JPH07180048A - Production of optical film - Google Patents

Production of optical film

Info

Publication number
JPH07180048A
JPH07180048A JP34511493A JP34511493A JPH07180048A JP H07180048 A JPH07180048 A JP H07180048A JP 34511493 A JP34511493 A JP 34511493A JP 34511493 A JP34511493 A JP 34511493A JP H07180048 A JPH07180048 A JP H07180048A
Authority
JP
Japan
Prior art keywords
film
gas
optical film
chlorine
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP34511493A
Other languages
Japanese (ja)
Inventor
Toshiaki Oimizu
利明 生水
Hiroshi Ikeda
浩 池田
Takeshi Kawamata
健 川俣
Nobuaki Mitamura
宣明 三田村
Kazunari Tokuda
一成 徳田
Bunji Akimoto
文二 秋元
Yoshiki Nitta
佳樹 新田
Nobuyoshi Toyohara
延好 豊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP34511493A priority Critical patent/JPH07180048A/en
Publication of JPH07180048A publication Critical patent/JPH07180048A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain an optical film having no absorption and a low refractive index by forming a film of AlF3 or MgF2 by sputtering using aluminum or magnesium as a target material and chlorine-contg. gas, fluorine-contg. gas and inert gas as process gases. CONSTITUTION:Aluminum or magnesium as a target material is allowed to react with chlorine-contg. gas to form a chlorine compd. This chlorine compd. is allowed to react with fluorine-contg. gas and the fluorine is substd. for the chlorine to form a fluoride. Since AlF3 or MgF2 is formed through the two-stage reaction process, the objective optical film having a refractive index of <=1.4 and no absorption is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、1.4以下の低い屈折
率を持つ光学膜の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an optical film having a low refractive index of 1.4 or less.

【0002】[0002]

【従来の技術】従来、反射防止膜に代表される光学薄膜
を形成する場合、成膜材料を電子ビームなどで加熱して
基板に付着させる真空蒸着法が一般的に用いられてき
た。この場合MgF2 などの屈折率の低い材料、あるい
はZrO2 ,TiO2 ,Ta2 5 などの屈折率の高い
材料のいずれか一方、あるいはこれらを組み合わせた多
層膜などによって構成される。しかし近年になり、より
生産の効率が求められてきていることから、これら光学
薄膜においても、真空蒸着法に比較して大量生産性、工
程の省力化、品質の安定化、低コスト化等の面で有利な
スパッタリング法によるコーティングの要求が高まって
きた。
2. Description of the Related Art Conventionally, when forming an optical thin film typified by an antireflection film, a vacuum vapor deposition method has been generally used in which a film forming material is heated by an electron beam or the like and adhered to a substrate. In this case, one of a material having a low refractive index such as MgF 2 or a material having a high refractive index such as ZrO 2 , TiO 2 , Ta 2 O 5 or a multilayer film in which these materials are combined is used. However, in recent years, since more efficient production has been required, even with these optical thin films, mass productivity, labor saving of processes, stabilization of quality, cost reduction, etc. can be achieved as compared with the vacuum deposition method. In view of this, there is an increasing demand for coating by a sputtering method, which is advantageous in terms of the aspect.

【0003】なかでも1.4以下という低い屈折率を持
つ膜をスパッタリング法によって形成する方法として、
例えば特開平4−289165号公報記載の発明が提案
されている。上記発明は、MgF2 などのアルカリ土類
金属フッ化物膜をArなどの不活性ガスとCF4 などの
フッ素系ガスとの混合ガスを用いてスパッタリングする
方法である。
Above all, as a method of forming a film having a low refractive index of 1.4 or less by a sputtering method,
For example, the invention described in JP-A-4-289165 has been proposed. The above invention is a method of sputtering an alkaline earth metal fluoride film such as MgF 2 using a mixed gas of an inert gas such as Ar and a fluorine-based gas such as CF 4 .

