JPH07176657A - Pressing unit for planar semiconductor element - Google Patents

Pressing unit for planar semiconductor element

Info

Publication number
JPH07176657A
JPH07176657A JP32067493A JP32067493A JPH07176657A JP H07176657 A JPH07176657 A JP H07176657A JP 32067493 A JP32067493 A JP 32067493A JP 32067493 A JP32067493 A JP 32067493A JP H07176657 A JPH07176657 A JP H07176657A
Authority
JP
Japan
Prior art keywords
contact
flat
disc springs
tightening
semiconductor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32067493A
Other languages
Japanese (ja)
Inventor
Itaru Asai
至 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP32067493A priority Critical patent/JPH07176657A/en
Publication of JPH07176657A publication Critical patent/JPH07176657A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the pressing force, produced by tightening a bolt constantly, from decreasing or the fluctuation in the distribution of pressing force from increasing. CONSTITUTION:Adjacent coned disc springs 51A, 52A have different diametral dimensions at the large diameter contacting parts thereof. Consequently, the protruding part of coned disc spring having smaller diameter comes into line contact with the conical face on the inside of coned disc spring having larger diameter. The contact is sustained even if pressing force is applied to deform the coned disc springs 51A, 52A. Since a small circle does not protrude from a large circle even if the relative position of the springs 51A, 52A is shifted slightly in the radial direction so long as the shift is within the difference of diameter, the springs 51A, 52A do not come into point contact but come into line contact at all times. Consequently, the pressing force produced by tightening a bolt is not consumed for abrasive deformation at the mating part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、整流装置やインバー
タなどの電力変換装置に使用されるダイオードやサイリ
スタなどの半導体素子、特に大容量の素子として採用さ
れる平形半導体素子が装置に組み込まれる際に、平形半
導体素子及びこれに同軸に配置されて一括して締付けら
れる皿ばねなどの部材を所定の圧接力で圧接しその状態
を長期間にわたって保持するための加圧装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor element such as a diode or a thyristor used in a power converter such as a rectifier or an inverter, especially when a flat semiconductor element used as a large-capacity element is incorporated in the apparatus. Further, the present invention relates to a pressurizing device for pressing a flat semiconductor element and a member such as a disc spring arranged coaxially with the flat semiconductor element together with a predetermined pressing force and maintaining the state for a long period of time.

【0002】[0002]

【従来の技術】大容量の整流装置やインバータではダイ
オードやサイリスタなどの半導体素子が多数使用され
る。使用される半導体素子の数が多いほどコストと信頼
性の両方の点で不利なので、その使用数を減らすために
なるべく容量の大きな半導体素子が使用さる。このよう
な大容量の半導体素子は皿形をしたいわゆる平形半導体
素子が多い。平形半導体素子はそれ自身冷却構造や端子
引き出し構造を持っていないので、冷却機能と端子引き
出し構造の双方を兼ねた冷却体や端子導体で挟み所定の
圧接力をかけた状態で保持する構成が採用される。
2. Description of the Related Art A large number of semiconductor elements such as diodes and thyristors are used in large capacity rectifiers and inverters. The larger the number of semiconductor elements used, the more disadvantageous it is in terms of cost and reliability. Therefore, in order to reduce the number of semiconductor elements used, a semiconductor element having a large capacity is used. Such large-capacity semiconductor elements are often dish-shaped so-called flat semiconductor elements. Since the flat semiconductor device itself does not have a cooling structure or a terminal drawing structure, a structure is adopted in which it is held with a predetermined pressure contact force sandwiched between a cooling body and a terminal conductor that have both a cooling function and a terminal drawing structure. To be done.

【0003】図6は平形半導体素子とその近くの部材及
びこれらに圧接力を働かす従来の加圧装置の断面図を含
む立面図、図7は図6の加圧装置の平面図である。これ
らはまとめて半導体スタックと呼ばれている。これらの
図において、平形半導体素子1は冷却体2、上部リード
3、ワッシャ4及び2枚の皿ばね5とともに積み重ねら
れて、シャフト支え7と押さえ板8との間に配置されて
締付ボルト6によって締付けられる。
FIG. 6 is an elevational view including a cross-sectional view of a flat semiconductor device, members in the vicinity thereof, and a conventional pressing device that exerts a pressure contact force on them, and FIG. 7 is a plan view of the pressing device of FIG. These are collectively called a semiconductor stack. In these drawings, the flat semiconductor device 1 is stacked with the cooling body 2, the upper lead 3, the washer 4 and the two disc springs 5 and is arranged between the shaft support 7 and the pressing plate 8 to tighten the tightening bolts 6. Tightened by.

