift range in the focus detection correlation calculation according to the scanning drive direction of the focusing lens during the scanning drive. In addition, when the moving subject is photographed while holding the camera with a hand, the moving subject may be out of the focus detection area (hereinafter, referred to as subject frame removal), and thus focus detection may be impossible. In such a case, if the shift range is limited only to the scanning drive direction,
Even if the subject returns to the focus detection area after the start of scanning drive, focus detection becomes impossible.

【0008】本発明の目的は、走査駆動中における焦点
検出演算時間を短縮し、高速で走査駆動を行っても被写
体を見逃すことがないようにするとともに、被写体フレ
ーム外しがあった場合でも確実に被写体を検出できる自
動焦点調節カメラおよびカメラの自動焦点調節方法を提
供することにある。
An object of the present invention is to shorten the focus detection calculation time during the scanning drive so that the subject is not missed even when the scanning drive is performed at a high speed, and even if the subject frame is missed, it is ensured. An object of the present invention is to provide an automatic focusing camera capable of detecting a subject and an automatic focusing method for the camera.

【0009】[0009]

【課題を解決するための手段】第1の実施例を示す図1
に対応づけて本発明を説明すると、請求項1の発明は、
撮影光学系3を通過した被写体からの光束により一対の
被写体像を結像する焦点検出光学系7と、この焦点検出
光学系7により結像される一対の被写体像を受光して光
強度分布に応じた一対の被写体像データを出力するイメ
ージセンサー8と、このイメージセンサー8から出力さ
れる一対の被写体像データを相対的にシフトさせながら
相関度を演算し、演算結果の相関度に基づいて撮影光学
系3の焦点調節状態を検出する焦点検出手段11と、こ
の焦点検出手段11により検出された焦点調節状態に基
づいて撮影光学系3を駆動する駆動手段17と、焦点検
出手段11による焦点検出の可否および焦点検出結果の
信頼性を判定する判定手段12と、この判定手段12に
より焦点検出結果の信頼性が高いと判定されると、焦点
検出手段11により検出された焦点調節状態に基づいて
駆動手段17により撮影光学系3を駆動し、判定手段1
2により焦点検出不能または焦点検出可能であっても焦
点検出結果の信頼性が低いと判定されると、駆動手段1
7により撮影光学系3を走査駆動し、焦点検出手段11
により撮影光学系3の焦点検出を行なう制御手段14、
15とを備えた自動焦点調節カメラに適用される。そし
て、焦点検出手段11は、撮影光学系3の走査駆動中は
相関度の演算で使用する被写体像データの量を非走査駆
動中よりも制限することにより、上記目的を達成する。
請求項2の自動焦点調節カメラの焦点検出手段11は、
撮影光学系3の走査駆動中は被写体像データの中心部分
のデータのみを用いて相関度を演算するようにしたもの
である。請求項3の自動焦点調節カメラの焦点検出手段
11は、撮影光学系3の走査駆動中は被写体像データを
間引いて相関度を演算するようにしたものである。請求
項4の発明は、撮影光学系3を通過した被写体からの光
束により一対の被写体像を結像する焦点検出光学系7
と、この焦点検出光学系7により結像される一対の被写
体像を受光して光強度分布に応じた一対の被写体像デー
タを出力するイメージセンサー8と、このイメージセン
サー8から出力される一対の被写体像データを相対的に
シフトさせながら各シフト量における相関度を演算し、
その相関度に基づいて撮影光学系3の焦点調節状態を検
出する焦点検出手段11と、この焦点検出手段11によ
り検出された焦点調節状態に基づいて撮影光学系3を駆
動する駆動手段17と、焦点検出手段11による焦点検
出の可否および焦点検出結果の信頼性を判定する判定手
段12と、この判定手段12により焦点検出結果の信頼
性が高いと判定されると、焦点検出手段11により検出
された焦点調節状態に基づいて駆動手段17により撮影
光学系3を駆動し、判定手段12により焦点検出不能ま
たは焦点検出可能であっても焦点検出結果の信頼性が低
いと判定されると、駆動手段17により撮影光学系3を
走査駆動し、焦点検出手段11により撮影光学系3の焦
点検出を行なう制御手段14、15とを備えた自動焦点
調節カメラに適用される。そして、焦点検出手段11
は、撮影光学系3の走査駆動中は相関度の演算における
一対の被写体像データの相対的なシフト量を非走査駆動
中よりも大きくすることにより、上記目的を達成する。
請求項5の自動焦点調節カメラの制御手段14、15
は、判定手段12により焦点検出結果の信頼性が高いと
判定された後は撮影光学系3の走査駆動を行なわないよ
うにしたものである。請求項6の自動焦点調節カメラ
は、撮影光学系を通過した光束により形成される一対の
被写体像を受光して光強度分布に応じた一対の被写体像
データに変換し、その一対の被写体像データを相対的に
シフトさせながら相関度を演算して撮影光学系の焦点調
節状態を検出し、焦点調節状態の検出結果の信頼性が高
い時は検出された焦点調節状態に基づいて撮影光学系を
駆動し、焦点調節状態の検出不能または検出結果の信頼
性が低い時は撮影光学系を走査駆動し、撮影光学系3の
焦点検出を行なうカメラの自動焦点調節方法に適用され
る。そして、撮影光学系の走査駆動中は相関度の演算で
使用する被写体像データの量を非走査駆動中よりも制限
することにより、上記目的を達成する。請求項7のカメ
ラの自動焦点調節方法は、撮影光学系の走査駆動中は被
写体像データの中心部分のみを用いて相関度を演算す
る。請求項8のカメラの自動焦点調節方法は、撮影光学
系の走査駆動中は被写体像データを間引いて相関度を演
算する。請求項9の発明は、撮影光学系を通過した光束
により形成される一対の被写体像を受光して光強度分布
に応じた一対の被写体像データに変換し、その一対の被
写体像データを相対的にシフトさせながら各シフト量に
おける相関度を演算して撮影光学系の焦点調節状態を検
出し、焦点調節状態の検出結果の信頼性が高い時は検出
された焦点調節状態に基づいて撮影光学系を駆動し、焦
点調節状態の検出不能または検出結果の信頼性が低い時
は撮影光学系を走査駆動し、撮影光学系3の焦点検出を
行なうカメラの自動焦点調節方法に適用される。そし
て、撮影光学系の走査駆動中は相関度の演算における一
対の被写体像データの相対的なシフト量を非走査駆動中
よりも大きくすることにより、上記目的を達成する。請
求項10のカメラの自動焦点調節方法は、信頼性の高い
焦点調節状態の検出結果が得られた後は撮影光学系の走
査駆動を行なわない。
FIG. 1 showing a first embodiment.
The present invention will be described in association with
A focus detection optical system 7 that forms a pair of subject images by the light flux from the subject that has passed through the photographing optical system 3, and a pair of subject images that are formed by the focus detection optical system 7 are received to form a light intensity distribution. The image sensor 8 that outputs a pair of subject image data corresponding to the image sensor 8 and the pair of subject image data that are output from the image sensor 8 are relatively shifted to calculate the correlation degree, and the photographing is performed based on the calculated correlation degree. Focus detection means 11 for detecting the focus adjustment state of the optical system 3, drive means 17 for driving the photographing optical system 3 based on the focus adjustment state detected by the focus detection means 11, and focus detection by the focus detection means 11. Of the focus detection result and the reliability of the focus detection result. When the determination unit 12 determines that the focus detection result has high reliability, the focus detection unit 11 determines Driving the photographing optical system 3 by the drive means 17 on the basis of the detected focusing state, determination means 1
If it is determined that the focus detection result is low or the focus detection result is low in reliability, the driving unit 1
7, the photographing optical system 3 is scan-driven, and the focus detection means 11
Control means 14 for detecting the focus of the photographing optical system 3 by
15 and an autofocus camera with. Then, the focus detection unit 11 achieves the above object by limiting the amount of subject image data used in the calculation of the degree of correlation during the scanning drive of the photographing optical system 3 as compared with during the non-scanning drive.
The focus detection means 11 of the automatic focusing camera according to claim 2,
During scanning drive of the photographing optical system 3, the correlation degree is calculated using only the data of the central portion of the subject image data. The focus detecting means 11 of the automatic focusing camera according to the third aspect is configured to thin out the object image data and calculate the degree of correlation during the scanning drive of the photographing optical system 3. According to a fourth aspect of the present invention, the focus detection optical system 7 forms a pair of subject images by the light flux from the subject that has passed through the photographing optical system 3.
An image sensor 8 that receives a pair of subject images formed by the focus detection optical system 7 and outputs a pair of subject image data corresponding to the light intensity distribution; and a pair of image sensors output from the image sensor 8. While relatively shifting the subject image data, calculate the degree of correlation at each shift amount,
A focus detection unit 11 that detects the focus adjustment state of the photographing optical system 3 based on the degree of correlation, and a drive unit 17 that drives the photographing optical system 3 based on the focus adjustment state detected by the focus detection unit 11. The determination means 12 for determining whether or not the focus detection means 11 can detect the focus and the reliability of the focus detection result, and when the determination means 12 determines that the reliability of the focus detection result is high, the focus detection means 11 detects the result. When the photographing optical system 3 is driven by the driving means 17 based on the focus adjustment state and the determination means 12 determines that the focus detection result is low or the focus detection result is low, the drive means is driven. The present invention is applied to an automatic focus adjustment camera provided with control means 14 and 15 for scanning and driving the photographing optical system 3 by 17, and for performing focus detection of the photographing optical system 3 by the focus detecting means 11. It is. Then, the focus detection means 11
Achieves the above object by making the relative shift amount of the pair of subject image data in the calculation of the correlation degree during the scanning drive of the photographing optical system 3 larger than during the non-scanning drive.
Control means 14, 15 of the automatic focusing camera according to claim 5.
Means that the scanning drive of the photographing optical system 3 is not performed after the determination unit 12 determines that the focus detection result is highly reliable. The automatic focusing camera according to claim 6 receives a pair of subject images formed by a light flux that has passed through a photographing optical system, converts the pair of subject images into a pair of subject image data according to a light intensity distribution, and the pair of subject image data. Is relatively shifted, the correlation degree is calculated to detect the focus adjustment state of the photographic optical system, and when the detection result of the focus adjustment state is highly reliable, the photographic optical system is adjusted based on the detected focus adjustment state. The present invention is applied to an automatic focus adjusting method for a camera, which is driven to detect the focus of the photographing optical system 3 by scanning the photographing optical system when the focus adjustment state cannot be detected or the reliability of the detection result is low. The above object is achieved by limiting the amount of subject image data used in the calculation of the degree of correlation during scanning driving of the photographing optical system as compared with during non-scanning driving. According to the seventh aspect of the automatic focus adjusting method of the camera, the degree of correlation is calculated using only the central portion of the subject image data during the scanning drive of the photographing optical system. In the automatic focus adjusting method for a camera according to the present invention, the degree of correlation is calculated by thinning out subject image data during scanning drive of the photographing optical system. According to a ninth aspect of the present invention, a pair of subject images formed by the light flux that has passed through the photographing optical system is received and converted into a pair of subject image data according to the light intensity distribution, and the pair of subject image data is relative. The focus adjustment state of the photographic optical system is detected by calculating the degree of correlation in each shift amount while shifting to the right.When the detection result of the focus adjustment state is highly reliable, the photographic optical system is based on the detected focus adjustment state. When the focus adjustment state cannot be detected or the reliability of the detection result is low, the present invention is applied to a camera automatic focus adjustment method in which the photographing optical system is scan-driven to detect the focus of the photographing optical system 3. The above object is achieved by increasing the relative shift amount of the pair of subject image data in the calculation of the degree of correlation during scanning driving of the photographing optical system as compared with during non-scanning driving. In the automatic focus adjustment method for a camera according to the tenth aspect, the scanning drive of the photographing optical system is not performed after the highly reliable detection result of the focus adjustment state is obtained.