【0004】[0004]

【発明が解決しようとする課題】ところが、真空蒸着法
では最も一般的な低屈折率材料として用いられているM
gF2 は、スパッタリング法によって成膜すると、膜の
組成比が化学量論比から外れてMgリッチな膜となるた
めに膜に可視域での吸収が生じてしまう。
However, in the vacuum deposition method, M, which is used as the most general low refractive index material, is used.
When gF 2 is formed by a sputtering method, the composition ratio of the film deviates from the stoichiometric ratio and becomes a Mg-rich film, so that absorption in the visible region occurs in the film.

【0005】この欠点を解決すべく、前記特開平4−2
89165号公報記載の発明では不活性ガスとフッ素系
ガスとの混合ガスを用いてスパッタリングしている。し
かしながら、フッ化物をターゲットとして用いた場合、
フッ素系ガスを導入することでフッ素の解離を抑える事
は完全とは言えない。また、フッ化物をターゲットとし
た場合、成膜速度を上げることも非常に困難である。
In order to solve this drawback, the above-mentioned Japanese Patent Laid-Open No. 4-2 is used.
In the invention described in 89165, sputtering is performed using a mixed gas of an inert gas and a fluorine-based gas. However, when fluoride is used as the target,
It cannot be said that the introduction of a fluorine-based gas suppresses the dissociation of fluorine. Moreover, when a fluoride is used as a target, it is also very difficult to increase the film formation rate.

【0006】因って、本発明は前記従来技術における欠
点に鑑みて開発されたもので、屈折率1.4以下の低い
屈折率でしかも可視域での吸収のない膜を、スパッタリ
ング法によって成膜することのできる光学膜の製造方法
を提供することを目的とする。
Therefore, the present invention was developed in view of the above-mentioned drawbacks of the prior art. A film having a low refractive index of 1.4 or less and no absorption in the visible region is formed by a sputtering method. An object is to provide a method for producing an optical film that can be formed into a film.

【0007】[0007]

【課題を解決するための手段】本発明は、成膜用のター
ゲットとしてアルミニウム(Al)またはマグネシウム
(Mg)を使用し、プロセスガスとして塩素を含むガ
ス,フッ素を含むガスおよび不活性ガスを同時に成膜室
に導入し、スパッタリング法によりAlF3 またはMg
2 を成膜する方法である。
According to the present invention, aluminum (Al) or magnesium (Mg) is used as a target for film formation, and a gas containing chlorine, a gas containing fluorine and an inert gas are simultaneously used as a process gas. The film is introduced into the film forming chamber and is sputtered to form AlF 3 or Mg.
This is a method of forming F 2 into a film.

【0008】[0008]

【作用】フッ化物の形成は、まず塩素系ガスとターゲッ
ト材料とが反応して塩素化合物を作り、フッ素ガスが塩
素化合物と反応し、塩素がフッ素と置換されてフッ化物
が形成される。このような2段階の反応プロセスを経て
AlF3 ,MgF2 などの屈折率が1.4以下で吸収の
ない光学膜をスパッタリング法により成膜することを可
能とする。
In the formation of the fluoride, first, the chlorine-based gas and the target material react with each other to form a chlorine compound, the fluorine gas reacts with the chlorine compound, chlorine is replaced with fluorine, and the fluoride is formed. Through such a two-step reaction process, it is possible to form an optical film of AlF 3 , MgF 2 or the like having a refractive index of 1.4 or less and no absorption by a sputtering method.

【0009】[0009]

【実施例1】図1は本実施例で成膜した反射防止膜の分
光特性を示すグラフである。屈折率1.52のガラス基
板を真空槽にセットして1×10-3Paまで排気した
後、分圧が1×10-1PaのCCl4 ,1×10-1Pa
のCF4 および5×10-2PaのArをMFC(ガス流
量制御装置)を通して真空槽に導入した。基板加熱は行
わず、ターゲットはAlを使用して投入電力200Wの
DC(直流)またはRF(高周波)スパッタリング法に
てAlF3 成膜を行った。
Example 1 FIG. 1 is a graph showing the spectral characteristics of the antireflection film formed in this example. A glass substrate having a refractive index of 1.52 was set in a vacuum chamber and evacuated to 1 × 10 -3 Pa, and then CCl 4 , with a partial pressure of 1 × 10 -1 Pa, 1 × 10 -1 Pa.
CF 4 and 5 × 10 -2 Pa Ar were introduced into the vacuum chamber through MFC (gas flow controller). The substrate was not heated, and Al was used as a target to form an AlF 3 film by a DC (direct current) or RF (high frequency) sputtering method with an input power of 200 W.