【0004】締付ボルト6は押さえ板8に設けられてい
るボルト穴に挿入されていて、このボルト穴に締付ボル
ト6のねじ部62のねじ山に対応したねじが切られてい
る。シャフト支え7と押さえ板8とは2本の連結ボルト
9によって所定の距離離れて固定されている。連結ボル
ト9はシャフト支え7と電気的に連結しており、符号を
付けない絶縁管が被覆されていて押さえ板8を始めとす
る他の金属部材との間に絶縁が確保されている。
The tightening bolt 6 is inserted into a bolt hole provided in the pressing plate 8, and a screw corresponding to the thread of the thread portion 62 of the tightening bolt 6 is cut into this bolt hole. The shaft support 7 and the pressing plate 8 are fixed to each other by a predetermined distance with two connecting bolts 9. The connecting bolt 9 is electrically connected to the shaft support 7, and is covered with an insulating pipe not denoted by a reference numeral to ensure insulation between the pressing plate 8 and other metal members.

【0005】締付ボルト6を回転させるとねじ部62のね
じ山に応じて図の上下方向に移動する。したがって、下
方向に移動するように回転させると、締付ボルト6の頭
部61が皿ばね5を押し付ける。締付ボルト6はトルクレ
ンチで回転させることによってトルク管理が行われ、締
付けトルクを通して平形半導体素子1の圧接力が管理さ
れる。
When the tightening bolt 6 is rotated, it moves in the vertical direction in the figure according to the thread of the screw portion 62. Therefore, when it is rotated so as to move downward, the head 61 of the tightening bolt 6 presses the disc spring 5. Torque is controlled by rotating the tightening bolt 6 with a torque wrench, and the pressure contact force of the flat semiconductor element 1 is managed through the tightening torque.

【0006】冷却体2は平形半導体素子1を冷却するた
めのもので、内部に冷却水が通されて強力に冷却され
る。平形半導体素子1は冷却体2に圧接力によって接触
しているので接触部の熱抵抗が小さいために、冷却体2
は平形半導体素子1が発生する熱を冷却体2が効率よく
吸収することができる。周知のように平形半導体素子1
の両端面は電極になっていて、一方が陰極、他方が陽極
になっている。図の上側の電極は銅などの良熱伝導体で
あるとともに良導電体からなる冷却体2を介して上部リ
ード3に電気的に接続され、シャフト支え7は下部リー
ドを兼ねていて下側の電極はこのシャフト支え7に接触
し電気的に接続されている。このように、平形半導体素
子1に電気的に接続される冷却体2、上部リード3及び
シャフト支え7のそれぞれの接触部は締付ボルト6によ
る同じ圧接力が働いていて接触抵抗が安定して小さな値
が保持される。
The cooling body 2 is for cooling the flat semiconductor element 1, and cooling water is passed inside to cool it strongly. Since the flat semiconductor element 1 is in contact with the cooling body 2 by the pressure contact force, the thermal resistance of the contact portion is small.
The cooling body 2 can efficiently absorb the heat generated by the flat semiconductor element 1. As is well known, flat semiconductor device 1
Both end faces are electrodes, and one is a cathode and the other is an anode. The upper electrode in the figure is a good heat conductor such as copper and is electrically connected to the upper lead 3 via the cooling body 2 made of a good conductor, and the shaft support 7 also serves as the lower lead, The electrodes are in contact with and electrically connected to the shaft support 7. As described above, the contacting portions of the cooling body 2, the upper lead 3 and the shaft support 7 which are electrically connected to the flat semiconductor element 1 are subjected to the same pressure contact force by the tightening bolts 6, so that the contact resistance is stable. A small value is retained.