【0010】[0010]

【作用】撮影光学系3を通過した光束により形成される
一対の被写体像を受光して光強度分布に応じた一対の被
写体像データに変換し、その一対の被写体像データを相
対的にシフトさせながら相関度を演算して撮影光学系3
の焦点調節状態を検出する。そして、この焦点調節状態
の検出結果の信頼性が高い時は、検出された焦点調節状
態に基づいて撮影光学系3を駆動し、焦点調節状態の検
出不能または検出結果の信頼性が低い時は、撮影光学系
3を走査駆動し、被写体像データの量を非走査駆動中よ
りも制限して少ない被写体像データに基づいて相関度を
演算し、撮影光学系3の焦点検出を行なう。これによ
り、走査駆動中の相関演算処理の規模を非走査駆動中の
規模より小さくすることができ、相関演算時間が短縮さ
れることにより走査駆動中における焦点検出間隔も短縮
され、高速で走査駆動を行なっても被写体を見逃すこと
が少なくなるとともに、被写体フレーム外しがあった場
合でも確実に被写体を検出できる。また、撮影光学系3
を通過した光束により形成される一対の被写体像を受光
して光強度分布に応じた一対の被写体像データに変換
し、その一対の被写体像データを相対的にシフトさせな
がら各シフト量における相関度を演算して撮影光学系3
の焦点調節状態を検出する。そして、この焦点調節状態
の検出結果の信頼性が高い時は、検出された焦点調節状
態に基づいて撮影光学系3を駆動し、焦点調節状態の検
出不能または検出結果の信頼性が低い時は、撮影光学系
3を走査駆動し、一対の被写体像データの相対的なシフ
ト量を非走査駆動中よりも大きくして相関度を演算し、
撮影光学系3の焦点検出を行なう。これにより、走査駆
動中の相関演算処理の規模を非走査駆動中の規模より小
さくすることができ、相関演算時間が短縮されることに
より走査駆動中における焦点検出間隔も短縮され、高速
で走査駆動を行なっても被写体を見逃すことが少なくな
るとともに、被写体フレーム外しがあった場合でも確実
に被写体を検出できる。
The pair of subject images formed by the light flux passing through the photographing optical system 3 is received and converted into a pair of subject image data corresponding to the light intensity distribution, and the pair of subject image data is relatively shifted. While calculating the degree of correlation, shooting optical system 3
The focus adjustment state of is detected. When the reliability of the focus adjustment state detection result is high, the photographing optical system 3 is driven based on the detected focus adjustment state, and when the focus adjustment state cannot be detected or the detection result reliability is low. The scanning optical system 3 is driven to scan, the amount of the subject image data is limited as compared with that during non-scanning driving, the correlation degree is calculated based on the less subject image data, and the focus of the photographing optical system 3 is detected. As a result, the scale of the correlation calculation processing during scan driving can be made smaller than the scale during non-scan driving, and the correlation calculation time is shortened, so the focus detection interval during scan driving is also shortened, and scan driving is performed at high speed. Even when performing, the subject is less likely to be missed, and the subject can be reliably detected even when the subject frame is missed. Also, the photographing optical system 3
A pair of subject images formed by the light flux that has passed through the received light is received and converted into a pair of subject image data according to the light intensity distribution, and the correlation degree at each shift amount while relatively shifting the pair of subject image data. To calculate the shooting optical system 3
The focus adjustment state of is detected. When the reliability of the focus adjustment state detection result is high, the photographing optical system 3 is driven based on the detected focus adjustment state, and when the focus adjustment state cannot be detected or the detection result reliability is low. , The photographing optical system 3 is driven to scan, the relative shift amount of a pair of subject image data is made larger than that during non-scanning drive, and the degree of correlation is calculated.
The focus of the photographing optical system 3 is detected. As a result, the scale of the correlation calculation processing during scan driving can be made smaller than the scale during non-scan driving, and the correlation calculation time is shortened, so the focus detection interval during scan driving is also shortened, and scan driving is performed at high speed. Even when performing, the subject is less likely to be missed, and the subject can be reliably detected even when the subject frame is missed.

【0011】なお、本発明の構成を説明する上記課題を
解決するための手段および作用の項では、本発明を分り
やすくするために実施例の図を用いたが、これにより本
発明が実施例に限定されるものではない。
Incidentally, in the section of means and action for solving the above problems for explaining the constitution of the present invention, the drawings of the embodiments are used for the purpose of making the present invention easy to understand. It is not limited to.

【0012】[0012]

【実施例】【Example】

−第1の実施例− 図1は第1の実施例の構成を示す機能ブロック図であ
る。カメラボディー1には交換可能なレンズ2が装着さ
れる。レンズ2内には撮影光学系3があり、この撮影光
学系3を通る被写体からの光束はハーフミラーから構成
されるメインミラー4によりサブミラー5とファインダ
ー6の方向へ分割される。サブミラー5によりさらにボ
ディ底方向に偏向された光束は、撮影光学系3の予定焦
点面の近傍に配置された焦点検出光学系7へ導かれる。
First Embodiment FIG. 1 is a functional block diagram showing the configuration of the first embodiment. An interchangeable lens 2 is attached to the camera body 1. A photographing optical system 3 is provided in the lens 2, and a light flux from a subject passing through the photographing optical system 3 is split by a main mirror 4 composed of a half mirror toward a sub mirror 5 and a finder 6. The light beam further deflected in the body bottom direction by the sub-mirror 5 is guided to a focus detection optical system 7 arranged near the planned focal plane of the photographing optical system 3.

