JPH07110401A - Optical member and production thereof - Google Patents

Optical member and production thereof

Info

Publication number
JPH07110401A
JPH07110401A JP5277779A JP27777993A JPH07110401A JP H07110401 A JPH07110401 A JP H07110401A JP 5277779 A JP5277779 A JP 5277779A JP 27777993 A JP27777993 A JP 27777993A JP H07110401 A JPH07110401 A JP H07110401A
Authority
JP
Japan
Prior art keywords
film
gas
optical
torr
alf3
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5277779A
Other languages
Japanese (ja)
Inventor
Hiroshi Ikeda
浩 池田
Bunji Akimoto
文二 秋元
Kazunari Tokuda
一成 徳田
Takeshi Kawamata
健 川俣
Nobuaki Mitamura
宣明 三田村
Yoshiki Nitta
佳樹 新田
Toshiaki Oimizu
利明 生水
Nobuyoshi Toyohara
延好 豊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP5277779A priority Critical patent/JPH07110401A/en
Publication of JPH07110401A publication Critical patent/JPH07110401A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To form an optical film layer on a substrate by sputtering by using aluminum fluoride (AlF3) as a target and using gas containing oxygen atom as a process gas. CONSTITUTION:A single layer antireflection film comprising a mixture film of AlF3 and Al2O3 is formed on a glass substrate. A glass substrate having 1.52 refractive index is set in a vacuum chamber, which is evacuated to 1X10<-5>Torr. Then Ar gas and O2 gas of 2X10<-3>Torr and 1X10<-3>Torr partial pressure, respectively, are introduced into the chamber. AlF3 is used as a target to form a film on the glass substrate by high frequency sputtering. The obtd. antireflection film has 1.4 refractive index and the compsn. of AlF3 and Al2O3 by 80atm.% and 20atm.%, respectively, analyzed by X-ray photoelectron spectroscopy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、1.45以下の低い屈
折率の持つ光学膜及び1.45以下の低い屈折率の持つ
光学膜層を含む光学膜を形成する光学部材の製造方法と
その光学膜を形成した光学部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an optical member having an optical film having a low refractive index of 1.45 or less and an optical film including an optical film layer having a low refractive index of 1.45 or less. The present invention relates to an optical member formed with the optical film.

【0002】[0002]

【従来の技術】従来、反射防止膜やハーフミラーなどの
光学薄膜を光学部品に形成する場合、成膜材料を電子ビ
ームなどで加熱して基板に付着させる真空蒸着法が主に
使われてきた。この場合、フッ化マグネシウム(MgF
2 )などの屈折率の低い材料や、あるいは酸化ジルコニ
ウム(ZrO2 )や酸化タンタル(Ta2 5 )、酸化
チタン(TiO2 )などの屈折率の高い材料のいずれか
一方、あるいはこれらを組み合わせた多層膜などによっ
て構成されている。
2. Description of the Related Art Conventionally, when an optical thin film such as an antireflection film or a half mirror is formed on an optical component, a vacuum evaporation method has been mainly used in which a film forming material is heated by an electron beam or the like and attached to a substrate. . In this case, magnesium fluoride (MgF
2 ) or other low refractive index material, zirconium oxide (ZrO 2 ), tantalum oxide (Ta 2 O 5 ), titanium oxide (TiO 2 ) or other high refractive index material, or a combination thereof. It is composed of a multilayer film.

【0003】しかし近年になり、より生産の効率化が求
められてきていることから、これらの光学薄膜において
も、真空蒸着法に比較して大量生産性・工程の省力化・
品質の安定化・低コストなどの面で有利なスパッタリン
グ法によるコーティングの要求が高まってきた。
However, in recent years, there has been a demand for more efficient production. Therefore, even in the case of these optical thin films, mass productivity and labor saving of processes are improved as compared with the vacuum deposition method.
The demand for coating by the sputtering method, which is advantageous in terms of quality stability and low cost, has increased.