【0007】前述のように、平形半導体素子1に対する
圧接力は冷却特性と導電特性に関する重要なものであ
り、これらの特性だけに関する限りその値はなるべく大
きい方が良いが、それぞれの部材の圧接力に対する許容
値には限界があり、これを越えることはできないので、
前述のように一定の値になるように管理される。前述の
圧接力が与えられる部材にはこれらの温度に応じた熱膨
張又は収縮が生ずる。そのため、組み立ての当初は締付
ボルト6の締付力のトルク管理によって圧接力が所定の
値に設定されたとしても温度変化に応じて変化し、過大
になったり過少になったりする可能性がある。このよう
な温度変化による圧接力の変化を許容範囲内に抑えるた
めに皿ばね5が設けられている。この図では2枚の皿ば
ねが図示されているがこの数にこだわるものではない。
As described above, the pressure contact force with respect to the flat semiconductor element 1 is important with respect to the cooling characteristic and the conductive characteristic. As far as only these characteristics are concerned, the value should be as large as possible, but the pressure contact force of each member should be as large as possible. There is a limit to the allowable value for and cannot be exceeded, so
As described above, it is managed so as to have a constant value. The member to which the above-mentioned pressure contact force is applied undergoes thermal expansion or contraction according to these temperatures. Therefore, even if the pressure contact force is set to a predetermined value by torque control of the tightening force of the tightening bolt 6 at the beginning of assembly, the pressure contact force may change according to the temperature change and may become excessive or insufficient. is there. The disc spring 5 is provided in order to suppress the change of the pressure contact force due to such temperature change within an allowable range. Although two disc springs are shown in this figure, the number is not limited to this number.

【0008】[0008]

【発明が解決しようとする課題】ところで、半導体スタ
ックを幾つか製作して締付けトルクとこれに対する実際
の圧接力とを実測しその相関関係を調べたところ、一定
の締付けトルクに対する圧接力の分布には中心値から大
きなずれを示すものが発生する。発明者は、このような
実測において圧接力が他の半導体スタックとは異なるも
のは複数枚の皿ばねの相互の接触面にすべりが発生する
ことが多く、比較的揃った圧接力を示すことに気が付い
た。そしてこのことについて下記の理由で説明すること
ができることが判った。
By the way, when several semiconductor stacks were manufactured and the tightening torque and the actual pressure contact force were measured and their correlations were investigated, the distribution of the pressure contact force for a certain tightening torque was found. Occurs that shows a large deviation from the center value. The inventor has found that when the pressure contact force is different from that of other semiconductor stacks in such an actual measurement, a slip often occurs on the mutual contact surfaces of a plurality of disc springs, and the pressure contact force is relatively uniform. I noticed. And it turns out that this can be explained for the following reasons.

【0009】図8は図6の皿ばね5の断面図である。こ
の図において、皿ばね5を構成する2枚の皿ばね51,52
はハの字状の断面形状をしていて、ハの字状の開いた側
を向かい合わせて互いの大径部の長方形断面の頂点に相
当する凸部を接触させている。しかし、実際には2枚の
皿ばね51,52 の図の左右方向である半径方向位置が多少
ずれることによって皿ばね51,52 の互いの凸部の円がず
れて接触部はこれら2つの円の交点となる2点での点接
触となる。圧接力の全てはこの2点に集中するので接触
圧が非常に大きくなり、接触部が噛み合ってしまって締
付け力を上げて圧接力を増大させようとしたときにこの
接触部が磨耗変形するために、締付け力の多くがこの変
形に消費されて圧接力に有効に働かないことになる。
FIG. 8 is a sectional view of the disc spring 5 of FIG. In this figure, two disc springs 51, 52 that constitute the disc spring 5 are provided.
Has a V-shaped cross-section, and the open sides of the V-shape are opposed to each other so that the convex portions corresponding to the vertices of the rectangular cross section of the large-diameter portions are in contact with each other. However, in reality, the radial positions of the two disc springs 51 and 52, which are the left and right directions in the figure, are slightly deviated, so that the circles of the convex portions of the disc springs 51 and 52 are deviated, and the contact portions are formed by these two circles. Point contact is made at two points, which are the intersections of. Since all of the pressure contact force is concentrated at these two points, the contact pressure becomes extremely large, and when the contact parts mesh with each other and the tightening force is increased to increase the pressure contact force, this contact part wears and deforms. Moreover, most of the tightening force is consumed by this deformation, and it does not work effectively on the pressure contact force.