【0013】図2に焦点検出光学系と電荷蓄積型イメー
ジセンサーの構成を示す。焦点検出光学系7は、開口部
70を有する視野マスク71、コンデンサーレンズ7
2、一対の絞り開口部73、74を有する絞りマスク7
5、一対の再結像レンズ76、77を有する。電荷蓄積
型イメージセンサー8は一対の受光部80、81を有す
る。撮影光学系3により光軸上の開口70近傍に形成さ
れた被写体の一次像は、焦点検出光学系7によりイメー
ジセンサー8の受光部80、81上に一対の二次像とし
て再結像される。
FIG. 2 shows the structures of the focus detection optical system and the charge storage type image sensor. The focus detection optical system 7 includes a field mask 71 having an opening 70 and a condenser lens 7.
2. A diaphragm mask 7 having a pair of diaphragm openings 73, 74
5. It has a pair of re-imaging lenses 76 and 77. The charge storage image sensor 8 has a pair of light receiving portions 80 and 81. The primary image of the object formed by the photographing optical system 3 in the vicinity of the opening 70 on the optical axis is re-imaged by the focus detection optical system 7 on the light receiving portions 80 and 81 of the image sensor 8 as a pair of secondary images. .

【0014】以上のような構成において、一対の絞り開
口部73、74はコンデンサーレンズ72により撮影光
学系3の射出瞳近傍の面30の光軸に対して対称な一対
の領域31、32に投影されており、この領域を通る光
束は、視野マスク71付近でまず一次像を形成する。視
野マスク71の開口部70に形成された一次像はさら
に、コンデンサーレンズ72、一対の絞り開口部73、
74を通り、一対の再結像レンズ76、77により電荷
蓄積型イメージセンサー8の受光部80、81上に一対
の二次像として形成される。一対の二次像の光強度分布
は受光部80、81で光電変換され、電気的な被写体像
信号となる。
In the structure described above, the pair of aperture openings 73 and 74 are projected by the condenser lens 72 onto the pair of regions 31 and 32 symmetrical with respect to the optical axis of the surface 30 near the exit pupil of the photographing optical system 3. The light flux passing through this area first forms a primary image near the field mask 71. The primary image formed in the opening 70 of the field mask 71 further includes a condenser lens 72, a pair of aperture openings 73,
After passing through 74, a pair of re-imaging lenses 76 and 77 form a pair of secondary images on the light receiving portions 80 and 81 of the charge storage image sensor 8. The light intensity distributions of the pair of secondary images are photoelectrically converted by the light receiving units 80 and 81 to become an electrical subject image signal.

【0015】ふたたび図1の説明に戻る。イメージセン
サー8の1対の電気的な被写体像信号はマイクロコンピ
ュータ16(以下マイコンと呼ぶ)に取り込まれ、焦点
検出演算部11はこの一対の被写体像信号の相対的位置
関係を像ズレ演算により算出し、撮影光学系3の像面と
予定焦点面とのデフォーカス量DEFを検出する。
Returning again to the explanation of FIG. A pair of electric subject image signals of the image sensor 8 is taken into a microcomputer 16 (hereinafter referred to as a microcomputer), and a focus detection calculation unit 11 calculates a relative positional relationship between the pair of subject image signals by image shift calculation. Then, the defocus amount DEF between the image plane of the photographing optical system 3 and the planned focal plane is detected.

【0016】<非走査駆動時に実行される第1の焦点検
出演算処理>まず、通常の焦点検出時、すなわち非走査
駆動時に実行される焦点検出演算処理(以下、第1の演
算処理と呼ぶ)を説明する。被写体像データをそれぞれ
Ai、Bi(ただしi=1〜20)とする。まず、数式
1に示す差分型相関アルゴリズムによって相関量C
(L)を求める。
<First Focus Detection Computation Processing Executed During Non-scanning Driving> First, focus detection computation processing executed during normal focus detection, that is, non-scanning driving (hereinafter referred to as first computation processing) Will be explained. The subject image data is Ai and Bi (where i = 1 to 20). First, the correlation amount C is calculated by the differential correlation algorithm shown in Expression 1.
Find (L).

【数1】C(L)=Σ|A(i+L)−B(i)| 数式1において、Σはi=j〜j+7の総和演算を表
す。また、Lは整数であり、一対の受光素子出力データ
の受光素子のピッチを単位とした相対的シフト量であ
る。Lのとる範囲は−12〜+12である。さらに、j
はシフト量Lに応じた値であり、例えばL=0の場合は
7である。
## EQU1 ## C (L) =. SIGMA. | A (i + L) -B (i) | In Expression 1, Σ represents the summation operation of i = j to j + 7. L is an integer and is a relative shift amount in units of the pitch of the light receiving elements of the pair of light receiving element output data. The range of L is -12 to +12. Furthermore, j
Is a value corresponding to the shift amount L, and is 7 when L = 0, for example.

【0017】図3は数式1による演算結果を表す。図に
おいて、横軸に被写体像データAiを、縦軸に被写体像
データBiをそれぞれ表し、それぞれの差の演算を行う
組み合わせの位置を白丸○および黒丸●で表す。また、
総和演算の数は8個であり、図において斜め右下方向に
それぞれ白丸○同志または黒丸●同志で加算が行われ
る。演算結果の相関量C(L)の値を横軸にシフト量L
をとって白丸○で表す。図3から第1の演算処理の規模
を、差の絶対値をとる演算の数として定義すると、白丸
○と黒丸●の合計数であるから25×8=200とな
る。
FIG. 3 shows the calculation result by the mathematical expression 1. In the figure, the abscissa represents the subject image data Ai and the ordinate represents the subject image data Bi, and the positions of the combinations for calculating the respective differences are represented by white circles and black circles. Also,
The number of summation operations is eight, and in the figure, addition is performed in the diagonally lower right direction by white circle ○ comrades or black circle ● comrades. The value of the correlation amount C (L) of the calculation result is the shift amount L on the horizontal axis.
It is taken and represented by a white circle. When the scale of the first arithmetic processing from FIG. 3 is defined as the number of arithmetic operations that take the absolute value of the difference, it is 25 × 8 = 200 because it is the total number of white circles and black circles.

【0018】図8は相関量C(L)からデフォーカス量
を算出する手順の説明図である。数式1の演算結果は、
図8(a)に示すように、被写体像データの相関が高い
シフト量L=kj(図8(a)ではkj=2)において相
関量C(L)が最小になる。次に、数式2〜数式5の3
点内挿の手法を用いて連続的な相関量に対する最小値C
(L)min=C(x)を与えるシフト量xを求める。
FIG. 8 is an explanatory diagram of a procedure for calculating the defocus amount from the correlation amount C (L). The calculation result of Equation 1 is
As shown in FIG. 8A, the correlation amount C (L) becomes the minimum when the shift amount L = kj (kj = 2 in FIG. 8A) in which the subject image data has a high correlation. Next, Formula 2 to Formula 3 3
Minimum value C for continuous correlation using the point interpolation method
The shift amount x that gives (L) min = C (x) is determined.

【数2】x=kj+D/SLOP[Formula 2] x = kj + D / SLOP

【数3】C(x)= C(kj)−|D|## EQU3 ## C (x) = C (kj)-| D |

【数4】 D={C(kj−1)−C(kj+1)}/2## EQU00004 ## D = {C (kj-1) -C (kj + 1)} / 2

【数5】SLOP=MAX{C(kj+1)−C(k
j),C(kj−1)−C(kj)} また、上式で求めたシフト量xに基づいて次式により被
写体像面の予定焦点面に対するデフォーカス量DEFを
求めることができる。
## EQU00005 ## SLOP = MAX {C (kj + 1) -C (k
j), C (kj-1) -C (kj)} Further, based on the shift amount x obtained by the above equation, the defocus amount DEF with respect to the planned focal plane of the subject image plane can be obtained by the following equation.

【数6】DEF=KX・PY・x 数式6においてPYはイメージセンサーの受光部を構成
する受光素子の並び方向のピッチであり、KXは焦点検
出光学系の構成によって決まる変換係数である。
[Expression 6] DEF = KX · PY · x In Equation 6, PY is a pitch in the arrangement direction of the light receiving elements forming the light receiving portion of the image sensor, and KX is a conversion coefficient determined by the configuration of the focus detection optical system.

【0019】<走査駆動中に実行される第2の焦点検出
演算処理>次に、走査駆動時に実行される焦点検出演算
処理(以下、第2の演算処理と呼ぶ)を説明する。 (1) シフト量を大きくした演算処理 (図4参照) 通常の焦点検出時は、シフト量Lを−12〜+12の範
囲で1ずつ変化させて相関量C(L)の演算を行なう。
これに対し走査駆動中の焦点検出時は、図4に示すよう
にシフト量Lを−12〜+12の範囲で2ずつ変化させ
て相関量C(L)の演算を行なう。このようにシフト量
Lを大きくして相関量C(L)の演算を行なうことによ
り、焦点検出精度は低下するが、演算規模が小さくな
り、演算時間が短縮される。この方式の第2の演算処理
の規模は13×8=104となる。
<Second Focus Detection Calculation Processing Executed During Scanning Driving> Next, the focus detection calculation processing executed during scanning driving (hereinafter referred to as the second calculation processing) will be described. (1) Calculation process with large shift amount (see FIG. 4) During normal focus detection, the shift amount L is changed by 1 in the range of −12 to +12 to calculate the correlation amount C (L).
On the other hand, when the focus is detected during the scan driving, the correlation amount C (L) is calculated by changing the shift amount L by 2 in the range of −12 to +12 as shown in FIG. By thus increasing the shift amount L and calculating the correlation amount C (L), the focus detection accuracy is reduced, but the calculation scale is reduced and the calculation time is shortened. The scale of the second arithmetic processing of this system is 13 × 8 = 104.

