JPH07180400A - Leg member mounting adjustment method of tower structure - Google Patents

Leg member mounting adjustment method of tower structure

Info

Publication number
JPH07180400A
JPH07180400A JP32644893A JP32644893A JPH07180400A JP H07180400 A JPH07180400 A JP H07180400A JP 32644893 A JP32644893 A JP 32644893A JP 32644893 A JP32644893 A JP 32644893A JP H07180400 A JPH07180400 A JP H07180400A
Authority
JP
Japan
Prior art keywords
leg
installation
measurement
legs
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32644893A
Other languages
Japanese (ja)
Other versions
JP2619604B2 (en
Inventor
Junichi Asano
順一 浅野
Hiroshi Nagai
博司 永井
Shiro Matsuo
志郎 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Kinden Corp
Original Assignee
Kansai Electric Power Co Inc
Kinden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Kinden Corp filed Critical Kansai Electric Power Co Inc
Priority to JP32644893A priority Critical patent/JP2619604B2/en
Publication of JPH07180400A publication Critical patent/JPH07180400A/en
Application granted granted Critical
Publication of JP2619604B2 publication Critical patent/JP2619604B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the labor of installation correction work and improve the efficiency of work and enhance measurement accuracy by measuring accurately an installation state of leg materials of a tower structure by the application of an electro-optical measuring device and indicating correction of an installation error based on the measured data. CONSTITUTION:Legs 3 of a tower structure are temporarily installed into excavation holes 6 pretiminarily determined by surveying. An electro-optical distance meter 1 is placed at an arbitrary position and adapted to measure the distance by using a reflection mirror set to the top of each of the leg materials 3. At the same time, an inclination meter is mounted to each leg material 3, thereby measuring falling down and standing up motions. Accurate errors with the accurate positions are computed based on the measured data, thereby indicating an installation correction value and correcting the installation positions of the legs.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、送電線鉄塔などの鉄
塔構造物の脚材据付調整方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a leg material installation and adjustment method for a tower structure such as a transmission line tower.

【0002】[0002]

【従来の技術】送電線鉄塔や無線鉄塔などを据付けする
場合、基礎部の脚材は、予め地図上で架線計画に従って
計画された設置位置の中心点を中心にしてmm単位で正
確に据付けされる。この中心点は予め測量によって絶対
的原点として位置決めされ、この原点を通る送電線の折
れ角の1/2の方向を正面として、正面方向に対し45
°の方向で原点を通る2つの直線上に、それぞれ2つの
脚部で合計4つの脚部を一般には設けるように脚部の据
付けが行なわれる(図26参照)。
2. Description of the Related Art When installing a power transmission line tower or wireless tower, the footing of the foundation is accurately installed in millimeters around the center point of the installation position planned in advance according to the overhead line plan on the map. It This center point is positioned in advance as an absolute origin by surveying, and the direction of 1/2 of the bending angle of the power transmission line passing through this origin is the front, and the center is 45
The legs are installed so that a total of four legs are generally provided on each of the two straight lines passing through the origin in the direction of ° (see FIG. 26).

【0003】据付けされた脚部の上には鉄塔が設置さ
れ、脚部は山腹などの斜面に掘削された掘削穴に脚柱を
埋込みコンクリートで固めて固定される。脚柱は、固定
する前にその下端と据付架台との固定状態を予め据付調
整して固定される。据付調整は次のようにして行なわれ
る。
An iron tower is installed on the installed leg portion, and the leg portion is fixed by solidifying concrete with a pillar embedded in an excavation hole excavated on a slope such as a hillside. Before the pedestal is fixed, the fixed state between the lower end of the pedestal and the installation base is previously adjusted and fixed. Installation adjustment is performed as follows.

【0004】図27に示すように、中心点Oには中心杭
が埋設され、この中心点Oを中心として4つの脚柱まで
の距離が設計通りであるかどうかを測定する。この測定
は、対角寸法、対角斜距離、対辺斜距離、高低差(レベ
ル)脚柱の傾き(転び)、垂直度(立ち)、回転(マイ
マイ)などについて行なわれる。
As shown in FIG. 27, a center pile is buried in the center point O, and it is measured whether or not the distances to the four pedestals around the center point O are as designed. This measurement is performed for diagonal dimensions, diagonal diagonal distance, diagonal diagonal distance, elevation difference (level) pedestal tilt (fall), verticality (standing), rotation (maimai), and the like.

【0005】上記測定をする場合、脚柱上端のフランジ
上で図示のように6点を測定点1〜6として設定し、例
えば対角寸法は中心点0〜測定点1の間の距離、対角斜
距離は測定点1〜5又は5〜1間の距離、対辺斜距離は
測定点2〜4間の距離というように測定する。
In the above measurement, six points are set as measurement points 1 to 6 on the flange at the upper end of the pedestal as shown in the figure. For example, the diagonal dimension is the distance between the center point 0 to the measurement point 1, The angular skew distance is measured between the measurement points 1 to 5 or 5 to 1, and the diagonal distance is measured between the measurement points 2 to 4.

【0006】上記測定には、一般に鋼製巻尺、箱尺、視
準器、水糸(重錘付き)などが使用される。図28の
(a)に示すように、対角、対角斜距離などを測定する
ときは巻尺で直接測定点1〜5間又は5〜1間を、
(b)に示すように、高低差を測定する場合は箱尺を測
定点に垂直に立て視準器(レベル)で高低差を測定す
る。(c)では転び、(d)では立ちが測定される。
A steel tape measure, a box measure, a collimator, a water thread (with a weight) and the like are generally used for the above measurement. As shown in (a) of FIG. 28, when measuring diagonal, diagonal diagonal distance, etc., directly measure between 1 to 5 measuring points or between 5 to 1 with a tape measure.
As shown in (b), when measuring the height difference, a box scale is set up perpendicular to the measurement point and the height difference is measured by a collimator (level). Falling is measured in (c) and standing is measured in (d).

【0007】図29の(a)に示すように、脚柱の高低
差が大きい場合は、途中に仮ポイントを設定し、その仮
ポイントに箱尺をセットして仮ポイントごとに設定した
値を合計して高低差とする。(b)に示すように、脚柱
と脚柱の間に山の起伏があり脚柱間の距離が直接測定で
きないときは、視準器(トランシット)で角度測定、斜
距離測定(鋼製巻尺を用いて)を行ない電卓で計算によ
り間接測定する。
As shown in FIG. 29 (a), when the height difference of the pedestal is large, a temporary point is set on the way, a box scale is set at the temporary point, and the value set for each temporary point is set. The height difference is summed up. As shown in (b), when the distance between the pedestals cannot be measured directly due to the undulations of the mountains between the pedestals, angle measurement and oblique distance measurement (steel tape measure) with a collimator (transit) can be performed. Indirect measurement by calculation with a calculator.

【0008】以上のようにして測定された各脚柱間の距
離が設計通りであるかどうかが比較され、距離に過不足
があると、図30に示すように、脚柱のいずれか又はい
くつかに対してその下端を据付用架台に固定している固
定部及び脚柱上部に接続したサポートをそれぞれ調整し
て各脚柱の位置及び各脚柱間の距離が設計値に対し据付
誤差許容値内となるようにする。
It is compared whether or not the distances between the pedestals measured as described above are as designed, and if there is an excess or deficiency in the distances, as shown in FIG. On the other hand, the position of each pedestal and the distance between each pedestal can be adjusted with respect to the design value by adjusting the fixed part that fixes the lower end to the installation base and the support connected to the upper part of the pedestal. Be within the value.

【0009】各脚柱のいずれをどれだけ移動すれば良い
かについては、脚柱のずれ量や脚相互間の相対位置関係
によってそれぞれ異なるためその状態に応じて勘と経験
に基づいて調整が行なわれる。各脚柱の最終的な固定位
置が決定され調整が終了すると脚柱は掘削穴内にコンク
リートで固められる。
The amount of movement of each pedestal differs depending on the amount of displacement of the pedestal and the relative positional relationship between the legs, and adjustment is made based on intuition and experience according to the state. Be done. When the final fixing position of each pedestal is determined and the adjustment is completed, the pedestal is solidified in the drill hole.

【0010】[0010]

【発明が解決しようとする課題】上述したように送電線
鉄塔などを設置する場合、脚柱の据付寸法測定と据付調
整を並行して行なう。この調整作業はサポートの出し入
れ操作、据付用架台の上下、左右、前後、回転操作によ
って行なわれ、特に脚柱は非常に重いため(1〜5
t)、作業員がバールなどで脚柱をこじて動かし、固定
ボルトで固定しなければならない。このため、このとき
の調整箇所、調整方向、調整量は作業員の勘と経験で判
断し、許容値以内になるまで何回も調整作業と測定を繰
り返し実施する必要がある。
When installing a transmission line tower as described above, the installation dimension measurement and installation adjustment of the pedestals are performed in parallel. This adjustment work is performed by putting in and out the support, and moving up and down, left and right, front and back, and rotating the installation base. Especially, the pedestal is very heavy (1 to 5).
t), the worker must pry and move the pedestal with a burl and fix it with the fixing bolts. Therefore, it is necessary to judge the adjustment location, the adjustment direction, and the adjustment amount at this time by the intuition and experience of the worker, and repeatedly perform the adjustment work and the measurement until the values are within the allowable values.