【0010】多くの皿ばね5の接触部ではこのような現
象が一般的に生じていて、一定の締付け力に対する圧接
力の分布がが小さい方に移行し、しかもばらつきが大き
くなる原因になっているという問題がある。この発明の
目的は、このような問題を解決し、一定の締付け力に対
する圧接力の低下やばらつきの増大のない平形半導体素
子の加圧装置を提供することにある。
Such a phenomenon generally occurs at the contact portions of many disc springs 5, which causes the distribution of the pressure contact force with respect to a constant tightening force to shift to a smaller one, and causes a large variation. There is a problem that An object of the present invention is to solve such a problem and to provide a pressing device for a flat semiconductor element, which does not reduce the pressure contact force with respect to a constant tightening force or increase variation.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に、この発明によれば、平形半導体素子とこれに同軸に
設けられた複数枚の皿ばねとが締付ボルトの締付け力に
よって所定の圧接力が与えられるとともにこれが保持さ
れる平形半導体素子の加圧装置において、隣接する皿ば
ねの互いに接触する部分の径が互いに異なってなるもの
とする。又は、この加圧装置において、隣接する皿ばね
の互いに接触する部分の径が互いに異なる代わりに、互
いに接触する部分が平面に加工されてなるものとする。
また、平形半導体素子とこれに同軸に設けられた複数枚
の皿ばねとが締付ボルトの締付け力によって所定の圧接
力が与えられるとともにこれが保持される平形半導体素
子の加圧装置において、隣接する皿ばねの互いに接近す
る部分に所定の径のワッシャが挿入されてなるものとす
る。
In order to solve the above-mentioned problems, according to the present invention, a flat semiconductor element and a plurality of disc springs provided coaxially with the flat semiconductor element are predetermined by a tightening force of a tightening bolt. In a pressurizing device for a flat semiconductor element to which a pressure contact force is applied and which is held, the diameters of adjacent disc springs in contact with each other are different from each other. Alternatively, in this pressurizing device, the diameters of the contacting portions of the adjacent disc springs are different from each other, but the contacting portions are processed into a flat surface.
Further, a flat semiconductor element and a plurality of disc springs provided coaxially with the flat semiconductor element are adjacent to each other in a flat semiconductor element pressing device in which a predetermined pressure contact force is applied by the tightening force of the tightening bolt and this is held. It is assumed that washers having a predetermined diameter are inserted into portions of the disc springs that are close to each other.

【0012】[0012]

【作用】この発明の構成において、複数枚数の皿ばねの
互いに接触する部分の径を異る寸法とするとによって、
接触部は一方の凸部と他方の円錐面とが接触する。した
がって、圧接力がかかって皿ばねが変形した場合、接触
位置は殆ど変わらず、相対位置が僅かにずれた場合も、
そのずれ寸法が径の差を越えない範囲である限り小さい
方の円が大きい方の円からはみ出すことはないので、い
ずれの場合でも接触部は常に線接触となり互いに噛み合
う点接触になることはない。
In the structure of the present invention, the diameters of the contacting portions of the plurality of disc springs are different from each other.
In the contact portion, one convex portion and the other conical surface are in contact with each other. Therefore, when the disc spring is deformed due to the pressure contact force, the contact position hardly changes, and even when the relative position slightly shifts,
As long as the deviation does not exceed the difference in diameter, the smaller circle does not protrude from the larger circle, so in any case, the contact portion is always a line contact and does not make point contact with each other. .

【0013】又は、異なる径にするのではなく、互いに
接触する部分を平面に切削して平面部を形成することに
よって、互いの接触部に凸部がなくなって平面部同士が
接触するので、圧接力により変形したり半径方向にずれ
たりしても互いの接触部は線接触になる。また、皿ばね
の形状、寸法は変えずに、隣接する皿ばねが互いに接近
する部分に所定の寸法のワッシャを挿入することによっ
て、それぞれの皿ばねの凸部がワッシャの平面部に接触
するので、圧接力によって皿ばねが変形したり半径方向
にずれたりしても皿ばねの凸部とワッシャの平面部とが
常に接触する。
Alternatively, instead of having different diameters, the flat portions are formed by cutting the portions that come into contact with each other into flat surfaces, so that the convex portions disappear at the mutual contact portions and the flat portions come into contact with each other. Even if they are deformed by force or are displaced in the radial direction, their contact portions become line contacts. Also, without changing the shape and size of the disc springs, by inserting washers of a predetermined size in the portions where the adjacent disc springs come close to each other, the convex portion of each disc spring comes into contact with the flat portion of the washer. Even if the disc spring is deformed or displaced in the radial direction due to the pressure contact force, the convex portion of the disc spring and the flat portion of the washer are always in contact with each other.