【0020】(2) 被写体データを制限する演算処理
(図5参照) 通常の焦点検出時は、数式1の相関量C(L)の演算を
パラメータiをjからj+7まで変化させて行なうのに
対し、走査駆動中の焦点検出時は、図5に示すようにパ
ラメータiをj’からj’+3まで変化させて相関量C
(L)の演算を行なう。このように被写体データを制限
して相関量C(L)の演算を行なうことにより、焦点検
出精度は低下するが、演算規模が小さくなり、演算時間
が短縮される。この方式の第2の演算処理の規模は25
×4=100となる。
(2) Calculation processing for limiting subject data (see FIG. 5) In normal focus detection, the calculation of the correlation amount C (L) in Expression 1 is performed by changing the parameter i from j to j + 7. On the other hand, at the time of focus detection during scan driving, the correlation amount C is changed by changing the parameter i from j ′ to j ′ + 3 as shown in FIG.
(L) is calculated. By thus limiting the object data and calculating the correlation amount C (L), the focus detection accuracy is reduced, but the calculation scale is reduced and the calculation time is shortened. The scale of the second arithmetic processing of this method is 25
× 4 = 100.

【0021】(3) 被写体データを間引く演算処理
(図6参照) 通常の焦点検出時は、数式1の相関量C(L)の演算を
パラメータiを1ずつ変化させて行なうのに対し、走査
駆動中の焦点検出時は、図6に示すようにパラメータi
を2ずつ変化させて相関量C(L)の演算を行なう。こ
のように被写体データを間引いて相関量C(L)の演算
を行なうことにより、焦点検出精度は低下するが、演算
規模が小さくなり、演算時間が短縮される。この方式の
第2の演算処理の規模は25×4=100となる。
(3) Calculation processing for thinning out subject data
(See FIG. 6) At the time of normal focus detection, the calculation of the correlation amount C (L) of Formula 1 is performed by changing the parameter i one by one, while at the time of focus detection during scan driving, it is shown in FIG. Parameter i
Is changed by 2 to calculate the correlation amount C (L). By thus thinning out the object data and calculating the correlation amount C (L), the focus detection accuracy is reduced, but the calculation scale is reduced and the calculation time is shortened. The scale of the second arithmetic processing of this method is 25 × 4 = 100.

【0022】(4) (1)、(2)を組み合わせた演
算処理 (図7参照) 走査駆動中の焦点検出時は、図7に示すように、走査駆
動方向に応じてシフト量Lを0から+14までに制限
(この場合はシフト量の符号+側が走査駆動方向のピン
トズレ量に対応する)するとともに、さらにシフト量も
大きくする。また、パラメータiをj’からj’+3変
化させて相関量C(L)の演算を行なう。このように相
関量C(L)の演算を行なうことにより、焦点検出精度
は低下するが、演算規模が小さくなり、演算時間が短縮
される。この方式の第2の演算処理の規模は9×4=3
6となる。
(4) Arithmetic processing combining (1) and (2) (see FIG. 7) During focus detection during scan driving, as shown in FIG. 7, the shift amount L is 0 depending on the scan driving direction. To +14 (in this case, the sign + side of the shift amount corresponds to the focus shift amount in the scanning drive direction), and the shift amount is further increased. Further, the parameter i is changed from j ′ to j ′ + 3 to calculate the correlation amount C (L). By performing the calculation of the correlation amount C (L) in this manner, the focus detection accuracy is lowered, but the calculation scale is reduced and the calculation time is shortened. The scale of the second arithmetic processing of this method is 9 × 4 = 3
It becomes 6.

【0023】以上の焦点検出演算の説明では、被写体像
データAi、Biはイメージセンサー8の出力信号の生
データでもよいし、生データにフィルタ処理を行った後
のデータでもよい。
In the above description of the focus detection calculation, the subject image data Ai, Bi may be raw data of the output signal of the image sensor 8 or may be data obtained by filtering the raw data.

【0024】ふたたび図1の説明に戻る。不能判定部1
2は、焦点検出演算部11により算出されたデフォーカ
ス量DEFの信頼性があるかどうか、または被写体像デ
ータのコントラストに応じて焦点検出演算部11による
焦点検出演算が可能かどうかを調べ、デフォーカス量D
EFの信頼性が低い場合、または被写体像データのコン
トラストが低く、焦点検出演算部11による焦点検出演
算が不能な場合に、焦点検出不能と判定して焦点検出不
能信号を発生する。
Returning to the explanation of FIG. Impossible judgment unit 1
2 checks whether the defocus amount DEF calculated by the focus detection calculation unit 11 is reliable, or whether the focus detection calculation unit 11 can perform focus detection calculation according to the contrast of the subject image data. Focus amount D
When the reliability of the EF is low, or when the contrast of the subject image data is low and the focus detection calculation by the focus detection calculation unit 11 is impossible, the focus detection is determined to be impossible and a focus detection impossible signal is generated.

【0025】<焦点検出不能判定>被写体データの相関
度が低い場合には、図8(b)に示すように、内挿され
た相関量の最小値C(X)の値が大きくなる。したがっ
て、C(X)が所定値以上の場合は信頼性が低いと判定
する。あるいは、C(X)を被写体データのコントラス
トで規格化するために、コントラストに比例した値とな
るSLOPでC(X)を徐した値が所定値以上の場合は
信頼性が低いと判定する。あるいは、コントラストに比
例した値となるSLOPが所定値以下の場合は、被写体
が低コントラストであり、算出されたデフォーカス量D
EFの信頼性が低いと判定する。
<Focus Detection Impossible Judgment> When the correlation degree of the subject data is low, the minimum value C (X) of the interpolated correlation amount becomes large as shown in FIG. 8B. Therefore, when C (X) is a predetermined value or more, it is determined that the reliability is low. Alternatively, in order to standardize C (X) with the contrast of the subject data, if the value obtained by decrementing C (X) by SLOP, which is a value proportional to the contrast, is a predetermined value or more, it is determined that the reliability is low. Alternatively, when the SLOP that is a value proportional to the contrast is less than or equal to a predetermined value, the subject has low contrast and the calculated defocus amount D
It is determined that the reliability of EF is low.

【0026】被写体データの相関度が低い場合には、図
8(c)に示すように、シフト範囲内で相関量C(L)
の落ち込みがなく、最小値C(X)を求めることができ
ない。このような場合は、焦点検出不能と判定する。
When the degree of correlation of subject data is low, as shown in FIG. 8C, the correlation amount C (L) is within the shift range.
The minimum value C (X) cannot be obtained because there is no drop in In such a case, it is determined that focus detection is impossible.

【0027】焦点検出演算部11が焦点検出演算を行う
前に、被写体像データのコントラストを次式により直接
検出して焦点検出不能判定をしてもよい。
Before the focus detection calculation unit 11 performs the focus detection calculation, the contrast of the subject image data may be directly detected by the following equation to determine the focus detection failure.

【数7】Cnt=Σ|A(i)−A(i+1)| 上式において、Σはi=1〜m−1の総和を表す。コン
トラスト値Cntが所定値以下の場合は被写体が低コン
トラストであり、焦点検出演算部11で焦点検出演算を
おこなっても、信頼性の低いデフォーカス量DEFしか
得られないと判定する。不能判定部12は以上の条件を
単独で適用するか、または複数の条件を適用してどれか
1つの条件を満足した場合には焦点検出不能と判定して
焦点検出不能信号を発生する。
## EQU7 ## Cnt = Σ | A (i) -A (i + 1) | In the above equation, Σ represents the sum of i = 1 to m−1. When the contrast value Cnt is equal to or less than the predetermined value, the subject has low contrast, and it is determined that only the defocus amount DEF with low reliability can be obtained even if the focus detection calculation unit 11 performs the focus detection calculation. The impossibility determining unit 12 applies the above conditions alone, or applies a plurality of conditions and satisfies any one of the conditions, determines that the focus cannot be detected and generates a focus undetectable signal.