【0011】又、据付寸法の測定をする場合、測定箇所
が多く、特に急峻な山岳地の場合、作業員が敷地内を何
回も上り下りしなければならず、多くの労力と時間が必
要であり、レベル測定は高低差が大きい場合、長尺の箱
尺(5m)を不安定な位置で手持ちで支持するため、大
きく揺れ動き、測定に時間がかかるとともに測定誤差が
大きくなる。測定距離が長い場合(15〜30m)、テ
ープのたるみが生じ測定誤差が大きくなり、急峻な山岳
地では脚材の高低差が非常に大きくなり(10m以
上)、レベルと箱尺を何回も盛り替える必要があり、時
間と労力がかかる。更に測定誤差も大きくなり、計算間
違いの恐れがある。
In addition, when measuring the installation dimensions, there are many measurement points, especially in a steep mountain area, the worker must go up and down the site many times, which requires a lot of labor and time. In the level measurement, when the height difference is large, a long box scale (5 m) is supported by hand at an unstable position, so that it greatly shakes, and it takes a long time to measure and a measurement error increases. If the measurement distance is long (15 to 30 m), the tape will sag and the measurement error will increase, and in steep mountain areas the difference in the height of the leg material will be extremely large (10 m or more), and the level and box scale will be repeated many times. It needs to be refilled, which takes time and effort. Furthermore, the measurement error becomes large, and there is a risk of incorrect calculation.

【0012】脚〜脚間に中尾根や仮設物が存在する場
合、間接法で測定しなければならないため測定誤差が大
きくなり、トランシットの位置選定が難しく非常に時間
がかかる。転びの測定は鉄筋組立後も行う必要がある
が、鉄筋と水糸が干渉するため測定ができず鉄筋を一旦
解体する必要があり、時間と労力を要する。
When a middle ridge or a temporary structure is present between the legs, the indirect method must be used for measurement, resulting in a large measurement error, which makes it difficult to select the position of the transit and takes a very long time. It is necessary to measure the fall even after the rebar is assembled, but since the rebar and the water thread interfere with each other, the measurement cannot be performed and the rebar needs to be disassembled, which requires time and labor.

【0013】脚柱の据付作業は、狭い掘削穴内で重い脚
柱をバールなどを用いて手作業でmm単位で行なうた
め、労力と時間がかかるとともに作業員の負担が大き
く、特に鉄筋組立後の修正作業は非常に困難である。据
付の誤差修正作業は、作業員の勘と経験によって調整箇
所、調整方向、調整量を判断し、許容値以内になるまで
何回も測定と調整作業を繰り返すために多くの時間と労
力が必要である。また、作業の指揮には経験を多く積ん
だ熟練作業員が従事する必要がある。
The pedestal installation work is performed in a narrow excavation hole with a heavy pedestal in a unit of mm by hand using a burl or the like, which requires labor and time and a heavy burden on the operator, especially after assembling the reinforcing bars. The correction work is very difficult. A lot of time and effort is required for the error correction work of installation because the adjustment point, the adjustment direction, and the adjustment amount are determined by the intuition and experience of the operator, and the measurement and adjustment work are repeated many times until they are within the allowable values. Is. In addition, it is necessary that skilled workers with a lot of experience are engaged in conducting the work.

【0014】この発明は、上記のような従来の脚材の据
付調整方法に伴う種々の困難な問題点に留意して、光波
測距儀により脚材の正確な座標位置を求めると共に脚材
の転び、立ちについて傾斜計により測定して正確な取付
状態を把握し、脚材の位置が許容誤差内となるように移
動させる指示値を演算に基づいて求めて修正作業をする
ことにより脚材の据付調整作業の労力の軽減化、作業効
率の向上、測定精度向上を図ることのできる据付調整方
法を提供することを課題とするものである。
The present invention takes note of various difficult problems associated with the conventional installation / adjustment method of leg members as described above, and obtains accurate coordinate positions of the leg members by an optical wave range finder, and By using an inclinometer to measure falling and standing up, grasp the accurate mounting state, calculate the instruction value to move the leg material so that it is within the allowable error based on the calculation, and correct it. It is an object of the present invention to provide an installation adjustment method that can reduce the labor of installation adjustment work, improve work efficiency, and improve measurement accuracy.

【0015】[0015]

【課題を解決するための手段】上記課題を解決する手段
としてこの発明は、予め測量により中心点を定めた鉄塔
構造物の複数の脚材をそれぞれの設置位置付近に掘削し
た掘削穴に仮設し、任意の位置に光波測距儀を設置して
光波を発し、各脚材頂部に反射ミラーを取付けて反射し
た光波を受光し脚材までの距離を位相差測定法により測
定すると共に各脚材に取付けた傾斜計により各脚材の立
ち、転びを測定し、上記光波測定により得た各脚材の中
心位置データから鉄塔中心を求めこれを原点とする鉄塔
座標系に各脚材中心位置を変換した鉄塔中心と各脚材の
中心位置及び立ち、転びの測定値を設計値と比較してそ
れぞれの測定値が設計値に対し所定の許容誤差内となる
ように各脚材の取付状態を微調整することから成る鉄塔
構造物の脚材据付調整方法としたのである。
As a means for solving the above problems, the present invention temporarily installs a plurality of legs of a steel tower structure whose center point has been determined by surveying in excavation holes excavated near the respective installation positions. , A light wave rangefinder is installed at an arbitrary position to emit a light wave, a reflection mirror is attached to the top of each leg material to receive the reflected light wave, and the distance to the leg material is measured by the phase difference measurement method and each leg material is also measured. Standing and rolling of each leg is measured by the inclinometer attached to the steel tower, and the center of the tower is calculated from the center position data of each leg obtained by the above lightwave measurement. The converted tower center and the center position of each leg and the standing position are compared with the design value, and the installation state of each leg is adjusted so that each measured value is within the specified tolerance with respect to the design value. Installation of legs for steel tower structures consisting of fine-tuning It was a settling method.

【0016】この据付調整方法では、前記脚材頂部付近
を支持するサポートや脚材基礎部について前記測定によ
り得られる取付状態を脚材中心の据付誤差が許容誤差内
となるように移動させるときのそれぞれの移動量を予め
算出し、その結果に基づいて移動させて前記微調整を行
なうのが好ましい。
According to this installation adjustment method, when the mounting condition obtained by the above-mentioned measurement is moved so that the installation error of the center of the leg is within the permissible error, the support supporting the vicinity of the top of the leg and the leg foundation. It is preferable that the amount of movement of each is calculated in advance and the amount of movement is moved based on the result to perform the fine adjustment.

【0017】[0017]

【作用】この発明は以上の脚材据付調整方法としたの
で、脚材の据付調整作業は演算によって示される許容誤
差内の指示値に従って行なわれ、労力が大きく軽減さ
れ、作業能率が大きく向上する。
Since the present invention has the above-described leg material installation and adjustment method, the leg material installation and adjustment work is performed according to the instruction value within the allowable error indicated by the calculation, the labor is greatly reduced, and the work efficiency is greatly improved. .

【0018】測定を開始する前の予備作業として、予め
別の測量により鉄塔の中心点が杭で示され、これを中心
として鉄塔構造物の複数の脚材がその所定位置の付近に
掘削した掘削穴内で大略位置に設置される。
As a preliminary work before starting the measurement, the center point of the steel tower is indicated by a pile by another survey in advance, and a plurality of legs of the steel tower structure are excavated in the vicinity of the predetermined position around this point. It is installed in the hole at almost the same position.

【0019】次に、光波測距儀が任意の位置に設置され
るが、この位置はできるだけ4脚が見渡せる位置が望ま
しい。しかし、4脚全部が見えないときは最小限2脚が
見える位置でそれぞれ脚材の位置を測定し、その後他の
2脚が見える位置へ移動して他の2脚を測定するように
してもよい。
Next, the light distance measuring device is installed at an arbitrary position, and it is desirable that this position is a position where the four legs can be seen as much as possible. However, if you cannot see all four legs, measure the position of each leg at a position where you can see at least two legs, and then move to a position where you can see the other two legs and measure the other two legs. Good.

【0020】各脚材位置の測定では、光波測距儀から光
波を発して各脚材頂部の反射ミラー間で光波を往復させ
その距離を位相差測定法により測定する。又、各脚に取
付けた傾斜計により立ち、転びが測定される。
In measuring the position of each leg member, a light wave is emitted from a light wave rangefinder, and the light wave is reciprocated between the reflection mirrors at the top of each leg member, and the distance is measured by the phase difference measuring method. In addition, the inclinometer attached to each leg stands to measure the fall.

【0021】次に、設計上の鉄塔座標系に対して上記測
定から得た各脚材の中心位置データによる鉄塔座標系に
変換してこれによる各脚材中心位置と鉄塔中心位置を求
め、鉄塔中心と各脚材の中心位置及び立ち、転びの測定
値を設計値と比較することにより、それぞれの測定値が
許容誤差内であるように各脚材の取付位置を微調整する
のである。
Next, the design of the steel tower coordinate system is converted into the steel tower coordinate system based on the center position data of each leg obtained from the above measurement, and the center position of each leg and the steel tower center position are obtained, and the steel tower is calculated. By comparing the measured values of the center and the center position of each leg and the standing and rolling values with the design value, the mounting position of each leg is finely adjusted so that each measured value is within the allowable error.

【0022】その場合、第二の発明のように、据付誤差
が許容誤差内となるように移動調整量を予め計算により
算出しておき、それらの計算データに基づいて脚材を微
調整するようにすれば微調整が極めてスムースに能率よ
く行なわれる。
In that case, as in the second invention, the movement adjustment amount is calculated in advance so that the installation error is within the allowable error, and the leg members are finely adjusted based on the calculated data. With this setting, fine adjustment can be performed very smoothly and efficiently.

【0023】[0023]

【実施例】以下この発明の実施例について図面を参照し
て説明する。図1はこの発明による脚材据付調整方法を
示す概略図である。1は光波測距儀であり、LEDラン
プなどにより特定波長の光波を発し、反射ミラー2で反
射された光波を受光し、光波の位相のずれを測定して距
離を測定する装置である。この光波測距儀は、各脚材を
見渡せる任意の位置に設置される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic view showing a leg material installation and adjustment method according to the present invention. Reference numeral 1 denotes a light wave distance measuring device, which is an apparatus that emits a light wave of a specific wavelength by an LED lamp or the like, receives the light wave reflected by the reflection mirror 2, measures the phase shift of the light wave, and measures the distance. This optical rangefinder is installed at an arbitrary position overlooking each leg.

