JPH0717927B2 - Method for producing tungsten sintered alloy - Google Patents

Method for producing tungsten sintered alloy

Info

Publication number
JPH0717927B2
JPH0717927B2 JP14286590A JP14286590A JPH0717927B2 JP H0717927 B2 JPH0717927 B2 JP H0717927B2 JP 14286590 A JP14286590 A JP 14286590A JP 14286590 A JP14286590 A JP 14286590A JP H0717927 B2 JPH0717927 B2 JP H0717927B2
Authority
JP
Japan
Prior art keywords
alloy
liquid phase
sintering
tungsten
sintered alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14286590A
Other languages
Japanese (ja)
Other versions
JPH0436407A (en
Inventor
信義 岡登
将雄 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP14286590A priority Critical patent/JPH0717927B2/en
Publication of JPH0436407A publication Critical patent/JPH0436407A/en
Publication of JPH0717927B2 publication Critical patent/JPH0717927B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高比重で且つ高靱性が要求される弾心材やク
イルなどの用途に好適な高靱性タングステン焼結合金の
製造方法の改良に関する。
TECHNICAL FIELD The present invention relates to an improvement in a method for producing a high-toughness tungsten sintered alloy suitable for applications such as a core material and quill which are required to have high specific gravity and high toughness. .

〔従来の技術と発明が解決しようとする課題〕[Problems to be Solved by Conventional Techniques and Inventions]

高比重で且つ高靱性が要求される弾心材やクイルなどの
用途には、従来からW−Ni−Fe系の焼結合金が用いられ
てきたが、最近は性能向上の見地から同合金に対する一
層の靱性向上の要求が強くなってきている。
Sintered alloys of W-Ni-Fe system have been used for applications such as core materials and quills that require high specific gravity and high toughness. The demand for improvement of toughness is becoming stronger.

ところで、W−Ni−Fe系の焼結合金は、組織中のW粒同
士の結合力が最も弱い。このため、当該合金の靱性を向
上させるにはW粉同士の接触粒界を減らすことが重要で
ある。W−Ni−Fe系焼結合金の場合、連続焼結炉の予熱
室を経て液相焼結室内に送りこまれた成形材料を焼結温
度で所定時間加熱する。数%のNi−Fe成分にWが固溶し
てなるNi−Fe−W成分が約1450℃の融点より20〜40℃高
い温度に加熱されて液相焼結され、W粒同士の接触粒界
へ液相が侵入し、合金組織の緻密化が促進される。その
後、冷却室で冷却することによって焼結中に固相であっ
たW粒の回りを液相から凝固したNi−Fe−W成分が取り
囲む組織となり、Ni−Fe−W成分の延性によって焼結合
金の延性が向上する。
By the way, in the W-Ni-Fe based sintered alloy, the bonding force between W grains in the structure is the weakest. Therefore, in order to improve the toughness of the alloy, it is important to reduce the contact grain boundaries between W powders. In the case of a W-Ni-Fe system sintered alloy, the molding material sent into the liquid phase sintering chamber through the preheating chamber of the continuous sintering furnace is heated at the sintering temperature for a predetermined time. The Ni-Fe-W component, which is a solid solution of W in several percent of the Ni-Fe component, is heated to a temperature 20 to 40 ° C higher than the melting point of about 1450 ° C and liquid-phase-sintered. The liquid phase penetrates into the boundary and promotes densification of the alloy structure. After that, by cooling in a cooling chamber, a structure in which the Ni-Fe-W component solidified from the liquid phase surrounds the W grains that were in the solid phase during sintering becomes a structure, and due to the ductility of the Ni-Fe-W component, sintering bonding occurs. The ductility of gold is improved.

なお、基本的にはNi−Fe−W成分であるが、更にその他
の成分として、必要に応じコバルト(Co)が添加される
ことがある。Coはタングステン焼結合金の強度を向上さ
せるために添加されるものであり、その含有量が多過ぎ
ると延性の劣化を招くから0.5wt%以下が適当とされる
が、W−Ni−Fe−Co成分の場合の融点は1470℃になる。
Although it is basically a Ni-Fe-W component, cobalt (Co) may be added as a further component, if necessary. Co is added to improve the strength of the tungsten sintered alloy, and if its content is too large, ductility deteriorates, so 0.5 wt% or less is appropriate, but W-Ni-Fe- The melting point of the Co component is 1470 ° C.