【0014】[0014]

【実施例】以下この発明を実施例に基づいて説明する。
図1はこの発明の第1の実施例を示す2枚の皿ばねの断
面図であり、図8と類似であるが図8の締付ボルト6や
ワッシャ4の表示を省略してある。この図において、2
枚の皿ばね51A,52A の上側の皿ばね51A の大径部の寸法
は皿ばね52A のそれよりも小さくしてある。したがっ
て、皿ばね51A,52A の互いの接触部は皿ばね51A の凸部
が皿ばね52A の内側円錐面に接する線接触になる。圧接
力を受けて皿ばね51A,52A が変形しても接触位置は殆ど
変わらない。また、皿ばね51A,52A の相対位置が半径方
向にずれた場合、ずれ寸法が皿ばね51A,52A の大径部の
径の寸法差を越えない範囲である限り皿ばね51A の凸部
が皿ばね52A の内側円錐面を移動はするが互いの凸部が
接触する点接触になることはない。接触部は常に線接触
になることから圧接力は分散して集中することはないの
で、締付け力が皿ばねの51A,52A の磨耗変形に費やされ
ることがなくなり有効に圧接力に変換される。したがっ
て、一定の締付け力に対する圧接力の分布のばらつき小
さくなる。
EXAMPLES The present invention will be described below based on examples.
FIG. 1 is a sectional view of two disc springs showing a first embodiment of the present invention, which is similar to FIG. 8 but the tightening bolt 6 and washer 4 of FIG. 8 are omitted. In this figure, 2
The size of the large diameter portion of the disc spring 51A on the upper side of the disc springs 51A and 52A is smaller than that of the disc spring 52A. Therefore, the contact portions of the disc springs 51A and 52A are in line contact with each other such that the convex portion of the disc spring 51A is in contact with the inner conical surface of the disc spring 52A. Even if the disc springs 51A and 52A are deformed by the pressure contact force, the contact position hardly changes. Also, if the relative positions of the disc springs 51A and 52A are displaced in the radial direction, as long as the displacement dimension does not exceed the size difference of the large diameter portion of the disc springs 51A and 52A, the protrusion of the disc spring 51A is The spring 52A moves along the inner conical surface of the spring 52A, but the convex portions of the spring 52A do not make point contact with each other. Since the contact portion is always in line contact, the pressure contact force is not dispersed and concentrated, so that the tightening force is not spent on the wear deformation of the disc springs 51A and 52A, and is effectively converted into the pressure contact force. Therefore, the variation in the distribution of the pressure contact force with respect to the constant tightening force is reduced.

【0015】図2、図3はこの発明の第2の実施例を示
す皿ばねの断面図であり、図2の図1と異なる点は皿ば
ね51B,52B の接触部に平面部55B を設けたことである。
また、図2が2枚の皿ばね51B,52B の大径部を接触させ
た配置であるのに対して、図3は皿ばね53B,54B の互い
の小径部を接触させた配置である点が異なる。一般に複
数枚の皿ばねを使用する場合には、図2と図3とを交互
に配置するのが普通である。したがって、例えば、4枚
の皿ばねを使用する場合、図2の配置をした2枚の皿ば
ねの2組が重ねられ、上の組の下の皿ばねと下の組の上
の皿ばねの接触する部分は図3のようになる。図6に示
すように2枚の場合は図2の配置が普通である。
2 and 3 are sectional views of a disc spring showing a second embodiment of the present invention. The difference from FIG. 1 of FIG. 2 is that a flat portion 55B is provided at the contact portion of the disc springs 51B and 52B. That is.
Further, FIG. 2 shows an arrangement in which the large diameter portions of the two disc springs 51B and 52B are in contact with each other, while FIG. 3 is an arrangement in which the small diameter portions of the disc springs 53B and 54B are in contact with each other. Is different. Generally, when a plurality of disc springs are used, it is usual to arrange FIGS. 2 and 3 alternately. Therefore, for example, when four disc springs are used, two sets of the two disc springs having the arrangement shown in FIG. 2 are stacked, and the disc spring under the upper set and the disc spring over the lower set are combined. The contacting parts are as shown in FIG. When there are two sheets as shown in FIG. 6, the arrangement shown in FIG. 2 is common.