【0024】反射ミラー2は、測定対象である鉄塔構造
物の脚材3(この実施例では4脚)の頂部にセットされ
る。脚材3は、据付架台4にボルト、ナット等の固定手
段により仮設され、位置調整用のサポート5が付設され
ている。
The reflection mirror 2 is set on the top of the leg members 3 (four legs in this embodiment) of the steel tower structure to be measured. The leg members 3 are temporarily installed on the installation base 4 by fixing means such as bolts and nuts, and a support 5 for position adjustment is attached thereto.

【0025】上記脚材3は掘削穴6内に仮設されるが、
この掘削穴6は予め測量によって決められる鉄塔中心位
置を中心として大略の脚材据付位置に掘削される。
The leg member 3 is temporarily installed in the excavation hole 6,
The excavation hole 6 is excavated at an approximately leg installation position, centered on the central position of the steel tower which is previously determined by surveying.

【0026】脚材3には傾斜計7が測定しようとする脚
材に対し着脱自在に取り付けられ、この傾斜計7により
脚材3の立ち、転びが測定される。
An inclinometer 7 is detachably attached to the leg member 3 with respect to the leg member to be measured, and the standing and rolling of the leg member 3 are measured by the inclinometer 7.

【0027】8はノート型パソコンと略称される小形パ
ーソナルコンピュータであり、通信ケーブル9を介して
光波測距儀1と傾斜計7の測定データがこのパーソナル
コンピュータ8へ送られる。
Reference numeral 8 is a small personal computer, which is abbreviated as a notebook type personal computer, and the measurement data of the lightwave distance measuring device 1 and the inclinometer 7 are sent to the personal computer 8 via a communication cable 9.

【0028】図2に光波測距儀1の外観及びその内部構
造の一例を示す。図示のものは市販されている光波測距
儀の1つであり、単に一例として示したものである。
又、外観と内部構造は同一機種のものではない。図示の
光波測距儀は、一般に土木、建築、測量等に使用され
る。101は送・受光光学系、102はEDM光学ユニ
ット、103は受光ブロック、104は送光ブロック、
105は視準望遠鏡である。
FIG. 2 shows an example of the external appearance of the lightwave distance measuring device 1 and its internal structure. The one shown is one of the commercially available optical rangefinders, and is shown merely as an example.
The appearance and internal structure are not the same. The illustrated optical wave range finder is generally used for civil engineering, construction, surveying and the like. 101 is a transmitting / receiving optical system, 102 is an EDM optical unit, 103 is a light receiving block, 104 is a light transmitting block,
Reference numeral 105 is a collimation telescope.

【0029】図示の光波測距儀1は、送・受光光学系の
レンズを介して測距光を出力し、反射ミラー2(プリズ
ム)で送り返される光を受光し、光波が射出されて返っ
てくるまでの時間を測定して所定位置までの距離を測定
する。この受光時間の測定は、実際には光波の位相差を
測定する位相差測定法により行なわれるが、この測定原
理については既に公知の方法であり、詳しい説明は省略
する。
The illustrated optical wave distance measuring device 1 outputs distance measuring light through a lens of a transmitting / receiving optical system, receives light sent back by a reflecting mirror 2 (prism), emits a light wave and returns it. The time to come is measured and the distance to the predetermined position is measured. The measurement of the light receiving time is actually carried out by a phase difference measuring method for measuring the phase difference of the light waves, but the measuring principle is a known method, and the detailed description thereof will be omitted.

【0030】図3、図4は反射ミラー設定具を示す。図
示の反射ミラー設定具20は、反射ミラー2を光波測距
儀1に対して所定角度で正確に脚材3の頂部に取り付け
るための手段である。
3 and 4 show a reflecting mirror setting tool. The illustrated reflection mirror setting tool 20 is means for accurately attaching the reflection mirror 2 to the top of the leg member 3 at a predetermined angle with respect to the optical distance measuring instrument 1.

【0031】反射ミラー2は、フレーム21内につまみ
22により水平軸の周りに回転自在に支持され、フレー
ム21の下方に垂直ピン23、上方にはピンポール24
を、フレーム21の適宜位置に水準器25を有する。ピ
ンポール24は、ばねクランプ26により支持アーム2
7の先端に吊り下げられ、常にピンポール24が垂直と
なるように取り付けられる。
The reflection mirror 2 is rotatably supported in the frame 21 by a knob 22 about a horizontal axis, and has a vertical pin 23 below the frame 21 and a pin pole 24 above.
A level 25 is provided at an appropriate position on the frame 21. The pin pole 24 is attached to the support arm 2 by a spring clamp 26.
It is suspended at the tip of 7, and the pin pole 24 is always attached vertically.

【0032】支持アーム27は垂直軸28に対して蝶ね
じ29により角度を調整して一点鎖線で示すようにピン
ポール24の方向が常に垂直となるように取り付けられ
る。垂直軸28はボールクランプ30により3点調整台
31に対し前後左右方向の位置を調整される。
The support arm 27 is attached to the vertical shaft 28 by adjusting the angle with a thumbscrew 29 so that the direction of the pin pole 24 is always vertical as shown by the alternate long and short dash line. The vertical shaft 28 is adjusted in the front-rear, left-right direction with respect to the three-point adjusting table 31 by a ball clamp 30.

【0033】3点調整台31は3つのつまみ32で垂直
軸の傾きの微調整ができ、ベースプレート33上に設け
られている。ベースプレート33の下方には磁石ベース
34が設けられ、つまみ35により磁性体金属に吸着力
を入、切する。
The three-point adjusting table 31 is provided on the base plate 33, and the three knobs 32 can finely adjust the inclination of the vertical axis. A magnet base 34 is provided below the base plate 33, and a magnetic force metal is turned on and off by a knob 35.

【0034】従って、磁石ベース34を脚材3の頂部フ
ランジに吸着させて反射ミラー2が脚材3に取り付けら
れる。その際反射ミラー2の下方の垂直ピン23が頂部
フランジの面エッジ部に正確に当接する作業を容易とす
るために頂部フランジ上には十字マークを入れた透明な
アクリルゲージ板36が設置される。
Therefore, the reflection mirror 2 is attached to the leg member 3 by attracting the magnet base 34 to the top flange of the leg member 3. At this time, in order to facilitate the work of accurately contacting the vertical pin 23 below the reflection mirror 2 with the surface edge portion of the top flange, a transparent acrylic gauge plate 36 having a cross mark is installed on the top flange. .

【0035】一般に脚材3は傾斜状に設けられるから、
その頂部フランジも当然傾いて設置されるが、その場合
であってもピンポール24、垂直ピン23が垂直となる
ように支持アーム27および垂直軸28を傾けて設置さ
れる。
Since the leg members 3 are generally provided in an inclined shape,
The top flange is also installed in a tilted manner, but even in that case, the support arm 27 and the vertical shaft 28 are installed so that the pin pole 24 and the vertical pin 23 are vertical.

【0036】さらに、反射ミラー2に対して光波測距儀
1の据付位置は一般に高低差が生じるから、光波測距儀
1からの光波を反射ミラー2で反射して光波測距儀1の
受光レンズで正確に受光できるようにするには、反射ミ
ラー2を水平軸の回りにつまみ22により上下動させて
光波を反射するように設定する。図5、図6は脚材3の
立ち、転びを測定する傾斜計7及びその機能図を示す。
Further, since the installation position of the light wave distance measuring device 1 generally has a height difference with respect to the reflection mirror 2, the light wave from the light wave distance measuring device 1 is reflected by the reflection mirror 2 to receive the light wave distance measuring device 1. In order to allow the lens to accurately receive the light, the reflection mirror 2 is set up and down around the horizontal axis by the knob 22 so as to reflect the light wave. 5 and 6 show an inclinometer 7 for measuring the standing and falling of the leg member 3 and a functional diagram thereof.

【0037】傾斜計7は、ベースプレート41に対し予
め垂直方向に対し9°傾斜させて固定したケーシング4
2内に、2つの角度センサ43、44を設けたものであ
る。45はハンドル、46は取付用の磁石ベースであ
る。
The inclinometer 7 is a casing 4 which is fixed to the base plate 41 in advance by inclining it by 9 ° with respect to the vertical direction.
Two angle sensors 43 and 44 are provided in the unit 2. Reference numeral 45 is a handle, and 46 is a magnet base for mounting.

【0038】角度センサ43は転び(X方向)測定用、
44は立ち(Y方向)測定用であり、内部構造は全く同
一のものである。但し、取付は互いに垂直軸周りに90
°方向が異なる。
The angle sensor 43 is for measuring the fall (X direction),
Reference numeral 44 is for standing (Y direction) measurement, and the internal structure is exactly the same. However, the mounting is 90
° Direction is different.

【0039】角度センサ43、44は、図6に示すよう
に、内部には2つの磁気抵抗素子R1 、R2 が含まれ、
これに近接して磁石Mが左右に移動可能に設けられてい
る。V1 は入力、V2 、V3 は出力電圧である。磁石M
が磁気抵抗素子R1 、R2 に対して中央に位置している
点をO点として左右いずれかに振れるとそのずれに比例
して出力電圧が変化するのを測定することにより傾斜角
度を測定する。
As shown in FIG. 6, the angle sensors 43 and 44 internally include two magnetoresistive elements R 1 and R 2 .
A magnet M is provided in the vicinity of this so as to be movable left and right. V 1 is an input, and V 2 and V 3 are output voltages. Magnet M
The tilt angle is measured by measuring that the output voltage changes in proportion to the deviation when the point which is located in the center with respect to the magnetoresistive elements R 1 and R 2 is swung to the left or right with respect to O point. To do.