いずれにしても、液相焼結温度から冷却する際の冷却速
度は、通常3〜6℃/min程度が一般的であるが、その冷
却過程でW粒の回りを囲む液相が排出されて再びW粒同
士の接触が生じてしまい、所期の延性が得にくい。そこ
で、液相焼結温度からの冷却速度を8℃/min以上にして
急冷させることによりW粒同士の再接触を防止し、延性
の向上を図る方法が知られている。しかしながら、液相
焼結温度から急冷すると、液相の急速な凝固収縮による
ひけ巣(空孔欠陥)が発生して、延性が大きく劣化する
(G.Petzow et al.,“Modern Developmennts in Powder
Metallurgy",Vol.14(1981),189-203.)。
In any case, the cooling rate at the time of cooling from the liquid phase sintering temperature is generally about 3 to 6 ° C./min, but the liquid phase surrounding the W grains is discharged during the cooling process. The W grains contact again and it is difficult to obtain the desired ductility. Therefore, a method is known in which re-contact between W grains is prevented and the ductility is improved by rapidly cooling at a cooling rate from the liquid phase sintering temperature of 8 ° C./min or more. However, rapid cooling from the liquid phase sintering temperature causes shrinkage cavities (vacancy defects) due to rapid solidification shrinkage of the liquid phase, and ductility is greatly deteriorated (G.Petzow et al., “Modern Developmennts in Powder”).
Metallurgy ", Vol. 14 (1981), 189-203.).

本発明者らの冷却速度についての詳細な研究によれば、
液相温度からの冷却速度を速くすると、連続焼結炉内を
進行している被焼結材料の後端部に、特に、凝固収縮に
よる深いひけ巣が発生し易い。その結果、靱性劣化又は
ひけ巣部分の切捨てによる歩留り低下を招くという問題
点があった。
According to our detailed study on the cooling rate,
When the cooling rate from the liquidus temperature is increased, deep shrinkage cavities due to solidification shrinkage are particularly likely to occur at the rear end of the material to be sintered that is advancing in the continuous sintering furnace. As a result, there is a problem in that the toughness deteriorates or the yield decreases due to the cutout of the shrinkage cavity.

本発明は、このような従来の問題点に着目してなされた
ものであり、液相焼結後急冷される材料の後端部に熱を
補給して深いひけ巣が発生することを防止した高靱性の
タングステン焼結合金の製造方法を提供することにより
上記従来の問題点を解決することを目的としている。
The present invention has been made by paying attention to such a conventional problem, and prevents the formation of deep shrinkage cavities by supplying heat to the rear end of the material rapidly cooled after liquid phase sintering. It is an object of the present invention to solve the above-mentioned conventional problems by providing a method for manufacturing a high-toughness tungsten sintered alloy.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明は、タングステン85〜98wt%、残部がニッケル
(Ni)と鉄(Fe)と更に必要に応じて含まれるコバルト
(Co)からなる組成の圧粉成形体をトレー内に収納し、
連続炉で予熱,液相焼結,冷却の工程を経て焼結するタ
ングステン焼結結合の製造方法において、前記トレー内
の圧粉成形体の後端部の充填材中に前記タングステン焼
結合金と類似の融点を有する金属又は合金を埋設配置し
て焼結し、その後の冷却工程において、焼結時の加熱に
より溶融した前記金属又は合金の凝固潜熱を焼結された
圧粉成形体に伝達するものである。
The present invention stores a powder compact having a composition of 85 to 98 wt% tungsten, the balance nickel (Ni) and iron (Fe), and cobalt (Co) optionally further contained in a tray,
In a method for producing a tungsten sinter bond, which comprises sintering through steps of preheating, liquid phase sintering, and cooling in a continuous furnace, the tungsten sinter alloy is added to the filler at the rear end of the powder compact in the tray. A metal or alloy having a similar melting point is embedded and sintered, and in the subsequent cooling step, the latent heat of solidification of the metal or alloy melted by heating during sintering is transferred to the sintered compact body. It is a thing.