【0028】ふたたび図1の説明に戻る。不能判定部1
2が焦点検出可能と判定した場合には、マイコン16に
含まれる第1駆動制御部14がデフォーカス量DEFに
応じてモーター17の回転方向と回転量を制御する。モ
ーター17は撮影光学系3と連結しており、撮影光学系
3が光軸方向に移動してデフォーカス量DEFが0とな
るように駆動され、撮影光学系3の合焦状態が達成され
る。一方、不能判定部12が焦点検出不能と判定した場
合には、合焦点を見つけるために、マイコン16に含ま
れる第2駆動制御部15がデフォーカス量DEFによら
ず撮影光学系3が至近〜無限の間で走査駆動されるよう
にモーター17を制御する。なお、走査駆動を行っても
焦点検出可能とならない場合は所定の手順で走査駆動を
終了する。例えば走査駆動開始時には至近方向に駆動
し、至近端で無限方向に反転し、無限端到達時になお焦
点検出が不能な場合は走査駆動を終了する。
Returning to the explanation of FIG. Impossible judgment unit 1
When it is determined that the focus can be detected by No. 2, the first drive control unit 14 included in the microcomputer 16 controls the rotation direction and the rotation amount of the motor 17 according to the defocus amount DEF. The motor 17 is connected to the photographing optical system 3 and is driven so that the photographing optical system 3 moves in the optical axis direction so that the defocus amount DEF becomes 0, and the in-focus state of the photographing optical system 3 is achieved. . On the other hand, when the inability determination unit 12 determines that focus detection is impossible, the second drive control unit 15 included in the microcomputer 16 finds the in-focus point and the photographing optical system 3 is close to the photographing optical system 3 regardless of the defocus amount DEF. The motor 17 is controlled so as to be scan driven for an infinite period. If the focus cannot be detected even if the scan driving is performed, the scan driving is ended in a predetermined procedure. For example, when the scan drive is started, the drive is performed in the close-up direction, the light is inverted in the infinite direction at the close-up end, and when the focus detection is still impossible when the infinite end is reached, the scan drive is ended.

【0029】また、第2駆動制御部15による走査駆動
中、焦点検出演算部11は上述した第2の演算処理によ
り焦点検出演算を行い、走査駆動中以外は上述した第1
の演算処理により焦点検出演算を行う。このように、走
査駆動中には演算規模が小さい焦点検出演算を行うこと
により演算時間を短縮でき、従来演算時間が長い場合に
生じていた走査駆動中の被写体見逃しを防止することが
できる。
Further, during the scanning drive by the second drive control unit 15, the focus detection calculation unit 11 performs the focus detection calculation by the above-mentioned second calculation processing, and the above-described first detection except during the scanning drive.
The focus detection calculation is performed by the calculation process of. As described above, the focus detection calculation having a small calculation scale is performed during the scan driving, so that the calculation time can be shortened, and it is possible to prevent the subject from being overlooked during the scan driving which occurs when the calculation time is long in the related art.

【0030】図9は焦点検出演算部11、不能判定部1
2、第1駆動制御部14、第2駆動制御部15を構成す
るマイコン16の動作フローチャートである。このフロ
ーチャートにより、第1の実施例の動作を説明する。カ
メラの電源が投入されるとステップS100から動作を
開始し、ステップS101でイメージセンサー8の電荷
蓄積動作を行う。ステップS102でイメージセンサー
8から被写体像データを読み込んでステップS103へ
進み、現在、撮影光学系3が走査駆動中であるか否か調
べる。走査駆動中であればステップS105へ進み、被
写体像データに上述した第2の演算処理を施してデフォ
ーカス量DEFを演算する。走査駆動中でなければステ
ップS104へ進み、被写体像データに上述した第1の
演算処理を施してデフォーカス量DEFを演算する。
FIG. 9 shows the focus detection calculation unit 11 and the inability judgment unit 1.
2 is an operation flowchart of the microcomputer 16 which constitutes the first drive control unit 14 and the second drive control unit 15. The operation of the first embodiment will be described with reference to this flowchart. When the power of the camera is turned on, the operation starts from step S100, and the charge accumulation operation of the image sensor 8 is performed in step S101. In step S102, the subject image data is read from the image sensor 8 and the process proceeds to step S103 to check whether or not the photographing optical system 3 is currently being driven for scanning. If the scanning drive is in progress, the process proceeds to step S105, and the defocus amount DEF is calculated by subjecting the subject image data to the second calculation process described above. If the scanning drive is not in progress, the process proceeds to step S104, and the defocus amount DEF is calculated by subjecting the subject image data to the first calculation process described above.

【0031】ステップS106において上述した焦点検
出不能判定を行い、続くステップS107で焦点検出不
能か否かを判別する。焦点検出不能の場合にはステップ
S109へ進み、焦点検出可能な場合はステップS10
8へ進む。焦点検出可能な場合は、ステップS108
で、算出されたデフォーカス量DEFに基づいて撮影光
学系3の駆動量を決定し、モーター17を制御して撮影
光学系3を合焦位置に駆動する。駆動が終了したらステ
ップS101へ戻り上述した動作を繰り返す。なお、ス
テップS108で駆動終了する前にステップS101へ
戻るようにしてもよい。一方、焦点検出不能な場合は、
ステップS109で、走査駆動中であるか否かを判別
し、走査駆動中の時はステップS101へ戻り、走査駆
動を継続したまま上述した動作を繰り返す。走査駆動中
でなければステップS110へ進み、過去に焦点検出可
能になったことがあるか否かを判別し、ある場合には走
査駆動を開始せずにステップS101へ戻って上述した
動作を繰り返し、ない場合はステップS111へ進む。
ステップS111では、走査駆動を開始してステップS
101へ戻り、上述した動作を繰り返す。
In step S106, the above-described focus detection inability determination is performed, and in the following step S107, it is determined whether focus detection is impossible. If focus detection is not possible, the process proceeds to step S109, and if focus detection is possible, step S10.
Go to 8. If focus detection is possible, step S108.
Then, the drive amount of the photographing optical system 3 is determined based on the calculated defocus amount DEF, and the motor 17 is controlled to drive the photographing optical system 3 to the in-focus position. When the driving is completed, the process returns to step S101 and the above-described operation is repeated. Note that the process may return to step S101 before the driving ends in step S108. On the other hand, if focus cannot be detected,
In step S109, it is determined whether or not the scanning drive is in progress. When the scanning drive is in progress, the process returns to step S101, and the above-described operation is repeated while continuing the scanning drive. If the scan drive is not in progress, the process proceeds to step S110, and it is determined whether or not focus detection has been possible in the past. If yes, the scan drive is not started and the process returns to step S101 to repeat the above operation. Otherwise, the process proceeds to step S111.
In step S111, scan driving is started and then step S111 is performed.
Returning to 101, the above operation is repeated.

【0032】このようにすれば、いったん焦点検出可能
となった場合はそれ以後の走査駆動が禁止されるので、
頻繁に走査駆動が行われることがなくなる。なお、ステ
ップS110において常時ステップS111へ進むよう
にしてもよい。また、至近から無限まで走査駆動を行な
っても焦点検出可能とならない場合には、不図示の動作
フローチャートに従って走査駆動を終了する。さらに、
上記実施例では走査駆動中に第2の演算処理を選択する
ようにしたが、さらに被写体輝度の条件を加え、走査駆
動中であり且つ低輝度で電荷蓄積時間が長くなる場合に
第2の演算処理を選択するようにしてもよい。さらにま
た、上記実施例では走査駆動中以外は第1の演算処理を
選択するようにしたが、さらに被写体輝度の条件を加
え、走査駆動中以外でも低輝度で電荷蓄積時間が長くな
る場合には第2の演算処理を選択するようにしてもよ
い。
In this way, once the focus can be detected, the scanning drive thereafter is prohibited.
Scanning drive is not frequently performed. It should be noted that in step S110, the process may always proceed to step S111. If focus detection cannot be performed even if the scanning drive is performed from the closest distance to infinity, the scanning drive is ended according to an operation flowchart (not shown). further,
In the above-described embodiment, the second calculation process is selected during the scan driving, but the condition of the subject brightness is further added, and the second calculation is performed when the scan driving is in progress and the charge accumulation time is long at low brightness. You may make it select a process. Furthermore, in the above-described embodiment, the first arithmetic processing is selected except during the scan driving. However, when the condition of the subject brightness is further added and the charge accumulation time is long even when the brightness is low even during the scan driving, The second arithmetic process may be selected.