【0040】なお、傾斜計7のベースプレート41に対
しケーシング42を予め9°傾けて設けているのは、鉄
塔構造物の脚材が平均してこの角度傾いて設計されると
いう経験に基づいている。
It should be noted that the reason why the casing 42 is pre-inclined with respect to the base plate 41 of the inclinometer 7 by 9 ° is based on the experience that the legs of the steel tower structure are designed to be inclined at this angle on average. .

【0041】図7は上記光波測距儀1、傾斜計7、パー
ソナルコンピュータ8から成る測定装置の全体概略ブロ
ック図である。パーソナルコンピュータ8にはキーボー
ド10が設けられ、光波測距儀1、傾斜計7による測定
データが送られ、CPU(中央処理装置)11を介して
処理され、測定データはメモリ12に記憶される。測定
データ等は表示器13に表示され、プリンタ14により
プリントされることもある。15は機器に内蔵される持
運び自在の電源である。
FIG. 7 is an overall schematic block diagram of a measuring device including the above-described light-wave rangefinder 1, inclinometer 7, and personal computer 8. A keyboard 10 is provided in the personal computer 8, measurement data from the optical distance measuring instrument 1 and the inclinometer 7 is sent, processed by a CPU (central processing unit) 11, and the measurement data is stored in a memory 12. The measurement data and the like are displayed on the display 13 and may be printed by the printer 14. Reference numeral 15 denotes a portable power source built in the device.

【0042】以上の測定装置を用いて各脚材の据付装置
を測定し、その装置が設計値に対し許容誤差内であるか
について計算により比較して判断し、その結果に基づい
て各脚材の据付位置の修正を指示して各脚材の据付修正
作業を次のようにして行なう。
The installation device for each leg is measured by using the above measuring device, and it is judged by comparing whether the device is within the allowable error with respect to the design value by comparison, and based on the result, each leg is Instructing to correct the installation position of, and perform the installation correction work of each leg material as follows.

【0043】図8に脚材の据付修正作業の処理フローチ
ャートを示す。なお、図示のフローチャートでは図示省
略しているが、事前準備作業として鉄塔の設計プログラ
ムに対し鉄塔の諸元データを入力して据付寸法の設計デ
ータを計算し、そのデータをフロッピーディスクに保管
する。そして、このフロッピーディスクを現場へ持参
し、設計データを読み込んだ後に図8の測定開始をする
ものとする。
FIG. 8 shows a processing flowchart of the leg installation and correction work. Although not shown in the flow chart shown in the figure, as preparatory work, the specification data of the tower is input to the tower design program, the design data of the installation dimension is calculated, and the data is stored in a floppy disk. Then, it is assumed that the floppy disk is brought to the site, the design data is read, and then the measurement shown in FIG. 8 is started.

【0044】測定を開始すると、ステップS1 で光波測
距儀1による各脚材3までの距離を測定し、測定点の座
標測定が行なわれる。ステップS2 では傾斜計7による
転び、立ちの測定が行なわれる。この測定は、1つの脚
材3に反射ミラー2、傾斜計7を取付け、測定終了後他
の脚材3について同様に順次実施していく。
When the measurement is started, in step S 1 , the distance to each leg member 3 is measured by the lightwave distance measuring device 1 , and the coordinates of the measuring points are measured. In step S 2 , the inclinometer 7 measures falling and standing. This measurement is performed by sequentially mounting the reflection mirror 2 and the inclinometer 7 on one leg member 3 and similarly for the other leg members 3 after the measurement.

【0045】測定が終るとステップS3 で脚材頂部のフ
ランジ中心座標計算、ステップSで脚位置回転角計
算、ステップSでフランジ回転角計算が行なわれ
る。これらの計算は後で説明する演算方法に従って行な
われる。
The flange center coordinate calculation leg member top Step S 3 when the measurement is finished, the leg position rotation angle calculated in step S 4, the flange rotation angle calculated in step S 5 is performed. These calculations are performed according to the calculation method described later.

【0046】さらに、測定開始前に読み込まれた前述の
据付寸法の設計データからステップS6 で各脚材のフラ
ンジの理想座標値計算が行なわれる。そしてステップS
7 で上記各脚のフランジの各測定点、フランジ中心位置
の実測値と各脚材の設計値に基づく対応する点の理想値
との比較を行なう。
Further, the ideal coordinate value calculation of the flange of each leg is performed in step S 6 from the design data of the above-mentioned installation dimension read before the start of measurement. And step S
In step 7 , the measured values of the measurement points of the flange of each leg and the flange center position are compared with the ideal values of the corresponding points based on the design value of each leg material.

【0047】そして、この比較の結果、各点の測定値が
理想値と±2mm以上の誤差を含むときは、測定誤差が
大きいものと判断してステップS8 で再測定の指示を表
示する。誤差が±2mm以下のときは測定誤差はないも
のとして測定を終了する(ステップS9 )。
As a result of this comparison, if the measured value at each point includes an error of ± 2 mm or more from the ideal value, it is determined that the measurement error is large, and a remeasurement instruction is displayed in step S 8 . When the error is ± 2 mm or less, it is determined that there is no measurement error, and the measurement ends (step S 9 ).

【0048】なお、このとき上記測定点の測定データ、
回転角等についてのデータはフロッピーディスクに保管
しておく。
At this time, the measurement data of the above measurement points,
Data such as the rotation angle should be stored on a floppy disk.

【0049】次に、ステップS10では上記各脚材の測定
データから鉄塔中心座標計算が行なわれ、ステップS11
では鉄塔中心回転角計算が行なわれる。さらに、測定値
座標変換がステップS12で行なわれる。この座標変換
は、例えば4脚のうち2脚が既にコンクリート打設さ
れ、脚材を大きく修正することができないようなとき、
その2脚を動かさないものとして鉄塔中心を設定する際
に行なわれる。4脚全てを位置修正するときはこの座標
変換は不要である。座標変換の方法は後で詳しく説明す
る。
Next, in step S 10 , the tower center coordinates are calculated from the measured data of each of the above-mentioned leg members, and in step S 11
Then, the rotation angle of the tower center is calculated. Furthermore, measurement value coordinate conversion is performed in step S 12 . This coordinate transformation, for example, when two of the four legs have already been cast into concrete and the leg material cannot be greatly modified,
This is done when setting the center of the tower as if the two legs are not moved. This coordinate conversion is not necessary when correcting the positions of all four legs. The method of coordinate conversion will be described later in detail.

【0050】ステップS13では据付寸法計算が行なわれ
る。この据付寸法とは、図27に示す寸法であって、対
角寸法、対角斜距離、対辺斜距離などである。
In step S 13 , installation dimension calculation is performed. The installation dimension is the dimension shown in FIG. 27, and is a diagonal dimension, diagonal diagonal distance, diagonal diagonal distance, or the like.

【0051】上記据付寸法を計算すると、ステップS14
でそれぞれの据付寸法に対して設計値と実測値を比較
し、その誤差が所定の設定許容値内であるかどうかを判
断する。この比較の結果据付寸法が許容値内であれば修
正作業なしに据付作業は終了する。
When the above installation dimensions are calculated, step S 14
Then, the design value and the actual measurement value are compared for each installation dimension, and it is determined whether the error is within a predetermined setting allowable value. As a result of this comparison, if the installation dimension is within the allowable value, the installation work is completed without correction work.

【0052】いずれかの据付寸法が据付許容値内でない
ときは、ステップS15で微調整作業量を計算する。調整
量は小数点以下を四捨五入し(ステップS16)、ステッ
プS17では各脚材の据付位置の最大脚から順次その据付
位置を誤差範囲内で仮想的に移動させて内部シュミレー
ションを行なう。誤差最大脚の位置を誤差0としたとき
に上記据付寸法が許容値範囲内となるかそれとも反対に
誤差が大きくなるかを見るのである。
If any of the installation dimensions is not within the installation allowable value, the fine adjustment work amount is calculated in step S 15 . The adjustment amount is rounded off to the nearest whole number (step S 16 ), and in step S 17 , the installation position of each leg is sequentially moved virtually within the error range from the largest leg of the installation position to perform internal simulation. When the position of the maximum error leg is set to 0, it is checked whether the above-mentioned installation dimension is within the allowable value range or, on the contrary, the error becomes large.

【0053】ステップS18で据付許容値内であるかを判
断し、許容値内でなければ、さらに他の脚を移動させて
据付寸法の変化を見る。据付寸法の誤差が全て据付許容
値内になると、そのときの各脚の据付位置に対する微調
整量をステップS19で指示し、据付微調整作業を実施す
る(ステップS20)。そして、微調整作業が終了する
と、先頭に戻って再度測定点の座標測定を行ない、上記
処理フローを繰り返す。
[0053] Determine which the installation tolerances in step S 18, if it is not within the allowable values, see the change in the installation dimensions by further moving the other leg. When all the errors in the installation dimensions are within the installation allowable value, the fine adjustment amount for the installation position of each leg at that time is instructed in step S 19 , and the installation fine adjustment work is performed (step S 20 ). When the fine adjustment work is completed, the coordinates of the measurement point are measured again by returning to the beginning, and the above processing flow is repeated.

【0054】さて、以上の処理フローチャートで実行さ
れる計算による測定点の座標や誤差の測定を求める方法
について以下説明する。なお、以下の説明は理解し易く
するため必らずしもフローチャートの順序通りではない
が、フローチャートの各ステップで行なわれる具体的な
演算はそれぞれが対応する説明を参照されたい。
Now, a method for obtaining the coordinates of the measurement point and the measurement of the error by the calculation executed in the above processing flowchart will be described below. It should be noted that the following description is not necessarily performed in the order of the flowcharts for ease of understanding, but refer to the corresponding descriptions for specific operations performed in each step of the flowcharts.