〔作用〕[Action]

材料を融点以上の温度に加熱するとFe−Ni(−Co)成分
にWが固溶したFe−Ni(−Co)−W成分が液相となり、
固相であるW粒同士の接触粒界に侵入する。かくして分
離されたW粒同士は、冷却速度を8℃/min以上にして急
冷することにより再接触することが防止され、W粒の回
りをFe−Ni(−Co)−W成分が取り囲んだ組織となり、
延性が向上する。本発明においてトレー内の成形材料の
後端部に配置したタングステン焼結合金と類似の融点を
有する金属又は合金は、上記加熱の際に溶融する。そし
て冷却の際は、当該溶融金属または合金の凝固潜熱が成
形材料の後端部に与えられる。この外部からの熱の補給
により、成形材料の後端部のみは急冷されずに徐々に凝
固する。したがって深いひけ巣は発生しない。ひけ巣深
さが浅ければ十分良い歩留りで製品加工が可能であるか
ら、急冷により靱性が向上した高靱性タングステン焼結
合金を歩留り良く製造することができる。
When the material is heated to a temperature above the melting point, the Fe-Ni (-Co) -W component, which is a solid solution of W in the Fe-Ni (-Co) component, becomes a liquid phase,
Penetrate into the contact grain boundary between W grains, which is a solid phase. The W grains thus separated are prevented from re-contacting each other by rapidly cooling at a cooling rate of 8 ° C./min or more, and a structure in which the W grains are surrounded by the Fe-Ni (-Co) -W component Next to
Ductility is improved. In the present invention, the metal or alloy having a melting point similar to that of the tungsten sintered alloy arranged at the rear end of the molding material in the tray melts during the above heating. During cooling, the latent heat of solidification of the molten metal or alloy is applied to the rear end of the molding material. By supplementing the heat from the outside, only the rear end portion of the molding material is gradually solidified without being rapidly cooled. Therefore, deep shrinkage cavities do not occur. Since the product can be processed with a sufficiently good yield if the depth of the sinkhole is shallow, it is possible to produce a high-toughness tungsten sintered alloy with improved toughness by rapid cooling with a good yield.

以下、更に詳細に説明する。The details will be described below.

本発明のタングステン焼結合金の主組成は、タングステ
ン(W)が85〜98wt%で、残部がニッケル(Ni)と鉄
(Fe)及び必要に応じて含まれるコバルト(Co)であ
る。W含有量は、所定の高密度を保つために85%以上が
必要である。かつ又、タングステン焼結合金を製造する
際の液相焼結工程において完全に緻密化する液相量を確
保するため、98wt%以下であることが必要である。Niと
Feは、焼結時に液相を発生して高密度化を促進し、かつ
材料の延性を高める結合材として添加される。一方、Co
はタングステン焼結合金の強度を向上させるが、延性を
低下させないために0.5wt%以下の含有量がよい。
The main composition of the tungsten sintered alloy of the present invention is 85 to 98 wt% of tungsten (W), the balance nickel (Ni) and iron (Fe), and cobalt (Co) optionally contained. The W content needs to be 85% or more in order to maintain a predetermined high density. In addition, in order to secure the amount of the liquid phase that is completely densified in the liquid phase sintering step when manufacturing the tungsten sintered alloy, it is necessary to be 98 wt% or less. Ni and
Fe is added as a binder that generates a liquid phase during sintering, promotes densification, and enhances ductility of the material. On the other hand, Co
Improves the strength of the tungsten sintered alloy, but the content is preferably 0.5 wt% or less so as not to reduce the ductility.

NiとFeの重量比率は、液相生成温度を下げて効果的な液
相焼結を実施するために、Ni:Fe=0.5〜4の範囲内にす
ることが好ましい。
The weight ratio of Ni and Fe is preferably in the range of Ni: Fe = 0.5 to 4 in order to lower the liquid phase formation temperature and perform effective liquid phase sintering.