【0004】なかでも、1.45という低い屈折率を持
つ光学薄膜をスパッタリング法によって形成する方法と
しては、例えば特開平4−289165号公報に示すよ
うなものが知られている。すなわち、MgF2 などのア
ルカリ土類金属フッ化物膜をArなどの不活性ガスとC
4 などのフッ素系ガスとの混合ガスを用いてスパッタ
リングする方法である。
Among them, as a method of forming an optical thin film having a low refractive index of 1.45 by a sputtering method, for example, a method disclosed in Japanese Patent Laid-Open No. 4-289165 is known. That is, an alkaline earth metal fluoride film such as MgF 2 and an inert gas such as Ar and C
This is a method of sputtering using a mixed gas with a fluorine-based gas such as F 4 .

【0005】[0005]

【発明が解決しようとする課題】しかし、真空蒸着法で
は最も一般的に低屈折率材料として用いられるMgF2
は、スパッタリング法によって成膜すると膜の組成が化
学量論比から外れてMgリッチ膜となるために膜に吸収
を生じてしまい、これを解決するために特開平4−28
9165号公報のようにフッ素系ガスを使用する方法を
とっても吸収は完全に無くならず、しかも、人体に危険
なフッ素系ガスを使用することで排気設備が複雑かつ高
価になるという欠点も有していた。
However, in the vacuum deposition method, MgF 2 most commonly used as a low refractive index material is used.
When a film is formed by a sputtering method, the composition of the film deviates from the stoichiometric ratio and becomes a Mg-rich film, so absorption occurs in the film, and in order to solve this, JP-A-4-28 is known.
Absorption does not completely disappear even when the method using a fluorine-based gas is used as in Japanese Patent No. 9165, and furthermore, there is a drawback that exhaust equipment becomes complicated and expensive due to the use of a fluorine-based gas that is dangerous to the human body. It was

【0006】本発明は、上記従来技術の問題点に鑑みな
されたもので、屈折率1.45以下という低い屈折率で
しかも可視域での吸収のない膜を、フッ素系ガスなどの
有毒ガスを用いることなく、スパッタリング法によって
成膜した光学部材の製造方法と光学部材を提供すること
を目的とする。
The present invention has been made in view of the above problems of the prior art. A film having a low refractive index of 1.45 or less and no absorption in the visible region is provided with a toxic gas such as a fluorine-based gas. An object of the present invention is to provide a method for manufacturing an optical member formed by a sputtering method without using it and an optical member.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明の光学部材の製造方法は、成膜用のターゲッ
トとしてフッ化アルミニウム(AlF3 )を使用し、プ
ロセスガスとしてアルゴンなどの不活性ガス及びO2
CO2 などの酸素原子を有するガスの両方を少なくとも
含むガスを使用してスパッタリング法によって基板上に
光学膜層を形成した。また、本発明の光学部材は上記請
求項1に記載した方法によって成膜した光学膜層からな
る光学膜または上記光学膜層を少なくとも1層以上含む
光学膜を設けて形成した。
In order to solve the above-mentioned problems, the optical member manufacturing method of the present invention uses aluminum fluoride (AlF 3 ) as a target for film formation, and uses argon or the like as a process gas. An optical film layer was formed on the substrate by a sputtering method using a gas containing at least an inert gas and a gas having an oxygen atom such as O 2 or CO 2 . Further, the optical member of the present invention is formed by providing an optical film including an optical film layer formed by the method described in claim 1 or an optical film including at least one optical film layer.

【0008】[0008]

【作用】上記構成によれば、屈折率1.45以下の物質
としては比較的スパッタリングによって成膜した場合の
膜の化学量論比からのずれの少ないAlF3 をターゲッ
トとして使用し、しかもスパッタリングによってAlリ
ッチとなった膜に酸素プラズマによる酸化を促してAl
3 とAl2 3 との混合膜とすることによって、吸収
のない低屈折率膜を得ることが可能になる。
According to the above construction, as the substance having a refractive index of 1.45 or less, AlF 3 having a relatively small deviation from the stoichiometric ratio of the film formed by sputtering is used as the target, and further, by sputtering. The Al-rich film is promoted to oxidize by oxygen plasma and Al
By using a mixed film of F 3 and Al 2 O 3 , it is possible to obtain a low refractive index film that does not absorb light.