【0055】まず図9に以下で取り扱う座標系および測
定点を示す。鉄塔の中心(または偏心杭)を原点とし
て、方向杭をy軸方向、これと直角な方向をx軸、z軸
は鉛直方向として鉄塔座標系(xn 、yn 、zn )を構
成する。また、各脚の測定点は鉄塔中心方向をP6とし
て図のようにP1〜P5と設定する。
First, FIG. 9 shows a coordinate system and measurement points to be handled below. As origin at the center (or eccentric pile) towers, constituting the direction pile y-axis direction, x-axis this perpendicular direction, z axis tower coordinate system as the vertical direction (x n, y n, z n) of . Further, the measurement points of each leg are set to P1 to P5 as shown in the figure with P6 in the central direction of the steel tower.

【0056】光波測距儀1はできるだけ4脚が見通せる
任意の位置に据付け各測定点を測定する。光波測距儀1
は任意の方向で0セットすると、図のようにその方向を
y’軸として、機械中心を原点としたx’−y’−z’
座標系を構成する。測定点の位置データは(xn ’、
y’n 、z’n )の座標値として送り出される。
The optical distance measuring instrument 1 is installed at any position where the four legs can be seen as far as possible, and each measuring point is measured. Lightwave rangefinder 1
Is set to 0 in any direction, x'-y'-z 'with the machine center as the origin and that direction as the y'axis as shown in the figure.
Configure the coordinate system. The position data of the measurement point is (x n ',
y 'n, z' is sent as a coordinate value of n).

【0057】但し、鉄塔座標系(xn 、yn 、zn )は
後で説明する設計座標系と同じものであるが、測定点の
測定データと設計値とを区別するために便宜上小文字に
て表わしている。
However, the steel tower coordinate system (x n , y n , z n ) is the same as the design coordinate system to be described later, but in order to distinguish the measured data at the measurement point from the design value, it is written in lower case for convenience. Is represented.

【0058】以上のように定められた座標系に対し、光
波測距儀1で実測される各測定点までの距離のデータ
は、機械中心を原点とした位置データであり、従って鉄
塔座標系に座標変換する必要がある。そこで各測定点の
位置データの処理を次の手順で行なう。
With respect to the coordinate system determined as described above, the data of the distances to the respective measurement points actually measured by the lightwave range finder 1 are the position data with the machine center as the origin, and therefore the coordinate system of the steel tower is used. It is necessary to transform the coordinates. Therefore, the processing of the position data of each measurement point is performed in the following procedure.

【0059】 任意の位置で光波測距儀を0セットす
る(光波測距儀側)。
The optical rangefinder is set to 0 at any position (on the side of the optical rangefinder).

【0060】 鉄塔中心を測定し(x1 ’、y1 ’、
1 ’)を読み込む。
Measure the center of the tower (x 1 ', y 1 ',
z 1 ') is read.

【0061】 方向杭を測定し(x2 ’、y2 ’、z
2 ’)を読み込む。
The directional pile was measured (x 2 ', y 2 ', z
2 ') is read.

【0062】 鉄塔中心を原点とし、方向杭をy軸と
する座標系をコンピュータ上で構成し、以後の測定はこ
の座標系に変換して扱う(以後の読み込み座標に使用す
る座標変換値dx、dy、dz、回転角αを求める)。
A coordinate system with the center of the steel tower as the origin and the direction pile as the y-axis is configured on a computer, and the subsequent measurement is converted to this coordinate system and handled (the coordinate conversion value dx used for the subsequent read coordinates, dy, dz, and rotation angle α are obtained).

【0063】 各測定点の(xn ’、y’n
z’n )を読み込み(xn 、yn 、zn )に変換し、表
示、記録する。
At each measurement point (x n ', y' n ,
z ′ n ) is read and converted into (x n , y n , z n ), which is displayed and recorded.

【0064】各測定値はこの座標値を用いて計算する。Each measured value is calculated using this coordinate value.

【0065】光波測距儀のx’−y’−z’座標系から
鉄塔座標系への座標変換をする場合、原点の変換値d
x、dy、dzおよび座標系の回転角αは、 dx=−x1 ’ dy=−y1 ’ dz=−z1 ’ α=ARCTAN{(y2 ’−y1 ’)/(x2 ’−x1 ’)} (1) で表わされ、これらに基づいて光波測距儀で測定した測
定点の座標(xn ’、y’n 、z’n )を次式により鉄
塔座標系(xn 、yn 、zn )に変換する。 xn =xn ’・cosα−yn ’・sinα+dx yn =xn ’・sinα+yn ’・cosα+dy zn =xn ’+dz (2) 例えばA脚に関する据付寸法は次式となる。
When the coordinate conversion from the x'-y'-z 'coordinate system of the light-wave rangefinder to the steel tower coordinate system is performed, the conversion value d of the origin is obtained.
x, dy, dz and the rotation angle α of the coordinate system are: dx = −x 1 ′ dy = −y 1 ′ dz = −z 1 ′ α = ARCTAN {(y 2 ′ −y 1 ′) / (x 2 ′ -x 1 ')} (1) represented by, for these measuring points measured by laser rangefinder based coordinates (x n', y 'n , z' n) the pylons coordinate system by the following equation ( x n , y n , z n ). Installation dimensions for x n = x n '· cosα -y n' · sinα + dx y n = x n '· sinα + y n' · cosα + dy z n = x n '+ dz (2) for example A leg becomes the following equation.

【0066】 対辺斜距離 A−B:{(xa4 −xb2 2 +(ya4 −yb2 2 +(z a4 −zb2 2 1/2 A−D:{(xa2 −xd4 2 +(ya2 −yd4 2 +(z a2 −zd4 2 1/2 対角斜距離 A−C(B):{(xa5 −xc1 2 +(ya5 −yc1 2 +(za5 −zc1 2 1/2 A−C(D):{(xa1 −xc5 2 +(ya1 −yc5 2 +(za1 −zc5 2 1/2 対角寸法 0−A:(xa3 2 +ya3 2 1/2 レベル 0−A za3 (3) 以下同様に各脚に対して計算できる。[0066] opposite side slope distance A-B: {(xa 4 -xb 2) 2 + (ya 4 -yb 2) 2 + (z a 4 -zb 2) 2} 1/2 A-D: {(xa 2 -xd 4) 2 + (ya 2 -yd 4) 2 + (z a 2 -zd 4) 2} 1/2 diagonal slope distance A-C (B): { (xa 5 -xc 1) 2 + ( ya 5 -yc 1) 2 + ( za 5 -zc 1) 2} 1/2 A-C (D): {(xa 1 -xc 5) 2 + (ya 1 -yc 5) 2 + (za 1 - zc 5 ) 2 } 1/2 diagonal dimension 0-A: (xa 3 2 + ya 3 2 ) 1/2 level 0-A za 3 (3) The same can be calculated for each leg.

【0067】現場でフランジの測定点を実測する場合、
ミラーの据付け誤差や視準の目測誤差などの測定誤差が
発生する恐れがあり、以下実測値の採用処理方法につい
て述べる。
When actually measuring the measuring point of the flange at the site,
There is a possibility that measurement errors such as mirror installation error and collimation eye measurement error may occur, and the method of adopting the actual measurement values will be described below.

【0068】図10のように中心の座標がa0 でΔfだ
け回転しているポストに直径φのフランジが乗っている
と仮定した場合の各測定点の座標an を求める。脚材の
実測転び寸法(対角開き係数)をαdとすると、
As shown in FIG. 10, the coordinates a n of each measurement point are calculated assuming that a flange having a diameter φ is mounted on a post whose center coordinate is a 0 and which rotates by Δf. Let αd be the measured fall dimension (diagonal opening coefficient) of the leg material,

【0069】[0069]

【数1】 [Equation 1]

【0070】以上より各測定点の座標an はつぎの通り
となる。
From the above, the coordinates a n of each measurement point are as follows.

【0071】[0071]

【数2】 [Equation 2]

【0072】この座標を各測定の理想座標とする。実測
座標an ’と理想座標an の差Δan は Δa1 =a1 ’−a1 ,Δa2 =a2 ’−a2 ,Δa3 =a3 ’−a3 Δa4 =a4 ’−a4 ,Δa5 =a5 ’−a5 ,Δa6 =a6 ’−a6 (6) となり、この値が大きく異なる場合は、測定誤差が大き
いとして再測定指示を行う。
These coordinates are used as ideal coordinates for each measurement. The difference Δa n between the measured coordinate a n 'and the ideal coordinate a n is Δa 1 = a 1 ′ −a 1 , Δa 2 = a 2 ′ −a 2 , Δa 3 = a 3 ′ −a 3 Δa 4 = a 4 ′. −a 4 , Δa 5 = a 5 ′ −a 5 , Δa 6 = a 6 ′ −a 6 (6) If these values are significantly different, a remeasurement instruction is given assuming that the measurement error is large.

【0073】次に、各脚材の各測定点及びフランジ中心
の設計座標の設定について、例えばA脚の場合を図11
に示す。設計上の座標を(Xn 、Yn 、Zn )、実測し
た座標を(xn 、yn 、zn )とする。A点での座標を
記号化して表わすと次のようになる。 An =(Xn 、Yn 、Zn ) an =(xn 、yn 、zn ) フランジの中心座標はA0 、a0 と表す。
Next, regarding the setting of the design coordinates of each measurement point and the center of the flange of each leg, for example, in the case of A leg, FIG.
Shown in. Design coordinates are (X n , Y n , Z n ), and actually measured coordinates are (x n , y n , z n ). The coordinates at point A are symbolically expressed as follows. A n = (X n , Y n , Z n ) a n = (x n , y n , z n ) The center coordinates of the flange are represented by A 0 and a 0 .