本発明の高靱性タングステン焼結合金の製造は、原料粉
末を混合する混合工程と、この混合粉末を所定の成形型
内で加圧成形する成形工程と、成形した材料を焼結炉で
液相生成温度を越える液相焼結温度に加熱して液相焼結
し、その後冷却ガス気流中で8℃/min以上の冷却速度を
もって急冷する焼結工程と、焼結完了後の材料を真空熱
処理炉内で熱処理する熱処理工程とを経て行われる。し
かして本発明者らは、上記焼結工程で、液相焼結後に冷
却する際に通常発生する材料後端部の深いひけ巣による
欠陥を防止する方法を鋭意研究し、その結果、液相温度
からの凝固域で、材料後端部に材料外部から熱を与える
ことがひけ巣の防止に極めて有効であること、その熱の
付与の仕方は種々あるが溶融金属の凝固潜熱を利用する
ことが最も実用的で且つ十分な成果が得られることを確
認した。
The high toughness tungsten sintered alloy of the present invention is manufactured by mixing the raw material powders, forming the mixed powder under pressure in a predetermined forming die, and forming the formed material in a liquid phase in a sintering furnace. Sintering process of heating to a liquid-phase sintering temperature above the generation temperature to perform liquid-phase sintering, and then rapidly cooling in a cooling gas flow at a cooling rate of 8 ° C / min or more, and vacuum heat treatment of the material after completion of sintering. The heat treatment is performed in the furnace. However, the inventors of the present invention have diligently studied a method of preventing defects due to deep shrinkage cavities at the rear end of the material that normally occur during cooling after liquid phase sintering in the above-mentioned sintering process, and as a result, the liquid phase In the solidification zone from temperature, it is extremely effective to prevent shrinkage cavities by applying heat from the outside of the material to the rear end of the material. There are various ways of applying that heat, but the latent heat of solidification of the molten metal is used. Was confirmed to be the most practical and sufficient result.

凝固潜熱を付与するものとしては、タングステン焼結合
金と類似の融点を有する金属又は合金が良い。ここに類
似の融点とは、(タングステン焼結合金の融点+25℃以
内)の温度である。この範囲を越える温度の融点を有す
る金属または合金を用いると、凝固潜熱の発生時とタン
グステン焼結合金のひけ巣生成時期とがずれてしまい、
目的を達成することができない。
A metal or an alloy having a melting point similar to that of the tungsten sintered alloy is preferable for giving the latent heat of solidification. A melting point similar to this is a temperature of (melting point of tungsten sintered alloy + 25 ° C. or less). If a metal or alloy having a melting point exceeding this range is used, the time of latent heat of solidification and the time of shrinkage cavity formation of the tungsten sintered alloy are deviated,
I cannot achieve my purpose.

例えば、棒状の材料を予熱室,液相焼結室,冷却室が連
続している連続焼結炉を用いて棒状に成形した材料を焼
結するような場合、その成形材料は長手方向を炉内進行
方向に向けてトレー内の充填アルミナ粉末(Al2O3)中
に埋め込まれる。そのとき、当該材料の後端部近くにタ
ングステン焼結合金と類似の融点を有する金属又は合金
を入れたるつぼ等の容器を配設する。トレーが炉内を進
行する過程で、液相焼結温度に達したタングステン焼結
合金材料に液相が生成されると共に、るつぼ内の類似の
融点を有する金属又は合金が溶融する。ついで液相焼結
温度からの冷却過程に到ると、材料は進行方向の先端か
ら急冷され、後端側に向かって順次に凝固しつつ進行す
る。最終的に凝固する材料の後端部に、凝固収縮による
ひけ巣が形成されるが、近くに配置されたるつぼ内の類
似の融点を有する金属又は合金の冷却凝固に伴い、凝固
潜熱が伝達される。その熱補給のため、材料後端部のみ
は徐冷されることとなり、急冷による深いひけ巣が発生
しない。一方、材料の後端部以外の部分では、急冷によ
る良好な延性が得られる。
For example, when a rod-shaped material is sintered into a rod-shaped material by using a continuous sintering furnace in which a preheating chamber, a liquid-phase sintering chamber and a cooling chamber are continuous, the molding material is the furnace in the longitudinal direction. It is embedded in the filled alumina powder (Al 2 O 3 ) in the tray toward the inner traveling direction. At that time, a container such as a crucible containing a metal or an alloy having a melting point similar to that of the tungsten sintered alloy is arranged near the rear end of the material. As the tray moves through the furnace, a liquid phase is generated in the tungsten sintered alloy material that has reached the liquid phase sintering temperature, and a metal or alloy having a similar melting point in the crucible is melted. Then, when the cooling process from the liquid phase sintering temperature is reached, the material is rapidly cooled from the front end in the traveling direction and progresses while solidifying in sequence toward the rear end side. A shrinkage cavity is formed at the rear end of the material that finally solidifies, but the latent heat of solidification is transferred as the metal or alloy with a similar melting point in a nearby crucible cools and solidifies. It Due to the heat supply, only the rear end portion of the material is gradually cooled, and deep shrinkage cavities due to rapid cooling do not occur. On the other hand, good ductility due to rapid cooling can be obtained in portions other than the rear end of the material.