【0009】[0009]

【実施例1】実施例1の光学部材は、ガラス基板上にA
lF3 とAl2 3 の混合膜からなる単層の反射防止膜
を設けて構成した。反射防止膜の光学的膜厚ndは13
0nmとした。
Example 1 The optical member of Example 1 was prepared by applying A on a glass substrate.
A single-layer antireflection film made of a mixed film of IF 3 and Al 2 O 3 was provided. The optical thickness nd of the antireflection film is 13
It was set to 0 nm.

【0010】上記反射防止膜の成膜は以下のように行っ
た。まず、屈折率1.52のガラス基板を真空槽内にセ
ットし、真空槽内が1×10-5Torrになるまで排気
した後、それぞれ分圧が2×10-3TorrのArガス
及び1×10-3TorrのO2 ガスを真空槽内に導入し
た。そして、基板加熱は行わず、ターゲットにAlF3
を使用して投入電力100Wの高周波スパッタリング法
にてガラス基板上に成膜した。この成膜中のプラズマを
プラズマモニターによって観察したところ、フッ素及び
酸素プラズマが存在していることがわかった。
The above antireflection film was formed as follows. First, a glass substrate having a refractive index of 1.52 was set in a vacuum chamber, and the interior of the vacuum chamber was evacuated to 1 × 10 −5 Torr. Then, Ar gas with a partial pressure of 2 × 10 −3 Torr and 1 respectively. O 2 gas of × 10 -3 Torr was introduced into the vacuum chamber. The substrate is not heated and the target is AlF 3
Was used to form a film on a glass substrate by a high frequency sputtering method with an input power of 100 W. Observation of the plasma during the film formation with a plasma monitor revealed that fluorine and oxygen plasmas were present.

【0011】本実施例による反射防止膜の反射率を図1
に示す。そして、この反射防止膜の屈折率を調べたとこ
ろ、1.4であった。また、X線光電子分光法(X-Ray
Photoelctron Spectroscopy )を用いて組成分析を行っ
たところ、AlF3 及びAl2 3 がそれぞれ80%
及び20%(アトミックパーセント)の割合で含まれて
いた。
The reflectance of the antireflection film according to this embodiment is shown in FIG.
Shown in. When the refractive index of this antireflection film was examined, it was 1.4. In addition, X-ray photoelectron spectroscopy (X-Ray
Composition analysis using Photoelctron Spectroscopy) showed that AlF 3 and Al 2 O 3 each contained 80%
And 20% (atomic percent).

【0012】以上のように、本実施例によれば反射防止
膜は良好な光学特性を有し、また反射防止膜はいずれも
透明で可視域での吸収は全く見られなかった。
As described above, according to this example, the antireflection film had good optical characteristics, and all the antireflection films were transparent and no absorption was observed in the visible region.

【0013】[0013]

【実施例2】本実施例の光学部材は、ポリカーボネート
製基板上に5層からなる反射防止膜を設けて構成した。
膜構成は、基板側からAlF3 (0.09λ)/ZrO
2 (0.06λ)/AlF3 (0.09λ)/ZrO2
(0.49λ)/AlF3 (0.23λ)とした。ここ
でカッコ内は光学的膜厚、ただし設計波長λ=550n
mである。
Example 2 The optical member of this example was constructed by forming an antireflection film consisting of five layers on a polycarbonate substrate.
The film composition is AlF 3 (0.09λ) / ZrO from the substrate side.
2 (0.06λ) / AlF 3 (0.09λ) / ZrO 2
(0.49λ) / AlF 3 (0.23λ). Here, the optical thickness is in parentheses, but the design wavelength λ = 550n
m.