【0016】図2において、皿ばね51B,52B の互いに接
触する大径部に平面部55B を設けてある。平面部55B は
2枚の皿ばね51B,52B に圧接力がかかっていないときに
は互いの平面部55B は面接触している。皿ばね51B,52B
が圧接力を受けて変形したとき互いの平面部55B は平行
にならず線接触になる。また、相対位置が僅かにずれた
場合も接触は平面部55B 同士の中で接触部がずれるだけ
で鋭角的な凸部が噛み合うことはない。
In FIG. 2, a flat portion 55B is provided on the large-diameter portions of the disc springs 51B, 52B which come into contact with each other. The flat surface portion 55B is in surface contact with the flat spring portion 51B when the two disc springs 51B and 52B are not pressed against each other. Belleville springs 51B, 52B
When the two are deformed under the pressure contact force, the flat portions 55B are not parallel to each other and are in line contact with each other. Further, even if the relative position is slightly deviated, the contact portion is displaced between the flat surface portions 55B, and the acute-angled convex portions do not engage with each other.

【0017】図3では皿ばね53B,54B の互いに接触する
小径部に平面部56B を設けてある。圧接力を受けて皿ば
ね53B,54B が変形した場合、わずかにずれた場合のいず
れの場合でも図2と同様に互いの皿ばね53B,54B の接触
部は線接触にはなっても凸部の点接触になることはな
い。図4、図5はこの発明の第3の実施例を示す皿ばね
の断面図であり、図2、図3と異なる点は、皿ばね51,5
2,53,54 は図8の従来の皿ばねと同じであり、代わりに
互いの接近部にワッシャ57C,58C を設けた点である。す
なわち、図4の場合、皿ばね51の凸部はワッシャ57C の
上の平面部に線接触し、皿ばね52はワッシャ57C の下の
平面部に線接触している。皿ばね51,52 が圧接力により
変形して大径部の寸法が大きくなった場合、接触部はワ
ッシャ57C の平面部をずれるだけである。また、皿ばね
51,52 の相対位置が半径方向にずれた場合、ずれによる
接触部の移動がワッシャ57C の内外径の範囲を越えない
限り線接触が維持され点接触になることはない。図5の
場合も同様なので詳しい説明を省く。
In FIG. 3, a flat portion 56B is provided on the small-diameter portions of the disc springs 53B, 54B which come into contact with each other. Even if the disc springs 53B, 54B are deformed or slightly displaced due to the pressure contact force, the contact parts of the disc springs 53B, 54B are not the same as in FIG. There is no point contact. 4 and 5 are cross-sectional views of a disc spring showing a third embodiment of the present invention. The difference from FIG. 2 and FIG.
2,53,54 are the same as the conventional disc spring shown in FIG. 8, and instead, washers 57C, 58C are provided at the portions where they approach each other. That is, in the case of FIG. 4, the convex portion of the disc spring 51 is in line contact with the plane portion above the washer 57C, and the disc spring 52 is in line contact with the plane portion below the washer 57C. When the disc springs 51, 52 are deformed by the pressure contact force and the size of the large diameter portion is increased, the contact portion only shifts from the flat portion of the washer 57C. Also, disc springs
When the relative positions of 51 and 52 are displaced in the radial direction, line contact is maintained and does not become point contact unless the movement of the contact part due to the displacement exceeds the range of the inner and outer diameters of the washer 57C. Since the same applies to the case of FIG. 5, detailed description will be omitted.

【0018】なお、図1では2枚の皿ばね51A,52A は大
径部が接触している場合であるが、図3、図5のように
小径部が接触している場合にも小径部の径を異なるもの
にすることによって図1と同じ作用効果を得ることがで
きる。
In FIG. 1, the two disc springs 51A and 52A are in contact with each other at their large diameter portions. However, as shown in FIGS. 3 and 5, the small diameter portions are also in contact with each other. By making the diameters different, it is possible to obtain the same operation and effect as in FIG.