【0074】また、その他の脚の設計上の座標および実
測した座標をつぎのように表す。 ・設計上座標 B脚 中心座標=B0 ,測定点座標=B
n C脚 中心座標=C0 ,測定点座標=Cn D脚 中心座標=D0 ,測定点座標=Dn ・実側座標 B脚 中心座標=b0 ,測定点座標=b
n C脚 中心座標=c0 ,測定点座標=cn D脚 中心座標=d0 ,測定点座標=dn フランジの中心座標はそれぞれつぎのように表せる。 A0 =(A1 +A3 +A5 +A6 )/4,a0 ≒(a1 +a3 +a5 +a6 )/4 B0 =(B1 +B3 +B5 +B6 )/4,b0 ≒(b1 +b3 +b5 +b6 )/4 C0 =(C1 +C3 +C5 +C6 )/4,c0 ≒(c1 +c3 +c5 +c6 )/4 D0 =(D1 +D3 +D5 +D6 )/4,d0 ≒(d1 +d3 +d5 +d6 )/4 (7) また、各設計座標と実測座標の差は次式とする。 ΔAn =an −An ΔBn =bn −Bn ΔCn =cn −Cn ΔDn =dn −Dn (8) 次に、鉄塔中心座標系の補正について図12を参照して
説明する。
Further, the design coordinates and the actually measured coordinates of the other legs are expressed as follows.・ Design coordinates B leg Center coordinates = B 0 , Measurement point coordinates = B
n C leg center coordinate = C 0 , measurement point coordinate = C n D leg center coordinate = D 0 , measurement point coordinate = D n / actual side coordinate B leg center coordinate = b 0 , measurement point coordinate = b
n C leg center coordinates = c 0 , measurement point coordinates = c n D leg center coordinates = d 0 , measurement point coordinates = d n The flange center coordinates can be expressed as follows. A 0 = (A 1 + A 3 + A 5 + A 6 ) / 4, a 0 ≈ (a 1 + a 3 + a 5 + a 6 ) / 4 B 0 = (B 1 + B 3 + B 5 + B 6 ) / 4, b 0 ≈ (B 1 + b 3 + b 5 + b 6 ) / 4 C 0 = (C 1 + C 3 + C 5 + C 6 ) / 4, c 0 ≈ (c 1 + c 3 + c 5 + c 6 ) / 4 D 0 = (D 1 + D 3 + D 5 + D 6 ) / 4, d 0 ≈ (d 1 + d 3 + d 5 + d 6 ) / 4 (7) The difference between each design coordinate and the measured coordinate is expressed by the following equation. ΔA n = a n -A n ΔB n = b n -B n ΔC n = c n -C n ΔD n = d n -D n (8) Next, with reference to FIG. 12 for correction of the tower centered coordinate system Explain.

【0075】鉄塔基礎の施工は地形や機械工具等の条件
によって、4脚同時に行われない場合が多い。たとえ
ば、A、C脚を先行して施工し、B、D脚を後から施工
するような場合、A、C脚はすでにコンクリートが打設
してあり、B、D脚を据付けるときにはA、C脚は動か
すことができない。
In many cases, the construction of the steel tower foundation cannot be performed simultaneously with the four legs depending on the conditions such as topography and machine tools. For example, when the A and C legs are constructed in advance and the B and D legs are constructed later, concrete is already placed in the A and C legs, and when installing the B and D legs, A, The C leg cannot be moved.

【0076】先行脚の据付けに若干の誤差があった場合
は、設計上の鉄塔中心を基準とするよりも、先行脚を基
準として残りの脚を据付ける方が鉄塔構造や鉄塔組立に
悪影響を及ぼさない。また、その誤差は数mmオーダー
であり、線路に対して影響は全くない。このようなケー
スを想定し、鉄塔中心の誤差(補正量)の把握を行な
う。
If there is some error in the installation of the leading legs, it is more harmful to the steel tower structure and the steel tower assembly to install the remaining legs based on the leading legs than to design the center of the tower. Does not reach. Further, the error is on the order of several mm, and has no influence on the line. Assuming such a case, the error (correction amount) at the center of the tower will be understood.

【0077】鉄塔中心の設計上の座標をP0 (0,0,
0)、脚を基準とした座標をp0 、その差をΔP0 とす
る。各脚の中心誤差の平均をΔP0 とする。 ΔP0 =(na・ΔA0 +nb・ΔB0 +nc・ΔC0 +nd・ΔD0 )/4 <但し、na、nb、nc、ndは施工完了脚は1、据付け脚は0である。> (9) つぎにp0 を中心とした正規の対角方向と各脚の実際の
据付け方向との差を回転角 ΔFa ,ΔFb ,ΔFc ,ΔFd と仮定すると、鉄塔中心の回転角ΔF0 は次式で求め
る。 ΔF0 =(na・ΔFa +nb・ΔFb +nc・ΔFc +nd・ΔFd )/4 (10) 以上より、先行施工した脚より求めた座標系は正規の座
標系に中心座標ΔP0で回転角ΔF0 だけ補正を加えた
ものとなる。よって、新規に据付ける脚はこの補正後の
座標系上で据付けすればよい。
The design coordinates of the center of the tower are set to P 0 (0, 0,
0), the coordinate with respect to the leg is p 0 , and the difference is ΔP 0 . Let ΔP 0 be the average of the center errors of each leg. ΔP 0 = (na · ΔA 0 + nb · ΔB 0 + nc · ΔC 0 + nd · ΔD 0 ) / 4 <however, na, nb, nc, and nd have 1 for the completed construction leg and 0 for the installation leg. > (9) Next, assuming that the difference between the normal diagonal direction around p 0 and the actual installation direction of each leg is the rotation angles ΔF a , ΔF b , ΔF c , and ΔF d , the rotation of the tower center The angle ΔF 0 is calculated by the following equation. ΔF 0 = (na · ΔF a + nb · ΔF b + nc · ΔF c + nd · ΔF d ) / 4 (10) From the above, the coordinate system obtained from the previously constructed leg rotates at the center coordinate ΔP 0 in the regular coordinate system. The correction is made by the angle ΔF 0 . Therefore, the newly installed leg may be installed on this corrected coordinate system.

【0078】次に、各脚(フランジ)の据付け修正指示
を行うために、各脚の据付け誤差の把握を行う。
Next, in order to instruct the installation correction of each leg (flange), the installation error of each leg is grasped.

【0079】図13に示すように各測定点の設計座標A
n と実測座標an との誤差はつぎのように求める。(但
し、座標系は鉄塔中心座標補正を行ったものとする。)
式(7) 、(8) よりフランジ中心座標は設計上及び実測上
つぎのとおりとなる。
As shown in FIG. 13, design coordinates A of each measurement point
The error between n and the measured coordinate a n is obtained as follows. (However, the coordinate system shall be corrected for the tower center coordinates.)
From equations (7) and (8), the flange center coordinates are as follows in terms of design and actual measurement.

【0080】中心座標は設計上及び実測上つぎのとおり
となる。 A0 =(A1 +A3 +A5 +A6 )/4 a0 =(a1 +a3 +a5 +a6 )/4 (11) また、脚の設計座標と実測座標の据付け誤差は次式とな
る。 ΔA0 ≒a0 −A0 (12) つぎにa0 を中心とした各測定点an の回転角fn を求
める。
The center coordinates are as follows in terms of design and actual measurement. A 0 = (A 1 + A 3 + A 5 + A 6 ) / 4 a 0 = (a 1 + a 3 + a 5 + a 6 ) / 4 (11) Also, the installation error between the leg design coordinates and the measured coordinates is as follows. . ΔA 0 ≒ a 0 -A 0 ( 12) then determine the rotation angle f n for each measurement point a n around the a 0.

【0081】[0081]

【数3】 [Equation 3]

【0082】同様にA0 を中心とした設計上の回転角F
n は次式となる。
Similarly, the designed rotation angle F around A 0
n becomes the following formula.

【0083】[0083]

【数4】 [Equation 4]

【0084】設計上の回転角Fn と実測上の回転角fn
との差座標ΔFn は ΔFn =fn −Fn (15) となり、これらの平均値を脚の回転角誤差座標ΔFaと
する。 ΔFa=ΣΔFn /6 (16) 式(12)、(16)より実測した脚の据付け誤差は中心座標Δ
0 でΔFaだけ回転していることとなる。
Designed rotation angle F n and measured rotation angle f n
The difference coordinate ΔF n with is ΔF n = f n −F n (15), and the average value of these is taken as the rotation angle error coordinate ΔFa of the leg. ΔFa = ΣΔF n / 6 (16) The leg installation error measured from equations (12) and (16) is the center coordinate Δ.
This means that at A 0 , it is rotating by ΔFa.

【0085】次に、据付け微調整作業による脚材の動き
について説明する。
Next, the movement of the leg material due to the installation fine adjustment work will be described.

【0086】据付けの微調整作業はサポートや脚材基礎
部などを動かして行うが、それぞれの作業で脚材がどの
ような動きをするかを把握する。
The fine adjustment work for the installation is performed by moving the support and the leg material base, and it is necessary to understand how the leg material moves in each work.

【0087】(1) 据付けサポート調整による動き 図14のように、x、y軸方向にサポートがあり、これ
を動かして、ポスト頂部a0 を(Δx1 ,Δy1 )移動
させた場合を考える。
(1) Movement by Installation Support Adjustment Consider a case where there is a support in the x and y axis directions and the post top a 0 is moved by (Δx 1 , Δy 1 ) as shown in FIG. .

【0088】[0088]

【数5】 [Equation 5]

【0089】(2) 脚材基礎部の調整による動き 図16のようにサポートで支持された脚材の基礎部をΔ
2 ,Δy2 移動したときの頂部の変化量Δx2 ’,Δ
2 ’はそれぞれ
(2) Movement due to adjustment of the leg material base portion As shown in FIG. 16, the foot portion base portion supported by the support is Δ.
x 2 , Δy 2 Change amount of top Δx 2 ′, Δ when moving
y 2 'is

【0090】[0090]

【数6】 [Equation 6]

【0091】(3) 脚材レベル調整ボルトの調整による動
き 図17の(a)に示すように脚材のレベル調整用ボルト
による変化はx,y軸方向にほとんど影響が無いと仮定
できる。そのため転び、立ちの変化も無視できる。
(3) Movement by adjusting leg material level adjusting bolt As shown in FIG. 17 (a), it can be assumed that the change of the leg material by the level adjusting bolt has almost no effect in the x and y axis directions. Therefore, the fall and the change in standing can be ignored.