【0014】上記反射防止膜の成膜は以下のように行っ
た。まず、ポリカーボネート製基板を真空槽内にセット
し、真空槽内が1×10-5Torrになるまで排気した
後、それぞれ分圧が2×10-3TorrのArガス及び
1×10-3TorrのCO2 ガスを真空槽内に導入し
た。そして、基板加熱は行わず、ターゲットにAlF3
及びZrO2 を使用してそれぞれ投入電力100Wの高
周波スパッタリング法にて上記膜構成の反射防止膜をガ
ラス基板上に成膜した。
The antireflection film was formed as follows. First, a polycarbonate substrate was set in a vacuum chamber, and the interior of the vacuum chamber was evacuated to 1 × 10 −5 Torr. Then, Ar gas with a partial pressure of 2 × 10 −3 Torr and 1 × 10 −3 Torr, respectively. It was introduced into the vacuum chamber of the CO 2 gas. The substrate is not heated and the target is AlF 3
And ZrO 2 were used to form an antireflection film having the above film structure on a glass substrate by a high frequency sputtering method with an input power of 100 W.

【0015】本実施例による反射防止膜の反射率を図2
に示す。また、上記実施例1と同様に組成分析を行った
ところ、各AlF3 層にはAlF3 及びAl2 3 がそ
れぞれ90% 及び10%(アトミックパーセント)の
割合で含まれていた。
The reflectance of the antireflection film according to this embodiment is shown in FIG.
Shown in. Further, when the compositional analysis was performed in the same manner as in Example 1, each AlF 3 layer contained AlF 3 and Al 2 O 3 in a proportion of 90% and 10% (atomic percent), respectively.

【0016】以上のように、本実施例によれば反射防止
膜は良好な光学特性を有し、また反射防止膜はいずれも
透明で可視域での吸収は全く見られなかった。
As described above, according to this example, the antireflection film had good optical characteristics, and all the antireflection films were transparent and no absorption in the visible region was observed.

【0017】[0017]

【実施例3】本実施例の光学部材は、アモルファスポリ
オレフィン樹脂製基板上に7層からなるハーフミラー膜
を設けて構成した。膜構成は、基板側からWO3 (0.
61λ)/AlF3 (0.34λ)/WO3 (0.27
λ)/AlF3 (0.36λ)/WO3 (0.27λ)
/AlF3 (0.38λ)/WO3 (0.49λ)とし
た。ここでカッコ内は光学的膜厚、ただし設計波長λ=
550nmである。
Example 3 The optical member of this example was constructed by providing a half mirror film consisting of 7 layers on an amorphous polyolefin resin substrate. The film composition is WO 3 (0.
61λ) / AlF 3 (0.34λ) / WO 3 (0.27
λ) / AlF 3 (0.36λ) / WO 3 (0.27λ)
/ AlF 3 (0.38λ) / WO 3 (0.49λ). Here, the film thickness in parentheses is the design wavelength λ =
550 nm.

【0018】上記反射防止膜の成膜は以下のように行っ
た。まず、アモルファスポリオレフィン樹脂製基板を真
空槽内にセットし、真空槽内が1×10-5Torrにな
るまで排気した後、それぞれ分圧が2×10-3Torr
のNeガス及び1×10-3TorrのO2 ガスを真空槽
内に導入した。そして、基板加熱は行わず、ターゲット
にAlF3 及びWO3 を使用してそれぞれ投入電力10
0Wの高周波スパッタリング法にて上記膜構成のハーフ
ミラー膜を基板上に成膜した。
The antireflection film was formed as follows. First, an amorphous polyolefin resin substrate was set in a vacuum chamber, and the interior of the vacuum chamber was evacuated to 1 × 10 −5 Torr. Then, the partial pressure was 2 × 10 −3 Torr.
And Ne gas and 1 × 10 −3 Torr O 2 gas were introduced into the vacuum chamber. The substrate is not heated, and AlF 3 and WO 3 are used as targets to input power of 10
The half mirror film having the above film structure was formed on the substrate by a 0 W high frequency sputtering method.