【0010】光学式膜厚計で膜厚をモニタリングしなが
ら、光学膜厚が130nmとなるまで成膜を行った。成
膜後の膜の屈折率をエリプソメーターで測定したところ
波長500nmで1.385であった。また、膜の可視
域での吸収は1%以下であった。この膜は光学性能にお
いても、通常の真空蒸着で成膜されるMgF2 単層反射
防止膜と同等の特性を有する。
Film formation was performed until the optical film thickness reached 130 nm while monitoring the film thickness with an optical film thickness meter. When the refractive index of the formed film was measured by an ellipsometer, it was 1.385 at a wavelength of 500 nm. The absorption of the film in the visible region was 1% or less. This film has the same optical performance as a MgF 2 single-layer antireflection film formed by ordinary vacuum deposition.

【0011】[0011]

【実施例2】図2は本実施例で成膜した反射防止膜の分
光特性を示すグラフである。屈折率1.52のガラス基
板を真空槽にセットして1×10-3Paまで排気した
後、分圧が1×10-1PaのCCl4 ,1×10-1Pa
のCF4 および5×10-2PaのArをMFCを通して
真空槽に導入した。基板加熱は行わず、ターゲットはM
gを使用して投入電力200WのDCまたはRFスパッ
タリング法にてMgF2 成膜を行った。
Example 2 FIG. 2 is a graph showing the spectral characteristics of the antireflection film formed in this example. A glass substrate having a refractive index of 1.52 was set in a vacuum chamber and evacuated to 1 × 10 -3 Pa, and then CCl 4 , with a partial pressure of 1 × 10 -1 Pa, 1 × 10 -1 Pa.
CF 4 and Ar of 5 × 10 -2 Pa were introduced into the vacuum chamber through the MFC. The substrate is not heated and the target is M
Mg was used to form a MgF 2 film by DC or RF sputtering with an input power of 200 W.

【0012】光学式膜厚計で膜厚をモニタリングしなが
ら、光学膜厚が130nmとなるまで成膜を行った。成
膜後の膜の屈折率をエリプソメーターで測定したところ
波長500nmで1.390であった。また、膜の可視
域での吸収は1%以下であった。この膜は光学性能にお
いても、通常の真空蒸着で成膜されるMgF2 単層反射
防止膜と同等の特性を有する。
Film formation was performed until the optical film thickness reached 130 nm while monitoring the film thickness with an optical film thickness meter. When the refractive index of the formed film was measured by an ellipsometer, it was 1.390 at a wavelength of 500 nm. The absorption of the film in the visible region was 1% or less. This film has the same optical performance as a MgF 2 single-layer antireflection film formed by ordinary vacuum deposition.

【0013】[0013]

【実施例3】図3は本実施例で成膜した反射防止膜の分
光特性を示すグラフである。屈折率1.7のガラス基板
を真空槽にセットして1×10-3Paまで排気した後、
分圧が1×10-1PaのBCl3 ,1×10-1PaのC
4 および5×10-2PaのArをMFCを通して真空
槽に導入した。基板加熱は行わず、ターゲットはMgを
使用して投入電力200WのDCまたはRFスパッタリ
ング法にてMgF2 成膜を行った。
Example 3 FIG. 3 is a graph showing the spectral characteristics of the antireflection film formed in this example. After setting a glass substrate having a refractive index of 1.7 in a vacuum chamber and evacuating to 1 × 10 −3 Pa,
BCl 3 having a partial pressure of 1 × 10 −1 Pa and C having a partial pressure of 1 × 10 −1 Pa
F 4 and 5 × 10 −2 Pa Ar were introduced into the vacuum chamber through the MFC. The substrate was not heated, and Mg was used as a target to form a MgF 2 film by a DC or RF sputtering method with an input power of 200 W.