【0033】−第2の実施例− 図10は第2の実施例の構成を示す機能ブロック図であ
る。なお、図1に示す機器と同様な機器に対しては同一
の符号を付して相違点を中心に説明する。この第2の実
施例では、不能判定部12がイメージセンサー8から直
接、被写体像データを入力し、走査駆動中は焦点検出演
算部11による焦点検出演算処理の前に焦点検出不能判
定を行う。このような構成において、焦点検出演算部1
1は走査駆動時以外のみ焦点検出演算を行うことにな
る。このように、走査駆動中には焦点検出演算が行われ
ないため、演算時間を短くすることができ、従来演算時
間が長い場合に生じていた走査駆動中の被写体見逃しを
防止することができる。走査駆動中の焦点検出不能判定
の演算処理は数式7にしたがって行われ、この場合の演
算処理の規模を差の絶対値をとる演算の数として定義す
ると19となる。
-Second Embodiment- FIG. 10 is a functional block diagram showing the structure of the second embodiment. It should be noted that devices similar to those shown in FIG. 1 are designated by the same reference numerals, and differences will be mainly described. In the second embodiment, the impossibility determining unit 12 inputs the subject image data directly from the image sensor 8 and performs the focus detection impossibility determination before the focus detection calculation processing by the focus detection calculation unit 11 during the scan driving. In such a configuration, the focus detection calculation unit 1
In No. 1, the focus detection calculation is performed only during the scanning drive. In this way, since focus detection calculation is not performed during scan driving, the calculation time can be shortened, and it is possible to prevent the subject from being overlooked during scan driving, which occurred when the calculation time was long in the past. The calculation processing of the focus detection non-determination during the scan driving is performed according to Expression 7, and the scale of the calculation processing in this case is 19 when the number of calculations taking the absolute value of the difference is defined.

【0034】図11、図12は焦点検出演算部11、不
能判定部12、第1駆動制御部14、第2駆動制御部1
5を構成するマイコン16の動作フローチャートであ
る。このフローチャートにより、第2の実施例の動作を
説明する。カメラの電源が投入されるとステップS20
0から動作を開始し、ステップS201へ進んでイメー
ジセンサー8に電荷蓄積動作を行わせる。ステップS2
02ではイメージセンサー8から被写体像データを読み
込み、続くステップS203で、現在撮影光学系3が走
査駆動中であるか否かを判別する。走査駆動中であれば
ステップS204へ進み、走査駆動中でなければステッ
プS206へ進む。走査駆動中の時は、ステップS20
4で上述した数式7により被写体像データのコントラス
トを検出し、焦点検出不能判定(第1の焦点検出不能判
定)を行う。そして、ステップS205で第1の焦点検
出不能判定の結果を判別し、焦点検出不能の場合はステ
ップS210へ進み、焦点検出可能な場合はステップS
206へ進む。
11 and 12 show the focus detection calculation unit 11, the inability judgment unit 12, the first drive control unit 14, and the second drive control unit 1.
6 is an operation flowchart of the microcomputer 16 that constitutes part 5 of FIG. The operation of the second embodiment will be described with reference to this flowchart. When the power of the camera is turned on, step S20
The operation is started from 0, and the process proceeds to step S201 to make the image sensor 8 perform the charge accumulation operation. Step S2
In 02, the subject image data is read from the image sensor 8, and in the following step S203, it is determined whether or not the photographing optical system 3 is currently being driven for scanning. If the scanning drive is in progress, the process proceeds to step S204. If the scanning drive is not in progress, the process proceeds to step S206. When scanning is being driven, step S20
4, the contrast of the subject image data is detected by the above-described mathematical expression 7, and the focus detection impossibility determination (first focus detection impossibility determination) is performed. Then, in step S205, the result of the first focus detection inability determination is determined. If focus detection is not possible, the process proceeds to step S210, and if focus detection is possible, step S210 is performed.
Proceed to 206.

【0035】ステップS206で、被写体像データに第
1の演算処理を施してデフォーカス量DEFを演算す
る。さらにステップS207で、相関演算結果に基づく
焦点検出不能判定(図8(b)および(c)、第2の焦
点検出不能判定)を行う。ステップS208で、第2の
焦点検出不能判定の結果を判別し、焦点検出不能の場合
はステップS210へ進み、焦点検出可能な場合はステ
ップS209へ進む。なお、走査駆動が行われていた場
合は、ステップS208からステップS209へ進む時
に走査駆動を終了させる。ステップS209では、算出
されたデフォーカス量DEFに基づいて撮影光学系3の
駆動量を決定し、モーター17を制御して撮影光学系3
を合焦位置に駆動する。駆動が終了したらステップS2
01へ戻り上述した動作を繰り返す。なお、ステップS
209において駆動終了する前にステップS201へ戻
るようにしてもよい。
In step S206, the subject image data is subjected to the first arithmetic processing to calculate the defocus amount DEF. Further, in step S207, a focus detection impossibility determination (FIGS. 8B and 8C, second focus detection impossibility determination) based on the correlation calculation result is performed. In step S208, the result of the second focus detection inability determination is determined. If focus detection is not possible, the process proceeds to step S210, and if focus detection is possible, the process proceeds to step S209. If the scan driving is performed, the scan driving is ended when the process proceeds from step S208 to step S209. In step S209, the drive amount of the photographic optical system 3 is determined based on the calculated defocus amount DEF, and the motor 17 is controlled to control the photographic optical system 3.
To the in-focus position. When driving is completed, step S2
Returning to 01, the above operation is repeated. Note that step S
You may make it return to step S201 before drive completion in 209.

【0036】一方、第1または第2の焦点検出不能判定
において焦点検出不能と判定された場合は、ステップS
210で走査駆動中か否かを判別し、走査駆動中の時は
ステップS201へ戻って走査駆動を継続したまま上述
した動作を繰り返し、走査駆動中でなければステップS
211へ進む。ステップS211では、過去に焦点検出
可能になったことがあるか否かを判別し、ある場合は走
査駆動を開始せずにステップS201へ戻って上述した
動作を繰り返し、ない場合はステップS212へ進む。
ステップS212で、走査駆動を開始してステップS2
01へ戻り、上述した動作を繰り返す。
On the other hand, if it is determined in the first or second focus detection impossibility that focus detection is impossible, step S
In 210, it is determined whether or not the scanning drive is in progress. When the scanning drive is in progress, the process returns to step S201 and the above-described operation is repeated while continuing the scanning drive.
Proceed to 211. In step S211, it is determined whether or not focus detection has been possible in the past. If yes, the scanning drive is not started and the process returns to step S201 to repeat the above-described operation. If no, the process proceeds to step S212. .
In step S212, scan driving is started and then step S2
Returning to 01, the above operation is repeated.

【0037】このようにすれば、いったん焦点検出可能
となった場合はそれ以後の走査駆動が禁止されるので、
頻繁に走査駆動が行われることがなくなる。なお、ステ
ップS211において常時ステップS212へ進むよう
にしてもよい。また、至近から無限まで走査駆動を行な
っても焦点検出可能とならない場合には、不図示の動作
フローチャートに従って走査駆動を終了する。
By doing so, once focus detection becomes possible, subsequent scanning drive is prohibited.
Scanning drive is not frequently performed. It should be noted that in step S211, the process may always proceed to step S212. If focus detection cannot be performed even if the scanning drive is performed from the closest distance to infinity, the scanning drive is ended according to an operation flowchart (not shown).

【0038】以上の実施例の構成において、撮影光学系
3が撮影光学系を、焦点検出光学系7が焦点検出光学系
を、イメージセンサー8がイメージセンサーを、焦点検
出演算部11が焦点検出手段を、モーター17が駆動手
段を、不能判定部12が判定手段を、第1駆動制御部1
4および第2駆動制御部15が制御手段をそれぞれ構成
する。
In the structure of the above embodiment, the photographing optical system 3 is the photographing optical system, the focus detection optical system 7 is the focus detection optical system, the image sensor 8 is the image sensor, and the focus detection calculation unit 11 is the focus detection means. The motor 17 serves as a driving unit, the inability judgment unit 12 serves as a judgment unit, and the first drive control unit 1
The fourth drive controller 15 and the second drive controller 15 constitute control means.

【0039】[0039]

【発明の効果】以上説明したように本発明によれば、撮
影光学系の走査駆動中は通常時の演算処理規模より小さ
な規模の焦点検出演算処理を行うようにしたので、焦点
検出演算処理時間の短縮にともなって焦点検出間隔が短
縮され、走査駆動中の被写体見逃しが少なくなる。ま
た、従来より高速で走査駆動を行うことができ、被写体
がボケて検出不能であった状態から合焦状態への移行も
短時間に達成できる。さらに、走査駆動を行っても焦点
検出が可能とならない完全に低コントラストな被写体に
対しては、走査駆動開始から終了までの時間が短くな
り、従来のように走査駆動開始から終了までの時間が長
いために撮影者に与えていた不快感を軽減できる。ま
た、本発明によれば相関演算処理においてシフト範囲を
制限する必要がないので、被写体フレーム外しがあった
場合でも被写体が焦点検出領域に復帰すれば確実に焦点
検出が可能となる。
As described above, according to the present invention, the focus detection calculation processing of a scale smaller than the normal calculation processing scale is performed during the scanning drive of the photographing optical system. The focus detection interval is shortened in accordance with the shortening of, and the missing of the subject during scan driving is reduced. Further, the scanning drive can be performed at a higher speed than in the past, and the transition from the state in which the subject is undetectable due to blurring to the in-focus state can be achieved in a short time. Furthermore, the time from the start of scan drive to the end is shorter for a subject with a completely low contrast in which focus detection is not possible even if scan drive is performed, and the time from the start of scan drive to the end is reduced as in the past. It is possible to reduce the discomfort given to the photographer because of the long length. Further, according to the present invention, since it is not necessary to limit the shift range in the correlation calculation processing, focus detection can be reliably performed when the subject returns to the focus detection area even when the subject frame is missed.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施例の構成を示す機能ブロック図。FIG. 1 is a functional block diagram showing a configuration of a first embodiment.