【0092】調整ボルトの調整量Δz’によるレベルの
変化量Δz3 は Δz3 =Δz’ (29) (4) 脚材の回転による動き 図17の(b)に示すように脚材の芯a0 を中心として
脚材を回転させた場合、中心座標に変化は無いため、レ
ベル、転び、立ちへの影響は無視できる。
The level change amount Δz 3 due to the adjustment amount Δz ′ of the adjustment bolt is Δz 3 = Δz ′ (29) (4) Movement due to rotation of leg material As shown in FIG. When the leg is rotated around 0 , the center coordinates do not change, so the influence on the level, fall, and standing can be ignored.

【0093】但し「まいまい」及び「測定ポイント座
標」は変化する。
However, the "performance" and "measurement point coordinates" change.

【0094】以上よりサポートによって(Δx1 ,Δy
1 )、基礎部を(Δx2,Δ y2 )、レベルをΔz3 それ
ぞれ微調整した場合のポスト(フランジ)中心座標a0
の変化は次の表1に示す通りである。
From the above, by the support ((Δx 1 , Δy
1 ), post (flange) center coordinates a 0 when the base part is finely adjusted (Δx 2 , Δy 2 ) and the level is Δz 3.
The change in is as shown in Table 1 below.

【0095】[0095]

【表1】 [Table 1]

【0096】よって、脚材中心の据付け誤差がΔa
0 (Δx,Δy,Δz)、ΔαD、ΔβDの場合、上記
各項目を満足する(Δx1 ,Δy1 )、(Δx2 ,Δy
2 )、Δz3 を求めれば微調整を行うことができる。
Therefore, the installation error around the leg material is Δa.
In the case of 0 (Δx, Δy, Δz), ΔαD, and ΔβD, the above items are satisfied (Δx 1 , Δy 1 ) and (Δx 2 , Δy).
2 ) and Δz 3 can be obtained for fine adjustment.

【0097】上記の関係式より各作業ポイントの調整量
を算出する。
The adjustment amount of each work point is calculated from the above relational expression.

【0098】[0098]

【数7】 [Equation 7]

【0099】上式から計測時のポスト中心(フランジ
面)据付け誤差がΔa0 (Δx,Δy,Δz)、Δa
D、ΔβDのとき サポートによる頂部の微調整量:Δx1 ,Δy1 基礎部の微調整量 :Δx2 ,Δy2 レベル調整ボルトの微調整量 :Δz3 を求めるとそれぞれつぎのとおりとなる。
From the above equation, the post center (flange surface) installation error during measurement is Δa 0 (Δx, Δy, Δz), Δa
When D and ΔβD, the fine adjustment amount of the top part by the support: Δx 1 , Δy 1 The fine adjustment amount of the base part: Δx 2 , Δy 2 The fine adjustment amount of the level adjustment bolt: Δz 3 is obtained as follows.

【0100】[0100]

【数8】 [Equation 8]

【0101】以上が図8のフローチャートに従って実行
する測定演算処理の詳細な説明であるが、この演算処理
の結果については図18〜図25にそれぞれ表示してい
る。
The above is a detailed description of the measurement calculation processing executed according to the flowchart of FIG. 8. The results of this calculation processing are shown in FIGS. 18 to 25, respectively.

【0102】図18は鉄塔についての設計条件の入力値
である。図19にその設計データに基づく各脚の設計座
標の計算結果を示す。図20は上記設計データに基づい
て各脚について対角寸法、対角斜距離などの据付設計寸
法の計算結果を示す。図21は基準線、対角斜距離変更
基準の出力画面である。
FIG. 18 shows the input values of the design conditions for the steel tower. FIG. 19 shows the calculation result of the design coordinates of each leg based on the design data. FIG. 20 shows the calculation results of the installation design dimensions such as the diagonal dimension and diagonal diagonal distance for each leg based on the above design data. FIG. 21 is an output screen of the reference line and the diagonal oblique distance change reference.

【0103】図22は各脚の対角斜距離値についての実
測値の出力画面である。図23に測定点の平均値によっ
て理想フランジがあると仮定した値と設計値の差を表示
している。図24は測定点の実測値と設計値の差分を表
示している。図25はB、D脚がコンクリート打設を完
了としたときのA、C脚の据付誤差修正指示値を表示し
ている。
FIG. 22 is an output screen of actually measured values for the diagonal diagonal distance value of each leg. FIG. 23 shows the difference between the design value and the value assumed to have the ideal flange based on the average value of the measurement points. FIG. 24 shows the difference between the measured value and the design value at the measurement point. FIG. 25 shows the installation error correction instruction values for the A and C legs when the B and D legs have completed the concrete pouring.

【0104】なお、以上の実施例では原則として4脚が
全て見渡せる位置に光波測距儀を設置して測定するとし
ているが、必らずしも4脚全てが見渡せない状態でも測
定は可能である。
In the above embodiment, in principle, the optical rangefinder is installed at a position where all four legs can be seen, but it is inevitable that the measurement can be performed even when all four legs cannot be seen. is there.

【0105】例えば図9の光波測距儀を図示の位置から
点Qへ移動させた場合について考える。まず図示の元の
位置でC、D脚の2脚が見えるものとすると、元の位置
でC、D脚の2脚の位置を測定する。次に、点Qへ移動
してここでもC、Dの2脚が見えるとすると、点Qで再
びC、Dの2脚を測定すると、C、D脚の正確な位置が
確定される。従って、この位置を通りかつ設計上の鉄塔
中心を通設計座票が設定できる。
Consider, for example, the case where the optical distance measuring device in FIG. 9 is moved from the position shown to the point Q. First, assuming that the two legs C and D can be seen at the original position in the figure, the positions of the two legs C and D are measured at the original position. Next, if the user moves to the point Q and can see the two legs of C and D again, when the two legs of C and D are measured again at the point Q, the exact positions of the legs of C and D are determined. Therefore, the design seat can be set through this position and through the center of the designed steel tower.

【0106】同様にしてA、Bの2脚のみ見える位置か
らA、Bの2脚を測定して、A、B、C、Dの4脚を測
定するようにしてもよい。以上から分るように、A、
B、C、Dの4脚のうち最小限2脚が見えれば本発明の
方法により全ての脚の位置が正確に測定できるのであ
る。
Similarly, the two legs A and B may be measured from the position where only the two legs A and B are visible, and the four legs A, B, C and D may be measured. As you can see from the above, A,
If at least two of the four legs B, C and D are visible, the positions of all the legs can be accurately measured by the method of the present invention.

【0107】[0107]

【効果】以上詳細に説明したように、この発明による脚
材据付調整方法は設定位置付近に設けた掘削穴に仮設し
た鉄塔構造物の脚材の位置を光波測距儀で測定すると共
に転び、立ちを傾斜計で測定し、測定値を設計値と比較
して許容誤差内となるように各脚材の取付状態を微調整
することとしたから、脚材の位置を正確に測定してその
測定に基づいて脚材の据付位置を正確な位置に調整で
き、かつその調整は従来のように勘と経験によるのでは
なく正確な測定に基づいて行なえるから作業のやり直し
などが少なく調整作業の困難が軽減されるなど大きな利
点が得られる。
As described above in detail, the leg material installation and adjustment method according to the present invention measures the position of the leg material of the steel tower structure temporarily installed in the excavation hole provided near the set position with the optical rangefinder, and falls, The standing was measured with an inclinometer, and it was decided to compare the measured value with the design value and finely adjust the mounting state of each leg so that it was within the allowable error. The installation position of the leg material can be adjusted to an accurate position based on the measurement, and the adjustment can be done based on the accurate measurement instead of relying on intuition and experience as in the past, so there is little rework and the adjustment work There are great advantages such as less difficulty.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の脚材据付寸法測定方法を説明する概略
FIG. 1 is a schematic diagram illustrating a method for measuring the installation size of leg members according to an embodiment.

【図2】光波測距儀の一例の概略図FIG. 2 is a schematic view of an example of a lightwave rangefinder.

【図3】反射ミラーを含む設定具の説明図FIG. 3 is an explanatory view of a setting tool including a reflection mirror.

【図4】同上の平面図FIG. 4 is a plan view of the above.

【図5】傾斜計の概略図FIG. 5 is a schematic diagram of an inclinometer.

【図6】同上の機能説明図FIG. 6 is a functional explanatory diagram of the same as above.

【図7】実施例の測定装置の全体概略図ブロック図FIG. 7 is an overall schematic block diagram of a measuring apparatus according to an embodiment.

【図8】測定装置の中で演算処理するフローチャートFIG. 8 is a flowchart of arithmetic processing in the measuring device.

【図9】光波測距儀を含む測定点の座標系の説明図FIG. 9 is an explanatory diagram of a coordinate system of measurement points including a lightwave rangefinder.

【図10】A脚についての測定点の座標系の説明図FIG. 10 is an explanatory diagram of a coordinate system of measurement points on the A leg.

【図11】鉄塔中心の座標誤差の説明図FIG. 11 is an explanatory diagram of a coordinate error at the center of a steel tower.

【図12】脚フランジの据付誤差の説明図FIG. 12 is an explanatory diagram of a leg flange installation error.

【図13】脚フランジの測定誤差の説明図FIG. 13 is an explanatory diagram of a measurement error of a leg flange.

【図14】微調整作業による脚材頂部の動きの説明図FIG. 14 is an explanatory diagram of the movement of the top of the leg material due to the fine adjustment work.

【図15】微調整作業による脚材の転び、レベル、立ち
の変化の説明図
FIG. 15 is an explanatory diagram of changes in leg material level, level, and standing due to fine adjustment work.

【図16】脚材基礎部の調整による脚材頂部の動きの説
明図
FIG. 16 is an explanatory diagram of movement of the top of the leg material by adjusting the leg material base.