【0014】光学式膜厚計で膜厚をモニタリングしなが
ら、光学膜厚が130nmとなるまで成膜を行った。成
膜後の膜の屈折率をエリプソメーターで測定したところ
波長500nmで1.390であった。また、膜の可視
域での吸収は1%以下であった。この膜は光学性能にお
いても、通常の真空蒸着で成膜されるMgF2 単層反射
防止膜と同等の特性を有する。
Film formation was performed until the optical film thickness reached 130 nm while monitoring the film thickness with an optical film thickness meter. When the refractive index of the formed film was measured by an ellipsometer, it was 1.390 at a wavelength of 500 nm. The absorption of the film in the visible region was 1% or less. This film has the same optical performance as a MgF 2 single-layer antireflection film formed by ordinary vacuum deposition.

【0015】[0015]

【実施例4】図4は本実施例で成膜した5層構成からな
る反射防止膜の分光特性を示すグラフである。屈折率
1.6のガラス基板を真空槽にセットして1×10-3
aまで排気した後、分圧が1×10-1PaのCCl4
1×10-1PaのCF4 および5×10-2PaのArを
MFCを通して真空槽に導入した。基板加熱は行わず、
ターゲットはMgを使用して投入電力200WのDCま
たはRFスパッタリング法にて、MgF2 を光学式膜厚
計で膜厚をモニタリングしながら、光学膜厚が45nm
となるまで第1層の成膜を行った。
[Embodiment 4] FIG. 4 is a graph showing the spectral characteristics of an antireflection film having a five-layer structure formed in this embodiment. A glass substrate with a refractive index of 1.6 is set in a vacuum chamber and 1 × 10 -3 P
After exhausting to a, CCl 4 with a partial pressure of 1 × 10 −1 Pa,
CF 4 at 1 × 10 −1 Pa and Ar at 5 × 10 −2 Pa were introduced into the vacuum chamber through the MFC. No substrate heating,
The target is Mg, and the optical film thickness is 45 nm while monitoring the film thickness of MgF 2 by an optical film thickness meter by DC or RF sputtering method with an input power of 200 W.
The first layer was formed until

【0016】次に、真空槽に分圧が2×10-1PaのO
2 および5×10-1PaのArをMFCを通して導入
し、基板加熱を行わず、ターゲットはZrを使用して投
入電力200WのDCまたはRFスパッタリング法にて
ZrO2 を光学式膜厚計で膜厚をモニタリングしなが
ら、光学膜厚が40nmとなるまで第2層の成膜を行っ
た。以下、同様にMgF2 およびZrO2 をそれぞれ上
記成膜条件で、第3層はMgF2 を光学膜厚で55n
m、第4層はZrO2 を光学膜厚で270nm、第5層
はMgF2 を光学膜厚で126nm成膜を行った。
Then, the O 2 having a partial pressure of 2 × 10 -1 Pa is placed in the vacuum chamber.
2 and 5 × 10 −1 Pa of Ar was introduced through MFC, the substrate was not heated, Zr was used as a target, and DC or RF sputtering method with an input power of 200 W was used to form ZrO 2 by an optical film thickness meter. While monitoring the thickness, the second layer was formed until the optical film thickness reached 40 nm. Hereinafter, similarly, MgF 2 and ZrO 2 are each formed under the above film forming conditions, and the third layer is made of MgF 2 with an optical film thickness of 55 n.
The fourth layer was formed of ZrO 2 having an optical film thickness of 270 nm, and the fifth layer was formed of MgF 2 having an optical film thickness of 126 nm.

【0017】[0017]

【発明の効果】以上説明した様に、本発明に係る光学膜
の製造方法によれば、AlまたはMgをターゲットとし
て使用し、プロセスガスとして塩素を含むガス,フッ素
を含むガスおよび不活性ガスを用いてスパッタリング法
で成膜することで、吸収のない低屈折率の光学膜を提供
できる。
As described above, according to the method for producing an optical film of the present invention, Al or Mg is used as a target, and a gas containing chlorine, a gas containing fluorine and an inert gas are used as process gases. An optical film having a low refractive index without absorption can be provided by forming a film using the sputtering method.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1を示すグラフである。FIG. 1 is a graph showing Example 1.

【図2】実施例2を示すグラフである。FIG. 2 is a graph showing Example 2.