【図2】第1の実施例の焦点検出光学系の構成を示す斜
視図。
FIG. 2 is a perspective view showing the configuration of a focus detection optical system according to the first embodiment.

【図3】第1の演算処理の説明図。FIG. 3 is an explanatory diagram of first arithmetic processing.

【図4】第2の演算処理の説明図。FIG. 4 is an explanatory diagram of second arithmetic processing.

【図5】他の第2の演算処理の説明図。FIG. 5 is an explanatory diagram of another second arithmetic processing.

【図6】他の第2の演算処理の説明図。FIG. 6 is an explanatory diagram of another second arithmetic processing.

【図7】他の第2の演算処理の説明図。FIG. 7 is an explanatory diagram of another second arithmetic processing.

【図8】焦点検出不能判定の説明図。FIG. 8 is an explanatory diagram of focus detection impossibility determination.

【図9】第1の実施例の動作フローチャート。FIG. 9 is an operation flowchart of the first embodiment.

【図10】第2の実施例の構成を示す機能ブロック図。FIG. 10 is a functional block diagram showing the configuration of the second embodiment.

【図11】第2の実施例の動作フローチャート。FIG. 11 is an operation flowchart of the second embodiment.

【図12】図11に続く、第2の実施例の動作を示すフ
ローチャート。
FIG. 12 is a flowchart showing the operation of the second embodiment following FIG. 11.

【図13】走査駆動中の撮影光学系のフォーカシングレ
ンズの位置を示す図。
FIG. 13 is a diagram showing a position of a focusing lens of a photographing optical system during scanning driving.

【符号の説明】[Explanation of symbols]

1 ボディ 2 レンズ 3 撮影光学系 4 メインミラー 5 サブミラー 6 ファインダー 7 焦点検出光学系 8 イメージセンサー 11 焦点検出演算部 12 不能判定部 14 第1駆動制御部 15 第2駆動制御部 16 マイクロコンピュータ 17 モーター 1 Body 2 Lens 3 Photographic Optical System 4 Main Mirror 5 Sub Mirror 6 Finder 7 Focus Detection Optical System 8 Image Sensor 11 Focus Detection Calculation Unit 12 Impossible Judgment Unit 14 First Drive Control Unit 15 Second Drive Control Unit 16 Microcomputer 17 Motor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G03B 13/16 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location G03B 13/16

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 撮影光学系を通過した被写体からの光束
により一対の被写体像を結像する焦点検出光学系と、 この焦点検出光学系により結像される一対の被写体像を
受光して光強度分布に応じた一対の被写体像データを出
力するイメージセンサーと、 このイメージセンサーから出力される一対の被写体像デ
ータを相対的にシフトさせながら相関度を演算し、演算
結果の相関度に基づいて前記撮影光学系の焦点調節状態
を検出する焦点検出手段と、 この焦点検出手段により検出された焦点調節状態に基づ
いて前記撮影光学系を駆動する駆動手段と、 前記焦点検出手段による焦点検出の可否および焦点検出
結果の信頼性を判定する判定手段と、 この判定手段により焦点検出結果の信頼性が高いと判定
されると、前記焦点検出手段により検出された焦点調節
状態に基づいて前記駆動手段により前記撮影光学系を駆
動し、前記判定手段により焦点検出不能または焦点検出
可能であっても焦点検出結果の信頼性が低いと判定され
ると、前記駆動手段により前記撮影光学系を走査駆動
し、前記焦点検出手段により前記撮影光学系の焦点検出
を行なう制御手段とを備えた自動焦点調節カメラにおい
て、 前記焦点検出手段は、前記撮影光学系の走査駆動中は相
関度の演算で使用する被写体像データの量を非走査駆動
中よりも制限することを特徴とする自動焦点調節カメ
ラ。
1. A focus detection optical system for forming a pair of subject images by a light flux from a subject that has passed through a photographing optical system, and a light intensity for receiving a pair of subject images formed by the focus detection optical system. An image sensor that outputs a pair of subject image data corresponding to the distribution, and a correlation degree is calculated while relatively shifting a pair of subject image data output from the image sensor. Based on the correlation degree of the calculation result, Focus detecting means for detecting a focus adjustment state of the photographing optical system, driving means for driving the photographing optical system based on the focus adjustment state detected by the focus detecting means, whether or not focus detection by the focus detecting means is possible, and The determination means for determining the reliability of the focus detection result, and when the determination means determines that the reliability of the focus detection result is high, it is detected by the focus detection means. The drive means drives the photographing optical system based on the focus adjustment state, and if the determination means determines that the focus detection result is low or the focus detection result is low, the drive means In the automatic focusing camera, the focus detection means scans and drives the photographing optical system, and the focus detection means controls focus detection of the photographing optical system. Is an auto-focusing camera characterized by limiting the amount of subject image data used in calculating the degree of correlation as compared with that during non-scanning drive.
【請求項2】 請求項1に記載の自動焦点調節カメラに
おいて、 前記焦点検出手段は、前記撮影光学系の走査駆動中は前
記被写体像データの中心部分のデータのみを用いて相関
度を演算することを特徴とする自動焦点調節カメラ。
2. The automatic focus adjustment camera according to claim 1, wherein the focus detection unit calculates the degree of correlation using only the data of the central portion of the subject image data during the scanning drive of the photographing optical system. An autofocus camera that is characterized.
【請求項3】 請求項1に記載の自動焦点調節カメラに
おいて、 前記焦点検出手段は、前記撮影光学系の走査駆動中は前
記被写体像データを間引いて相関度を演算することを特
徴とする自動焦点調節カメラ。
3. The automatic focus adjustment camera according to claim 1, wherein the focus detection unit thins out the subject image data during scan driving of the photographing optical system to calculate a correlation degree. Focusing camera.
【請求項4】 撮影光学系を通過した被写体からの光束
により一対の被写体像を結像する焦点検出光学系と、 この焦点検出光学系により結像される一対の被写体像を
受光して光強度分布に応じた一対の被写体像データを出
力するイメージセンサーと、 このイメージセンサーから出力される一対の被写体像デ
ータを相対的にシフトさせながら各シフト量における相
関度を演算し、その相関度に基づいて前記撮影光学系の
焦点調節状態を検出する焦点検出手段と、 この焦点検出手段により検出された焦点調節状態に基づ
いて前記撮影光学系を駆動する駆動手段と、 前記焦点検出手段による焦点検出の可否および焦点検出
結果の信頼性を判定する判定手段と、 この判定手段により焦点検出結果の信頼性が高いと判定
されると、前記焦点検出手段により検出された焦点調節
状態に基づいて前記駆動手段により前記撮影光学系を駆
動し、前記判定手段により焦点検出不能または焦点検出
可能であっても焦点検出結果の信頼性が低いと判定され
ると、前記駆動手段により前記撮影光学系を走査駆動
し、前記焦点検出手段により前記撮影光学系の焦点検出
を行なう制御手段とを備えた自動焦点調節カメラにおい
て、 前記焦点検出手段は、前記撮影光学系の走査駆動中は相
関度の演算における前記一対の被写体像データの相対的
なシフト量を非走査駆動中よりも大きくすることを特徴
とする自動焦点調節カメラ。
4. A focus detection optical system that forms a pair of subject images by a light flux from the subject that has passed through the photographing optical system, and a light intensity by receiving the pair of subject images formed by the focus detection optical system. An image sensor that outputs a pair of subject image data according to the distribution, and a pair of subject image data output from this image sensor are relatively shifted, and the correlation degree at each shift amount is calculated. Focus detecting means for detecting the focus adjustment state of the photographing optical system, driving means for driving the photographing optical system based on the focus adjustment state detected by the focus detecting means, and focus detection by the focus detecting means. The determination means for determining the availability and the reliability of the focus detection result, and when the determination means determines that the reliability of the focus detection result is high, the focus detection means When the photographing optical system is driven by the driving unit based on the focus adjustment state detected by the detection unit, and the determination unit determines that the focus detection result is low or the focus detection result is low, the focus detection result is low. An automatic focus adjustment camera, comprising: a control unit that scans and drives the photographing optical system by the driving unit and performs focus detection of the photographing optical system by the focus detection unit, wherein the focus detection unit is the photographing optical system. The automatic focus adjustment camera is characterized in that the relative shift amount of the pair of subject image data in the calculation of the degree of correlation is set to be larger during the scanning drive than in the non-scanning drive.
【請求項5】 前記請求項1〜4のいずれかの項に記載
の自動焦点調節カメラにおいて、 前記制御手段は、前記判定手段により焦点検出結果の信
頼性が高いと判定された後は前記撮影光学系の走査駆動
を行なわないことを特徴とする自動焦点調節カメラ。
5. The automatic focusing camera according to any one of claims 1 to 4, wherein the control unit performs the photographing after the determination unit determines that the focus detection result has high reliability. An automatic focusing camera characterized by not performing scanning drive of an optical system.
【請求項6】 撮影光学系を通過した光束により形成さ
れる一対の被写体像を受光して光強度分布に応じた一対
の被写体像データに変換し、その一対の被写体像データ
を相対的にシフトさせながら相関度を演算して前記撮影
光学系の焦点調節状態を検出し、焦点調節状態の検出結
果の信頼性が高い時は検出された焦点調節状態に基づい
て前記撮影光学系を駆動し、焦点調節状態の検出不能ま
たは検出結果の信頼性が低い時は前記撮影光学系を走査
駆動し、前記撮影光学系の焦点検出を行なうカメラの自
動焦点調節方法において、 前記撮影光学系の走査駆動中は相関度の演算で使用する
被写体像データの量を非走査駆動中よりも制限すること
を特徴とするカメラの自動焦点調節方法。
6. A pair of subject images formed by a light flux passing through a photographing optical system is received and converted into a pair of subject image data according to a light intensity distribution, and the pair of subject image data is relatively shifted. While calculating the correlation degree to detect the focus adjustment state of the photographing optical system, when the reliability of the detection result of the focus adjustment state is high, drive the photographing optical system based on the detected focus adjustment state, In the automatic focus adjustment method of a camera, wherein the photographing optical system is scan-driven when the focus adjustment state cannot be detected or the reliability of the detection result is low, and the photographing optical system is scan-driving. Is an automatic focus adjustment method for a camera, characterized in that the amount of subject image data used in the calculation of the degree of correlation is limited as compared with that during non-scan driving.
【請求項7】 請求項6に記載のカメラの自動焦点調節
方法において、 前記撮影光学系の走査駆動中は前記被写体像データの中
心部分のみを用いて相関度を演算することを特徴とする
カメラの自動焦点調節方法。
7. The camera automatic focusing method according to claim 6, wherein the degree of correlation is calculated using only the central portion of the subject image data during scanning drive of the photographing optical system. Automatic focus adjustment method.
【請求項8】 請求項6に記載のカメラの自動焦点調節
方法において、 前記撮影光学系の走査駆動中は前記被写体像データを間
引いて相関度を演算することを特徴とするカメラの自動
焦点調節方法。
8. The automatic focus adjustment method for a camera according to claim 6, wherein the correlation between the subject image data is thinned out to calculate the degree of correlation during the scanning drive of the photographing optical system. Method.
【請求項9】 撮影光学系を通過した光束により形成さ
れる一対の被写体像を受光して光強度分布に応じた一対
の被写体像データに変換し、その一対の被写体像データ
を相対的にシフトさせながら各シフト量における相関度
を演算して前記撮影光学系の焦点調節状態を検出し、焦
点調節状態の検出結果の信頼性が高い時は検出された焦
点調節状態に基づいて前記撮影光学系を駆動し、焦点調
節状態の検出不能または検出結果の信頼性が低い時は前
記撮影光学系を走査駆動し、前記撮影光学系の焦点検出
を行なうカメラの自動焦点調節方法において、 前記撮影光学系の走査駆動中は相関度の演算における前
記一対の被写体像データの相対的なシフト量を非走査駆
動中よりも大きくすることを特徴とするカメラの自動焦
点調節方法。
9. A pair of subject image data formed by a light flux passing through a photographing optical system is received and converted into a pair of subject image data corresponding to a light intensity distribution, and the pair of subject image data is relatively shifted. While calculating the correlation degree in each shift amount, the focus adjustment state of the photographing optical system is detected, and when the reliability of the detection result of the focus adjustment state is high, the photographing optical system is based on the detected focus adjustment state. In the automatic focus adjustment method of a camera for driving the image pickup optical system to detect the focus of the image pickup optical system by scanning driving the image pickup optical system when the focus adjustment state cannot be detected or the reliability of the detection result is low. During the scan driving, the relative shift amount of the pair of subject image data in the calculation of the degree of correlation is set to be larger than that during the non-scan driving.
【請求項10】 請求項6〜9のいずれかの項に記載の
カメラの自動焦点調節方法において、 信頼性の高い焦点調節状態の検出結果が得られた後は前
記撮影光学系の走査駆動を行なわないことを特徴とする
カメラの自動焦点調節方法。
10. The automatic focusing method for a camera according to claim 6, wherein the scanning drive of the photographing optical system is performed after a highly reliable detection result of the focusing state is obtained. A method for automatically adjusting the focus of a camera, characterized by not performing.
JP32439493A 1993-11-24 1993-12-22 Automatic focusing camera and automatic focusing method of camera Expired - Lifetime JP3574167B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP32439493A JP3574167B2 (en) 1993-12-22 1993-12-22 Automatic focusing camera and automatic focusing method of camera
US08/348,145 US5532783A (en) 1993-11-24 1994-11-23 Apparatus and method for adjusting the focus of a camera during scanning drive and non-scanning drive of a photographic lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32439493A JP3574167B2 (en) 1993-12-22 1993-12-22 Automatic focusing camera and automatic focusing method of camera