【0019】[0019]

【発明の効果】この発明によれば、隣接する皿ばねの互
いに接触する部分の径を異る寸法とすることによって、
接触部は一方の凸部と他方の円錐面とが接触する。した
がって、皿ばねの相対位置が半径方向に僅かにずれても
そのずれ寸法が径の差を越えない範囲である限り小さい
方の円が大きい方の円からはみ出すことはないので、接
触部は常に線接触となり互いに噛み合う点接触にならな
いことから、締付ボルトに締付け力を与えたときに生ず
る圧接力が噛み合い部の磨耗変形に消費されることがな
くなって締付け力に応じた適性な圧接力を得ることがで
きるとともに、一定の締付け力に対する実際の圧接力の
分布のばらつきも小さくなって信頼性の高い平形半導体
素子の加圧装置になるという効果が得られる。
According to the present invention, the diameters of the portions of adjacent disc springs that come into contact with each other are made different, so that
In the contact portion, one convex portion and the other conical surface are in contact with each other. Therefore, even if the relative position of the disc spring slightly shifts in the radial direction, as long as the displacement dimension does not exceed the difference in diameter, the smaller circle does not protrude from the larger circle, so the contact portion is always Since line contact does not occur and point contact that meshes with each other does not occur, the pressure contact force generated when the tightening force is applied to the tightening bolt is not consumed by wear deformation of the meshing part, and an appropriate pressure contact force according to the tightening force is obtained. Further, it is possible to obtain the effect that the distribution of the actual pressure contact force with respect to a constant tightening force is reduced and the pressure device for a flat semiconductor element has high reliability.

【0020】また、異なる径にするのではなく、互いに
接触する部分を平面に切削して平面部を形成することに
よっても同じ効果を得ることができる。また、皿ばねの
寸法、形状を変えるのではなく、隣接する皿ばねの接近
部に所定の寸法のワッシャを挿入することによっても同
じ効果を得ることができる。
Further, the same effect can be obtained by forming flat portions by cutting the portions in contact with each other into flat surfaces instead of making the diameters different. Further, the same effect can be obtained by inserting a washer of a predetermined size into the approaching portion of the adjacent disc spring instead of changing the size and shape of the disc spring.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1の実施例を示す2枚の皿ばねの
断面図
FIG. 1 is a cross-sectional view of two disc springs showing a first embodiment of the present invention.

【図2】この発明の第2の実施例を示す皿ばねの断面図FIG. 2 is a sectional view of a disc spring showing a second embodiment of the present invention.

【図3】この発明の第2の実施例を示す図2とは異なる
皿ばねの断面図
FIG. 3 is a sectional view of a disc spring different from FIG. 2 showing a second embodiment of the present invention.

【図4】この発明の第3の実施例を示す皿ばねの断面図FIG. 4 is a sectional view of a disc spring showing a third embodiment of the present invention.

【図5】この発明の第3の実施例を示す図4とは異なる
皿ばねの断面図
5 is a sectional view of a disc spring different from FIG. 4 showing a third embodiment of the present invention.

【図6】平形半導体素子とその従来の加圧装置の断面図
を含む立面図
FIG. 6 is an elevation view including a cross-sectional view of a flat semiconductor device and a conventional pressing device.

【図7】図6の加圧装置の平面図7 is a plan view of the pressure device of FIG.

【図8】図6の部分拡大断面図FIG. 8 is a partially enlarged sectional view of FIG.

【符号の説明】[Explanation of symbols]

1 平形半導体素子 51,52,53,54,51A,52A,53A,54A,51B,52B,53B,54B 皿ば
ね 55B,56B 平面部 57C,58C ワッシャ 6 締付ボルト
1 Flat type semiconductor device 51,52,53,54,51A, 52A, 53A, 54A, 51B, 52B, 53B, 54B Disc spring 55B, 56B Flat part 57C, 58C Washer 6 Tightening bolt