かくして本発明によれば、タングステン焼結合金の焼結
工程において、材料を液相焼結温度から8℃/min以上の
冷却速度で冷却する際に、材料後端部に熱が補給される
ことによって、深いひけ巣の発生が効果的に防止でき
る。ひけ巣の深さが1.5mm以内であれば、焼結完了後の
成形材料を製品に加工する時に、十分に歩留り良く加工
することができる 〔実施例〕 以下、本発明の実施例を図を参照して説明する。第1図
は、連続焼結炉内で材料を焼結する際に用いるトレーの
縦断面図で、矢符号Aは炉内の進行方向を表す。
Thus, according to the present invention, in the step of sintering a tungsten sintered alloy, when the material is cooled from the liquid phase sintering temperature at a cooling rate of 8 ° C./min or more, heat is supplied to the rear end of the material. By this, the occurrence of deep shrinkage cavities can be effectively prevented. If the depth of the shrinkage cavities is within 1.5 mm, it is possible to process the molding material after completion of sintering into a product with sufficiently high yield. [Examples] Hereinafter, examples of the present invention will be described with reference to the drawings. It will be described with reference to FIG. FIG. 1 is a vertical cross-sectional view of a tray used for sintering a material in a continuous sintering furnace, and an arrow mark A represents a traveling direction in the furnace.

原料粉末として水素還元タングステン粉と、カーボニル
ニッケル粉と、カーボニル鉄粉と、水素還元コバルト粉
とを用いて、V型ミキサーを用いて混合した。成形は冷
間静水圧プレスを用い、2ton/cm2の圧力で直径25mm,長
さ180mmの成形体1を得た。成分組成は93wt%W−4.9wt
%Ni−2.0wt%Fe−0.1wt%Coとした。この成形体1を、
第1図に示すMo製トレー2内のアルミナ粉末3中に埋め
る。成形体1の後端付近には、成形体1のタングステン
焼結合金の融点1470℃に類似の融点を有する金属または
合金4を充填したアルミナるつぼ5を埋設配置した。こ
の実施例では、上記類似の融点を有する金属または合金
4として表1に示す種々のものを用いて比較した。
Hydrogen-reduced tungsten powder, carbonyl nickel powder, carbonyl iron powder, and hydrogen-reduced cobalt powder were used as raw material powders and mixed using a V-type mixer. For molding, a cold isostatic press was used to obtain a molded body 1 having a diameter of 25 mm and a length of 180 mm at a pressure of 2 ton / cm 2 . The composition is 93wt% W-4.9wt
% Ni-2.0wt% Fe-0.1wt% Co. This molded body 1
It is embedded in the alumina powder 3 in the tray 2 made of Mo shown in FIG. An alumina crucible 5 filled with a metal or alloy 4 having a melting point similar to the melting point of 1470 ° C. of the tungsten sintered alloy of the compact 1 was embedded and arranged near the rear end of the compact 1. In this example, various metals or alloys 4 having similar melting points as described above were used and compared with each other as shown in Table 1.

トレー2を図示しないプッシャー連続焼結炉に送り液相
焼結した。焼結炉は、予熱室,液相焼結室,冷却室が連
続的に連なっていて、上記のトレー2は炉内の搬送装置
の進行方向を長手方向にして予熱室の入口から送りこ
む。そして予熱室を経て予熱した後、液相焼結室におい
てH2気流中で1500℃の液相焼結温度で60分間にわたり加
熱した。この加熱で成形体1の液相生成金属が溶融する
と共にるつぼ5内の類似の融点を有する金属または合金
4も溶融する。次いで液相焼結室から連続的に冷却室に
移しつつ液相焼結温度から冷却した。この時、成形体1
の内部は初めに冷却室に入る前端部が最も温度が低くな
り、凝固は成形体1の進行と共に順次後方に進む。最後
に成形体1の後端に残った液相の部分が冷却されるが、
この部分には、るつぼ5内の類似の融点を有する金属ま
たは合金4の凝固に伴い発生する凝固潜熱が伝達され
て、冷却凝固は比較的徐々に行われる。
The tray 2 was sent to a pusher continuous sintering furnace (not shown) for liquid phase sintering. In the sintering furnace, a preheating chamber, a liquid phase sintering chamber, and a cooling chamber are continuously connected, and the tray 2 is fed from the inlet of the preheating chamber with the traveling direction of the conveying device in the furnace being the longitudinal direction. After preheating through the preheating chamber, heating was performed in a liquid phase sintering chamber in a H 2 stream at a liquid phase sintering temperature of 1500 ° C. for 60 minutes. This heating melts the liquid phase forming metal of the compact 1 and also melts the metal or alloy 4 having a similar melting point in the crucible 5. Then, it was cooled from the liquid phase sintering temperature while continuously moving from the liquid phase sintering chamber to the cooling chamber. At this time, the molded body 1
The inside of the first has the lowest temperature at the front end which enters the cooling chamber, and the solidification proceeds rearward in sequence with the progress of the molded body 1. Finally, the liquid phase portion remaining at the rear end of the molded body 1 is cooled,
The solidification latent heat generated by the solidification of the metal or alloy 4 having a similar melting point in the crucible 5 is transferred to this portion, so that the cooling and solidification is relatively gradually performed.