Publications (2)

Publication Number Publication Date
JPH07181366A true JPH07181366A (en) 1995-07-21
JP3574167B2 JP3574167B2 (en) 2004-10-06

Family

ID=18165308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32439493A Expired - Lifetime JP3574167B2 (en) 1993-11-24 1993-12-22 Automatic focusing camera and automatic focusing method of camera

Country Status (1)

Country Link
JP (1) JP3574167B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012168488A (en) * 2011-02-17 2012-09-06 Nikon Corp Focusing device and imaging apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6037513A (en) * 1983-08-11 1985-02-26 Nippon Kogaku Kk <Nikon> Shift amount detector
JPS63172237A (en) * 1987-01-12 1988-07-15 Canon Inc Auto-focusing device
JPH02126212A (en) * 1988-11-07 1990-05-15 Nikon Corp Focus detecting device
JPH02251924A (en) * 1989-03-27 1990-10-09 Nikon Corp Automatic focusing adjusting device
JPH03131807A (en) * 1989-10-17 1991-06-05 Konica Corp Automatic focus adjusting device
JPH03146915A (en) * 1989-11-02 1991-06-21 Konica Corp Automatic focus adjusting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6037513A (en) * 1983-08-11 1985-02-26 Nippon Kogaku Kk <Nikon> Shift amount detector
JPS63172237A (en) * 1987-01-12 1988-07-15 Canon Inc Auto-focusing device
JPH02126212A (en) * 1988-11-07 1990-05-15 Nikon Corp Focus detecting device
JPH02251924A (en) * 1989-03-27 1990-10-09 Nikon Corp Automatic focusing adjusting device
JPH03131807A (en) * 1989-10-17 1991-06-05 Konica Corp Automatic focus adjusting device
JPH03146915A (en) * 1989-11-02 1991-06-21 Konica Corp Automatic focus adjusting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012168488A (en) * 2011-02-17 2012-09-06 Nikon Corp Focusing device and imaging apparatus

Also Published As

Publication number Publication date
JP3574167B2 (en) 2004-10-06

Similar Documents

Publication Publication Date Title
US4768052A (en) Focus detecting device
JPH10161013A (en) Environment recognition device and camera provided therewith
US7071985B1 (en) Optical device and method for selecting object of focus
US5091742A (en) Camera having an auto focusing device
EP0349736A2 (en) Automatic focusing apparatus of a camera
JPH10142490A (en) Environment recognition device and camera
US5628036A (en) Focus adjustment device and method
JPH07181369A (en) Automatic focusing camera, and automatic focusing method of camera
US4572476A (en) Method for detecting a focus condition of an imaging optical system employing interpolated signal values
JP2850336B2 (en) Focus detection device
US6507707B2 (en) Distance measuring apparatus and distance measuring method
US5532783A (en) Apparatus and method for adjusting the focus of a camera during scanning drive and non-scanning drive of a photographic lens
JP4810160B2 (en) Focus detection apparatus and control method thereof
JPH11337814A (en) Optical device
JPH07181366A (en) Automatic focusing camera and automatic focusing method of camera
JP3230759B2 (en) Distance measuring device
JP3382321B2 (en) Optical equipment
JPS63194240A (en) Automatic focus detector
JP2531182B2 (en) Camera auto focus device
JPH0876002A (en) Automatic focusing device
JP2558377B2 (en) Focus detection device
JPH11337813A (en) Autofocus camera
JP3206122B2 (en) Focus detection device
JPH0643356A (en) Focus detector
JP3591258B2 (en) Focus detection device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040701

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070709

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6