【図17】脚材のレベル調整によるレベル変化の説明図FIG. 17 is an explanatory diagram of a level change due to the level adjustment of leg material.

【図18】鉄塔構造物の設計条件の入力画面を示す図表FIG. 18 is a diagram showing an input screen for design conditions of a tower structure.

【図19】各脚の設計座標の計算結果を示す図表FIG. 19 is a diagram showing a calculation result of design coordinates of each leg.

【図20】同上の設計寸法の計算結果を示す図表FIG. 20 is a diagram showing the calculation result of the design dimensions in the above.

【図21】基準線、座標変更基準の入力画面を示す図表FIG. 21 is a diagram showing an input screen for reference lines and coordinate change criteria.

【図22】実測値の出力画面を示す図表FIG. 22 is a diagram showing an output screen of measured values.

【図23】測定点の平均値と設計値の差分表示画面を示
す図表
FIG. 23 is a diagram showing a difference display screen between the average value of the measurement points and the design value.

【図24】測定点の実測値と設計値の差分表示画面を示
す図表
FIG. 24 is a diagram showing a difference display screen between measured values and design values at measurement points.

【図25】コンクリート打設完了B、D脚に対するA、
C脚の据付誤差修正指示画面を示す図表
FIG. 25: Concrete pouring completed B, A for D leg,
Chart showing installation error correction instruction screen for C leg

【図26】従来の脚材据付方法の説明図FIG. 26 is an explanatory view of a conventional leg installation method.

【図27】従来の脚材据付方法における測定方法の説明
FIG. 27 is an explanatory view of a measurement method in a conventional leg installation method.

【図28】従来の脚材据付方法における測定方法の説明
FIG. 28 is an explanatory view of a measuring method in a conventional leg installation method.

【図29】同上の測定方法に用いられる距離の間接測定
方法の説明図
FIG. 29 is an explanatory diagram of an indirect distance measuring method used in the above measuring method.

【図30】同上の据付方法における据付修正作業の説明
FIG. 30 is an explanatory diagram of the installation correction work in the installation method above.

【符号の説明】[Explanation of symbols]

1 光波測距儀 2 反射ミラー 3 脚材 4 据付架台 5 サポート 6 掘削穴 7 傾斜計 8 パーソナルコンピュータ 9 通信ケーブル 1 Light-wave rangefinder 2 Reflecting mirror 3 Leg material 4 Installation base 5 Support 6 Drilling hole 7 Inclinometer 8 Personal computer 9 Communication cable

フロントページの続き (72)発明者 松尾 志郎 大阪市北区本庄東2丁目3番41号 株式会 社きんでん内Front page continuation (72) Inventor Shiro Matsuo 2-34-1 Honjo Higashi, Kita-ku, Osaka City Kindennai Stock Company

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 予め測量により中心点を定めた鉄塔構造
物の複数の脚材をそれぞれの設置位置付近に掘削した掘
削穴に仮設し、任意の位置に光波測距儀を設置して光波
を発し、各脚材頂部に反射ミラーを取付けて反射した光
波を受光し脚材までの距離を位相差測定法により測定す
ると共に各脚材に取付けた傾斜計により各脚材の立ち、
転びを測定し、上記光波測定により得た各脚材の中心位
置データから鉄塔中心を求めこれを原点とする鉄塔座標
系に各脚材中心位置を変換した鉄塔中心と各脚材の中心
位置及び立ち、転びの測定値を設計値と比較してそれぞ
れの測定値が設計値に対し所定の許容誤差内となるよう
に各脚材の取付状態を微調整することから成る鉄塔構造
物の脚材据付調整方法。
1. A plurality of legs of a steel tower structure whose center point is determined beforehand by surveying are temporarily installed in excavation holes excavated in the vicinity of the respective installation positions, and a lightwave rangefinder is installed at an arbitrary position to generate a lightwave. Emitting, installing a reflection mirror on the top of each leg and receiving the reflected light wave, measuring the distance to the leg by the phase difference measurement method and standing each leg by the inclinometer attached to each leg,
Measure the fall, and find the center of the tower from the center position data of each footing obtained by the lightwave measurement, and convert the center position of each footing to the iron tower coordinate system with this as the origin. Stands for steel tower structures, which consist of comparing standing and falling measured values with design values and finely adjusting the mounting condition of each leg so that each measured value is within a specified tolerance with respect to the designed value. Installation and adjustment method.
【請求項2】 前記脚材頂部付近を支持するサポートや
脚材基礎部について前記測定により得られる取付状態を
脚材中心の据付誤差が許容誤差内となるように移動させ
るときのそれぞれの移動量を予め算出し、その結果に基
づいて移動させて前記微調整を行なうことを特徴とする
請求項1に記載の鉄塔構造物の脚材据付調整方法。
2. The amount of movement of each of the support for supporting the vicinity of the top of the leg material and the mounting state obtained by the measurement for moving the mounting state obtained by the measurement so that the installation error around the leg material falls within the allowable error. Is calculated in advance, and the fine adjustment is performed by moving it based on the result, and the method for installing and adjusting legs of a steel tower structure according to claim 1.
JP32644893A 1993-12-24 1993-12-24 Method and apparatus for adjusting the installation of legs for steel tower structures Expired - Lifetime JP2619604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32644893A JP2619604B2 (en) 1993-12-24 1993-12-24 Method and apparatus for adjusting the installation of legs for steel tower structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32644893A JP2619604B2 (en) 1993-12-24 1993-12-24 Method and apparatus for adjusting the installation of legs for steel tower structures

Publications (2)

Publication Number Publication Date
JPH07180400A true JPH07180400A (en) 1995-07-18
JP2619604B2 JP2619604B2 (en) 1997-06-11

Family

ID=18187924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32644893A Expired - Lifetime JP2619604B2 (en) 1993-12-24 1993-12-24 Method and apparatus for adjusting the installation of legs for steel tower structures

Country Status (1)

Country Link
JP (1) JP2619604B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101236834B1 (en) * 2010-09-17 2013-02-26 삼성중공업 주식회사 System and method for controlling ship building block fabrication
KR101245765B1 (en) * 2010-11-11 2013-03-25 삼성중공업 주식회사 System and method for derrick shimming of drilling vessel
CN105781211A (en) * 2016-03-21 2016-07-20 潘燕 Construction method for power transmission line steel pipe tower
JP2016191612A (en) * 2015-03-31 2016-11-10 中国電力株式会社 Measuring jig
JP2020197459A (en) * 2019-06-03 2020-12-10 三菱電機株式会社 Tunnel displacement measuring device, tunnel displacement measuring program, and tunnel displacement measuring method
CN113047637A (en) * 2021-03-30 2021-06-29 上海公路桥梁(集团)有限公司 Method for adjusting guide positioning of prefabricated stand column

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101236834B1 (en) * 2010-09-17 2013-02-26 삼성중공업 주식회사 System and method for controlling ship building block fabrication
KR101245765B1 (en) * 2010-11-11 2013-03-25 삼성중공업 주식회사 System and method for derrick shimming of drilling vessel
JP2016191612A (en) * 2015-03-31 2016-11-10 中国電力株式会社 Measuring jig
CN105781211A (en) * 2016-03-21 2016-07-20 潘燕 Construction method for power transmission line steel pipe tower
CN105781211B (en) * 2016-03-21 2017-12-08 泰兴市城东绿化工程有限公司 A kind of construction method of steel tube tower in electric transmission line
JP2020197459A (en) * 2019-06-03 2020-12-10 三菱電機株式会社 Tunnel displacement measuring device, tunnel displacement measuring program, and tunnel displacement measuring method
CN113047637A (en) * 2021-03-30 2021-06-29 上海公路桥梁(集团)有限公司 Method for adjusting guide positioning of prefabricated stand column

Also Published As

Publication number Publication date
JP2619604B2 (en) 1997-06-11

Similar Documents

Publication Publication Date Title
EP3410063B1 (en) Geodetic surveying with correction for instrument tilt
US8281495B2 (en) Two dimension layout and point transfer system
US9207078B2 (en) Device for measuring and marking space points along horizontally running contour lines
US20080046221A1 (en) Method and system for automatically performing a study of a multidimensional space
JP5538929B2 (en) Three-dimensional position measurement and ink marking system and its usage
JP2846950B2 (en) Apparatus for forming or defining the position of a measuring point
JP2021148586A (en) Positioning and calibration method for construction work machine and positioning and calibration controller therefor
KR100878890B1 (en) Gis upgrade system
JP4933852B2 (en) Surveying system using GPS
JP2619604B2 (en) Method and apparatus for adjusting the installation of legs for steel tower structures
CN111396717A (en) Pay-off device and construction pay-off method
JP2017025633A (en) Road ancillary facility construction method, and movement direction instruction program
WO2018164078A1 (en) Method for acquiring center of rotation of rotating member in construction work machinery
US10514464B2 (en) Portable prism receiver and improved portable GPS receiver and measurement method using same
KR101291451B1 (en) Level measurement staff having reflection apparatus
JPH08226819A (en) Laser beam irradiation method on facing of tunnel
JP2022133164A (en) Surveying device and surveying method
US7076879B2 (en) Stabilizer jig for distance measuring laser
JP2022055525A (en) Marking system and marking method
JPH04313013A (en) Plane type range finder/goniometer
JP2503052Y2 (en) Reflective mirror fixing device
JPH09101151A (en) Horizontal reference line measurement device for construction work, horizontal laser oscillation device and horizontal laser receiving device constituting the measurement device and intermediate marking device
JP3031832U (en) Cylindrical target
JP3481324B2 (en) Method of measuring mechanical height of surveying instrument and measuring instrument
JPH06100078B2 (en) Automatic survey positioning system for tunnel lining machines

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20090311

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20100311

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20120311

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 16

Free format text: PAYMENT UNTIL: 20130311

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 16

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 17

EXPY Cancellation because of completion of term