焼結炉から取り出した成形体1は、真空度10-4Torrの下
で1150℃,2時間の真空熱処理を行ない、その後Arガスに
より20℃/minの冷却速度で冷却し被試験体を得た。この
被試験体を切断してひけ巣の深さを測定した。
The compact 1 taken out from the sintering furnace was subjected to vacuum heat treatment at a vacuum degree of 10 -4 Torr at 1150 ° C for 2 hours, and then cooled with Ar gas at a cooling rate of 20 ° C / min to obtain a test object. It was This test object was cut and the depth of the shrinkage cavity was measured.

表1に類似の融点を有する金属または合金4の融点と、
被試験体のひけ巣の深さ(後端からの距離)を示した。
No.1〜3は本発明の実施例であり、これに対してNo.4〜
6は比較例である。
The melting point of metal or alloy 4 having a melting point similar to that of Table 1,
The depth of the shrinkage cavity (distance from the rear end) of the test body was shown.
Nos. 1 to 3 are examples of the present invention, whereas Nos. 4 to 4 are
6 is a comparative example.

表1より、本実施例のタングステン焼結合金と比較例の
ものとは、ひけ巣深さの点で明確な差異が認められた。
すなわち、比較例のものはいずれも20数mmないし10数mm
と深いひけ巣が生成したのに対して、本実施例のものは
ひけ巣深さが0.5mm以下であり、実質的に製品の歩留り
を低減させるひけ巣の発生はなかった。
From Table 1, a clear difference between the tungsten sintered alloy of this example and the comparative example in terms of the depth of the shrinkage cavity was observed.
That is, all of the comparative examples are 20 mm to 10 mm.
However, in the case of the present example, the depth of the shrinkage cavities was 0.5 mm or less, and the generation of the shrinkage cavities that substantially reduce the yield of the product was not generated.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によれば、W85〜98wt%、
残部がNiとFeと更に必要に応じて含まれるCoからなる組
成の圧粉成形体をトレー内に収納し、連続炉で予熱,液
相焼結,冷却の工程を経て焼結するタングステン焼結合
金の製造方法において、前記トレー内の圧粉成形体の後
端部の充填材中に前記タングステン焼結合金と類似の融
点を有する金属又は合金を埋設配置して焼結し、その後
の冷却工程において、焼結時の加熱により溶融した前記
金属又は合金の凝固潜熱を焼結された圧粉成形体に伝達
するものとしたため、材料の内部に急速な凝固収縮によ
る深いひけ巣が発生することが防止でき、靱性の向上が
顕著で且つ実質的に歩留りを低下せしめるひけ巣もない
タングステン焼結合金を提供することができるという効
果が得られる。
As described above, according to the present invention, W85-98 wt%,
Tungsten firing bonding, in which a powder compact having the composition of Co, which contains Ni and Fe as required, and Co, if necessary, is placed in a tray and sintered through preheating, liquid phase sintering, and cooling in a continuous furnace In the method for producing gold, a metal or an alloy having a melting point similar to that of the tungsten sintered alloy is embedded in the filler at the rear end of the powder compact in the tray and sintered, followed by a cooling step. In the above, since the latent heat of solidification of the metal or alloy melted by heating during sintering is transferred to the sintered compacted powder compact, deep shrinkage cavities may occur inside the material due to rapid solidification shrinkage. It is possible to provide a tungsten sintered alloy that can be prevented and that has a remarkable improvement in toughness and that has no shrinkage cavities that substantially reduce the yield.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例で、焼結工程におけるトレー内
の配置を説明する縦断面図である。 1は成形体、2はトレー、4はタングステン焼結合金と
類似の融点を有する金属又は合金である。
FIG. 1 is an embodiment of the present invention and is a vertical sectional view for explaining the arrangement in the tray in the sintering step. Reference numeral 1 is a compact, 2 is a tray, and 4 is a metal or alloy having a melting point similar to that of a tungsten sintered alloy.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】タングステン85〜98wt%、残部がニッケル
(Ni)と鉄(Fe)と更に必要に応じて含まれるコバルト
(Co)からなる組成の圧粉成形体をトレー内に収納し、
連続炉で予熱,液相焼結,冷却の工程を経てタングステ
ン焼結合金を製造するに当たり、前記トレー内の圧粉成
形体の後端部の充填材中に前記タングステン焼結合金と
類似の融点を有する金属又は合金を埋設配置して焼結
し、その後の冷却工程において、焼結時の加熱により溶
融した前記金属又は合金の凝固潜熱を焼結された圧粉成
形体に伝達することを特徴とするタングステン焼結合金
の製造方法。
1. A powder compact having a composition of 85 to 98 wt% tungsten, the balance nickel (Ni) and iron (Fe), and cobalt (Co) optionally contained therein is housed in a tray.
In manufacturing a tungsten sintered alloy through steps of preheating, liquid phase sintering and cooling in a continuous furnace, a melting point similar to that of the tungsten sintered alloy is contained in the filler at the rear end of the powder compact in the tray. Characterized in that the metal or alloy having the above is embedded and sintered, and in the subsequent cooling step, the latent heat of solidification of the metal or alloy melted by heating during sintering is transferred to the sintered compact body. And a method for producing a tungsten sintered alloy.
JP14286590A 1990-05-31 1990-05-31 Method for producing tungsten sintered alloy Expired - Lifetime JPH0717927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14286590A JPH0717927B2 (en) 1990-05-31 1990-05-31 Method for producing tungsten sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14286590A JPH0717927B2 (en) 1990-05-31 1990-05-31 Method for producing tungsten sintered alloy