【0019】本実施例におけるハーフミラー膜をプリズ
ム上に成膜したのち、プリズムを張り合わせてキューブ
型プリズムとしたものを用い、45°の入射角で入射し
た時の反射率を図3に示す。また、上記実施例1と同様
に組成分析を行ったところ、各AlF3 層にはAlF3
及びAl2 3 がそれぞれ80% 及び20%(アトミ
ックパーセント)の割合で含まれていた。
FIG. 3 shows the reflectance when the half mirror film in this embodiment is formed on a prism and then the prism is attached to form a cube prism, which is incident at an incident angle of 45 °. Further, when the composition analysis was performed in the same manner as in Example 1 above, it was found that each AlF 3 layer had AlF 3
And Al 2 O 3 were contained in the proportions of 80% and 20% (atomic percentage), respectively.

【0020】以上のように、本実施例によればハーフミ
ラー膜は良好な光学特性を有し、また反射防止膜はいず
れも透明で可視域での吸収は全く見られなかった。
As described above, according to this example, the half mirror film had good optical characteristics, and the antireflection films were all transparent and no absorption was observed in the visible region.

【0021】[0021]

【発明の効果】以上のように、本発明によれば、AlF
3 (フッ化アルミニウム)をターゲットとして用い、酸
素原子を含むガスを少なくともプロセスガスとして用い
ることにより、酸素プラズマにより酸化を促してAlF
3 とAl2 3 との混合膜とすることで、吸収のない低
屈折率膜を、生産性の高いスパッタリング法によってし
かもプロセスガスにフッ素系ガス等の有毒ガスを使用す
ることなく、基板上に成膜した光学部材を得ることがで
きる。
As described above, according to the present invention, AlF
By using 3 (aluminum fluoride) as a target and using a gas containing oxygen atoms as at least a process gas, oxidation is promoted by oxygen plasma and AlF
By using a mixed film of 3 and Al 2 O 3 , a low-refractive-index film without absorption can be formed on a substrate by a highly productive sputtering method without using a toxic gas such as a fluorine-based gas as a process gas. It is possible to obtain an optical member having a film formed thereon.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1における反射防止膜の反射率
を示す線図である。
FIG. 1 is a diagram showing the reflectance of an antireflection film in Example 1 of the present invention.

【図2】本発明の実施例2における反射防止膜の反射率
を示す線図である。
FIG. 2 is a diagram showing the reflectance of an antireflection film in Example 2 of the present invention.

【図3】本発明の実施例3におけるハーフミラー膜の反
射率を示す線図である。
FIG. 3 is a diagram showing the reflectance of a half mirror film in Example 3 of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川俣 健 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 三田村 宣明 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 新田 佳樹 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 生水 利明 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 豊原 延好 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 ─────────────────────────────────────────────────── --- Continuation of the front page (72) Inventor Ken Kawamata 2-43-2 Hatagaya, Shibuya-ku, Tokyo Inside Olympus Optical Co., Ltd. (72) Inventor Nobuaki Mitamura 2-43-2 Hatagaya, Shibuya-ku, Tokyo Olympus Optical Co., Ltd. (72) Inventor Yoshiki Nitta 2-43-2 Hatagaya, Shibuya-ku, Tokyo Olympus Optical Co., Ltd. (72) Inventor Toshiaki Ikumizu 2-43 Hatagaya, Shibuya-ku, Tokyo No. 2 Olympus Optical Co., Ltd. (72) Inventor Nobuyoshi Toyohara 2-34-2 Hatagaya, Shibuya-ku, Tokyo Olympus Optical Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 フッ化アルミニウムをターゲットとして
用い、不活性ガス及び酸素原子を含むガスを少なくとも
プロセスガスとして用いてスパッタリングにより基板上
に光学膜層を形成することを特徴とする光学部材の製造
方法。
1. A method for manufacturing an optical member, which comprises forming an optical film layer on a substrate by sputtering using aluminum fluoride as a target and using a gas containing an inert gas and an oxygen atom as at least a process gas. .
【請求項2】 上記請求項1に記載した方法によって成
膜した光学膜層からなる光学膜または上記光学膜層を少
なくとも1層以上含む光学膜を設けたことを特徴とする
光学部材。
2. An optical member comprising an optical film comprising an optical film layer formed by the method according to claim 1 or an optical film including at least one optical film layer.
JP5277779A 1993-10-08 1993-10-08 Optical member and production thereof Withdrawn JPH07110401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5277779A JPH07110401A (en) 1993-10-08 1993-10-08 Optical member and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5277779A JPH07110401A (en) 1993-10-08 1993-10-08 Optical member and production thereof