【図3】実施例3を示すグラフである。FIG. 3 is a graph showing Example 3.

【図4】実施例4を示すグラフである。FIG. 4 is a graph showing Example 4.

フロントページの続き (72)発明者 三田村 宣明 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 徳田 一成 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 秋元 文二 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 新田 佳樹 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 豊原 延好 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内Front page continued (72) Inventor Nobuaki Mitamura 2-43-2 Hatagaya, Shibuya-ku, Tokyo Olympus Optical Co., Ltd. (72) Inventor Issei Tokuda 2-43-2 Hatagaya, Shibuya-ku, Tokyo Olympus Optical Industry Co., Ltd. (72) Inventor Bunji Akimoto 2-43-2 Hatagaya, Shibuya-ku, Tokyo Olympus Optical Industry Co., Ltd. (72) Inventor Yoshiki Nitta 2-43-2 Hatagaya, Shibuya-ku, Tokyo Olympus Optical Co., Ltd. (72) Inventor Nobuyoshi Toyohara 2-34-2 Hatagaya, Shibuya-ku, Tokyo Olympus Optical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウムまたはマグネシウムをター
ゲット材料として用い、塩素を含むガス,フッ素を含む
ガスおよび不活性ガスをプロセスガスとして用いてスパ
ッタリングし、AlF3 またはMgF2 を成膜すること
を特徴とする光学膜の製造方法。
1. A sputtering method using aluminum or magnesium as a target material and a gas containing chlorine, a gas containing fluorine and an inert gas as a process gas to form AlF 3 or MgF 2 as a film. Method for manufacturing optical film.
JP34511493A 1993-12-21 1993-12-21 Production of optical film Withdrawn JPH07180048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34511493A JPH07180048A (en) 1993-12-21 1993-12-21 Production of optical film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34511493A JPH07180048A (en) 1993-12-21 1993-12-21 Production of optical film

Publications (1)

Publication Number Publication Date
JPH07180048A true JPH07180048A (en) 1995-07-18

Family

ID=18374380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34511493A Withdrawn JPH07180048A (en) 1993-12-21 1993-12-21 Production of optical film

Country Status (1)

Country Link
JP (1) JPH07180048A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000297366A (en) * 1999-04-09 2000-10-24 Canon Inc Production of optical thin film and optical member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000297366A (en) * 1999-04-09 2000-10-24 Canon Inc Production of optical thin film and optical member

Similar Documents

Publication Publication Date Title
US6217719B1 (en) Process for thin film formation by sputtering
JP3808917B2 (en) Thin film manufacturing method and thin film
US8263172B2 (en) Method for producing optical element having multi-layered film
US4099840A (en) Multilayer reflector for gas discharge laser
JP4434949B2 (en) Methods for obtaining thin, stable, fluorine-doped silica layers, the resulting thin layers, and their application in ophthalmic optics
Taki Film structure and optical constants of magnetron-sputtered fluoride films for deep ultraviolet lithography
JP7037919B2 (en) Mask blank, halftone mask and its manufacturing method
JP4793056B2 (en) Sputter deposition method of antireflection film
JP7418098B2 (en) Method for forming optical multilayer film and method for manufacturing optical element
JPH07180048A (en) Production of optical film
US20190323115A1 (en) Color film and method of forming the same
JP4929842B2 (en) ND filter and method of manufacturing ND filter
JPH0685004B2 (en) High durability infrared reflector
JPH08101301A (en) Optical thin film and its production
JP2000297366A (en) Production of optical thin film and optical member
JPH09263936A (en) Production of thin film and thin film
JPH08211201A (en) Optical thin film and production therefor
JP3401062B2 (en) Optical thin film and method for manufacturing the same
JPH07140301A (en) Production of optical member and optical member
JP2001108802A (en) Antireflection film
JP2000297367A (en) Formation of metallic oxide thin film
JPH11106910A (en) Production of thin film
JPH07110401A (en) Optical member and production thereof
JP2001140067A (en) Method for depositing optical thin film and film deposition system
CN114196924A (en) Coating method of vacuum ultraviolet aluminum reflector on surface of copper substrate

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010306