Publications (2)

Publication Number Publication Date
JPH0436407A JPH0436407A (en) 1992-02-06
JPH0717927B2 true JPH0717927B2 (en) 1995-03-01

Family

ID=15325406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14286590A Expired - Lifetime JPH0717927B2 (en) 1990-05-31 1990-05-31 Method for producing tungsten sintered alloy

Country Status (1)

Country Link
JP (1) JPH0717927B2 (en)

Also Published As

Publication number Publication date
JPH0436407A (en) 1992-02-06

Similar Documents

Publication Publication Date Title
RU2245218C2 (en) Powder composition containing aggregated particles of iron powder, additives and fluidity enhancing matter, method of preparing such composition
US6197437B1 (en) Casting alloys and method of making composite barrels used in extrusion and injection molding
US5679182A (en) Semi-solid processing of beryllium-containing alloys of magnesium
US4518441A (en) Method of producing metal alloys with high modulus of elasticity
ES2254254T3 (en) LUBRICATING COMBINATION AND PROCEDURE FOR PREPARATION.
EP3778068A1 (en) Powder for mold
JPS61104002A (en) Sintering method
EP0751361B1 (en) A levitation melting method and a levitation melting and casting device
JPS6029431A (en) Production of alloy
US6126894A (en) Method of producing high density sintered articles from iron-silicon alloys
US4088475A (en) Addition of reactive elements in powder wire form to copper base alloys
JPH04325648A (en) Production of sintered aluminum alloy
JPH0717927B2 (en) Method for producing tungsten sintered alloy
JP4651335B2 (en) Method for producing titanium ingot
JP2015535918A (en) System and method for melting raw materials
JPH0436428A (en) Manufacture of high toughness tungsten sintered alloy
EP1452611B1 (en) Method of producing products made from carbide-reinforced, structural metal materials
JP3188754B2 (en) Method for producing defect-free liquid phase sintered alloy
JP3161806B2 (en) Sintered body showing continuous composition change, its manufacturing method and its applied products
JP5238143B2 (en) Target material containing Cr-Mo-Cu and method for producing the same
JPH0978154A (en) Production of titanium-nickel alloy
RU2142355C1 (en) Method for suspension casting of irons
JPH0677798B2 (en) Method for producing partially alloyed castings
JPH055153A (en) Production of copper-containing iron-base sintered alloy
JPS6358900B2 (en)