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】平形半導体素子とこれに同軸に設けられた
複数枚の皿ばねとが締付ボルトの締付け力によって所定
の圧接力が与えられるとともにこれが保持される平形半
導体素子の加圧装置において、隣接する皿ばねの互いに
接触する部分の径が互いに異なってなることを特徴とす
る平形半導体素子の加圧装置。
1. A pressing device for a flat semiconductor element, wherein a flat semiconductor element and a plurality of disc springs provided coaxially with the flat semiconductor element are applied with a predetermined pressure contact force by the tightening force of a tightening bolt and held by the flat spring. A device for pressing a flat semiconductor element, wherein the diameters of portions of adjacent disc springs that contact each other are different from each other.
【請求項2】請求項1記載の平形半導体素子の加圧装置
において、隣接する皿ばねの互いに接触する部分の径が
互いに異なる代わりに、互いに接触する部分が平面に加
工されてなることを特徴とする平形半導体素子の加圧装
置。
2. The pressing device for a flat semiconductor device according to claim 1, wherein adjacent disc springs have mutually different diameters, but the mutually contacting portions are processed into a flat surface. Pressing device for flat semiconductor devices.
【請求項3】平形半導体素子とこれに同軸に設けられた
複数枚の皿ばねとが締付ボルトの締付け力によって所定
の圧接力が与えられるとともにこれが保持される平形半
導体素子の加圧装置において、隣接する皿ばねの互いに
接近する部分に所定の径のワッシャが挿入されてなるこ
とを特徴とする平形半導体素子の加圧装置。
3. A flat semiconductor device pressing device in which a flat semiconductor device and a plurality of disc springs provided coaxially with the flat semiconductor device are provided with a predetermined pressure contact force by the tightening force of a tightening bolt and are held thereby. A flat-type semiconductor device pressing device, wherein washers each having a predetermined diameter are inserted into portions of adjacent disc springs that are close to each other.
JP32067493A 1993-12-21 1993-12-21 Pressing unit for planar semiconductor element Pending JPH07176657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32067493A JPH07176657A (en) 1993-12-21 1993-12-21 Pressing unit for planar semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32067493A JPH07176657A (en) 1993-12-21 1993-12-21 Pressing unit for planar semiconductor element

Publications (1)

Publication Number Publication Date
JPH07176657A true JPH07176657A (en) 1995-07-14

Family

ID=18124069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32067493A Pending JPH07176657A (en) 1993-12-21 1993-12-21 Pressing unit for planar semiconductor element

Country Status (1)

Country Link
JP (1) JPH07176657A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007326168A (en) * 2006-06-07 2007-12-20 Makita Corp Work tool
WO2009044496A1 (en) * 2007-10-05 2009-04-09 Panasonic Corporation Rotating device and open/close-type portable terminal including the same
JP2014086434A (en) * 2012-10-19 2014-05-12 Mitsubishi Electric Corp Semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007326168A (en) * 2006-06-07 2007-12-20 Makita Corp Work tool
WO2009044496A1 (en) * 2007-10-05 2009-04-09 Panasonic Corporation Rotating device and open/close-type portable terminal including the same
CN101889148A (en) * 2007-10-05 2010-11-17 松下电器产业株式会社 Rotating device and open/close-type portable terminal including the same
JP4624474B2 (en) * 2007-10-05 2011-02-02 パナソニック株式会社 Rotating device and openable portable terminal equipped with the same
US8397347B2 (en) 2007-10-05 2013-03-19 Panasonic Corporation Turning device, and folding type portable terminal equipped with the same
JP2014086434A (en) * 2012-10-19 2014-05-12 Mitsubishi Electric Corp Semiconductor device

Similar Documents

Publication Publication Date Title
US4730459A (en) Thermoelectric modules, used in thermoelectric apparatus and in thermoelectric devices using such thermoelectric modules
EP0169270B1 (en) Cooling device of semiconductor chips
JP3199349B2 (en) Semiconductor element stack
US3551758A (en) Fluid cooled heat sink assembly for pressure contacted semiconductor devices
US3293508A (en) Compression connected semiconductor device
US3826957A (en) Double-sided heat-pipe cooled power semiconductor device assembly using compression rods
JP3956651B2 (en) Fuel cell
JPH07176657A (en) Pressing unit for planar semiconductor element
US2934684A (en) Rectifier stack and spacing contact washer therefor
JP2007005474A (en) Power semiconductor module and its manufacturing method
US6340927B1 (en) High thermal efficiency power resistor
JP2594278B2 (en) Pressurized connection type GTO thyristor
US20180175007A1 (en) Pressure contact-type semiconductor module
US20230343675A1 (en) Apparatus and Method for Holding a Heat Generating Device
JP3410011B2 (en) Stack for flat type semiconductor device
JP4659370B2 (en) Active part of the arrester
JPS60150670A (en) Semiconductor device
JPH08222090A (en) Vacuum circuit breaker
JP2000357769A (en) Semiconductor stack
JP2809419B2 (en) Gate turn-off semiconductor device
US3395321A (en) Compression bonded semiconductor device assembly
JPH01128437A (en) Power semiconductor device
EP0432796B1 (en) Semiconductor device
JPH07153786A (en) Pressure applicator for flat semiconductor
JP2851202B2 (en) Superconducting coil