Publications (1)

Publication Number Publication Date
JPH07110401A true JPH07110401A (en) 1995-04-25

Family

ID=17588200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5277779A Withdrawn JPH07110401A (en) 1993-10-08 1993-10-08 Optical member and production thereof

Country Status (1)

Country Link
JP (1) JPH07110401A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171458B1 (en) 1996-09-16 2001-01-09 Sunstrip Ab Method for manufacturing an absorbent layer for solar collectors, a device for performing the method and an absorbent layer for solar collectors
WO2005088363A1 (en) * 2004-03-11 2005-09-22 Teijin Dupont Films Japan Limited Antireflection multilayer laminate film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171458B1 (en) 1996-09-16 2001-01-09 Sunstrip Ab Method for manufacturing an absorbent layer for solar collectors, a device for performing the method and an absorbent layer for solar collectors
WO2005088363A1 (en) * 2004-03-11 2005-09-22 Teijin Dupont Films Japan Limited Antireflection multilayer laminate film
JPWO2005088363A1 (en) * 2004-03-11 2008-01-31 帝人デュポンフィルム株式会社 Anti-reflection multilayer laminated film
US8339707B2 (en) 2004-03-11 2012-12-25 Teijin Dupont Films Japan Limited Anti-reflection multi-layer laminated film

Similar Documents

Publication Publication Date Title
KR20050076827A (en) Ultra high transmission phase shift mask blanks
US6190511B1 (en) Method and apparatus for ion beam sputter deposition of thin films
JPH08254612A (en) Multilayer film optical component and manufacture thereof
US5688608A (en) High refractive-index IR transparent window with hard, durable and antireflective coating
JP2007310335A (en) Front surface mirror
JPH07110401A (en) Optical member and production thereof
JP7410498B2 (en) porous thin film
JP2006317603A (en) Front surface mirror
JP3979814B2 (en) Optical thin film manufacturing method
JPH07331412A (en) Optical parts for infrared ray and their production
JPH1067078A (en) Optical element and multilayered laminate of fluoride material used in production thereof
JP4595354B2 (en) Method for producing optical multilayer film
JPH07248415A (en) Production of optical thin film
Tang et al. Fabrication and characteristics of rugate filters deposited by the TSH reactive sputtering method
JPH10268107A (en) Synthetic resin lens with antireflection film
JP2001515542A (en) Method for producing optically usable fluoride thin film and thin film thus produced
JPH08101301A (en) Optical thin film and its production
JPH05323103A (en) Optical element
JPH08134637A (en) Production of optical thin film
JP3401062B2 (en) Optical thin film and method for manufacturing the same
WO2023042438A1 (en) Light blocking film, multilayer antireflection film, method for producing said light blocking film, method for producing said multilayer antireflection film, and optical member
JP2815949B2 (en) Anti-reflective coating
JPH08211201A (en) Optical thin film and production therefor
JP2003098341A (en) Method for manufacturing optical element for laser
JPH09251102A (en) Production of optical thin film and optical thin film

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001226