JPH07176419A - Method of manufacturing pre-baked powder for high frequency low loss magnetic material - Google Patents

Method of manufacturing pre-baked powder for high frequency low loss magnetic material

Info

Publication number
JPH07176419A
JPH07176419A JP5318492A JP31849293A JPH07176419A JP H07176419 A JPH07176419 A JP H07176419A JP 5318492 A JP5318492 A JP 5318492A JP 31849293 A JP31849293 A JP 31849293A JP H07176419 A JPH07176419 A JP H07176419A
Authority
JP
Japan
Prior art keywords
high frequency
frequency low
sintered body
solution
magnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5318492A
Other languages
Japanese (ja)
Inventor
Yoshitaka Yasuda
吉孝 安田
Tsutomu Otsuka
努 大塚
Etsuo Otsuki
悦夫 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP5318492A priority Critical patent/JPH07176419A/en
Publication of JPH07176419A publication Critical patent/JPH07176419A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4

Abstract

PURPOSE:To improve power loss and magnetic characteristics by producing pre-baked powders by heating a solution of complex of amino acid that contains Fe, Mn and Zn and drying it, in a method of manufacturing pre-baked powders for a high frequency low loss magnetic material. CONSTITUTION:In the method of manufacturing pre-baked powders for the high frequency low loss magnetic material, pre-baked powders of Fe, Mn and Zn are produced by heating the solution of the complex of the amino acid that contains Fe, Mn and Zn and drying it. The method of manufacturing the pre-baked powders comprises the heating temperature of the solution of the complex of the amino acid that contains Fe, Mn and Zn that is higher than the boiling temperature of the solution and not more that 400 deg.C. Slurry is produced by mixing binder with the powders produced by this manufacturing method. The method of manufacturing a high frequency low loss magnetic sintered body comprises the production of a compact by granulating and compacting the slurry and then the sintering of the compact. By this procedure, pre-baked powders with less power loss at high frequency range and lower heat generation are obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、スイッチング電源等に
搭載されるMn−Znフェライトの原料である予焼粉末
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a pre-calcined powder which is a raw material for Mn-Zn ferrite to be mounted on a switching power supply or the like.

【0002】[0002]

【従来の技術】従来、スイッチング電源のトランスに用
いられているコア等に使用される磁性材料としては、M
n−Zn系フェライトが用いられており、その駆動周波
数は、200kHz程度以下であった。一方、近年の小
型化、軽量化に伴い駆動周波数が、300kHz〜50
0kHz、更には、1MHzまでの高周波化の検討が進
められている。
2. Description of the Related Art Conventionally, M is used as a magnetic material used for a core or the like used in a transformer of a switching power supply.
An n-Zn ferrite was used, and its driving frequency was about 200 kHz or less. On the other hand, with the recent miniaturization and weight reduction, the drive frequency is 300 kHz to 50 kHz.
Studies are underway to increase the frequency to 0 kHz and further to 1 MHz.

【0003】しかしながら、この高周波領域で従来のM
n−Zn系フェライトを使用した場合、フェライトのパ
ワーロスの増大による発熱が極めて大きく、前述したよ
うな高周波領域では、その機能を果たすことができない
と言う欠点があった。
However, in this high frequency region, the conventional M
When the n-Zn ferrite is used, there is a drawback that heat generation due to an increase in power loss of the ferrite is extremely large and that the function cannot be achieved in the high frequency region as described above.

【0004】一般に、フェライトは、鉄、マンガン、亜
鉛の各酸化物粉末をボールミル等で混合した後、予焼
し、微粉砕工程、造粒工程を経てプレスを行い、圧紛体
を作製する。この圧紛体を焼成することにより目的とす
るフェライト焼成体を得ている。
Generally, ferrite is produced by mixing iron, manganese, and zinc oxide powders in a ball mill or the like, followed by pre-baking, fine pulverization, granulation and pressing to produce a powder compact. The target ferrite fired body is obtained by firing this compressed powder.

【0005】高周波領域での磁気特性は、渦電流損失が
主体となっており、この渦電流損失(Pe)を如何に低
減するかが極めて重要な課題となっている。この渦電流
損失を低減するためには、焼結体の粒界相又はスピネル
相の電気抵抗(R)を向上させることが不可欠である。
The magnetic characteristics in the high frequency region are mainly eddy current loss, and how to reduce this eddy current loss (Pe) has become an extremely important issue. In order to reduce this eddy current loss, it is essential to improve the electrical resistance (R) of the grain boundary phase or spinel phase of the sintered body.

【0006】スピネル相自身の電気抵抗を向上させる方
法として、Fe2+とFe3+間の電子のホッピング現象を
如何に少なくするかと言う見地より、焼結条件の酸素分
圧を高めることによってFe2+を減少させるか、或いは
Ti4+、Sn4+を含有せしめFe3+と置換することによ
って電子のホッピング現象の発生を抑制する方法があ
る。
As a method for improving the electric resistance of the spinel phase itself, from the viewpoint of how to reduce the electron hopping phenomenon between Fe 2+ and Fe 3+, by increasing the oxygen partial pressure under the sintering conditions, Fe There is a method of suppressing the occurrence of the hopping phenomenon of electrons by reducing 2+ or substituting Fe 3+ by containing Ti 4+ and Sn 4+ .

【0007】しかし、前者はFe2+の極端な減少による
初透磁率μiの著しい劣化、保磁力Hcの増大という磁
気特性の劣化を招く。又、Ti4+、Sn4+等の添加で
は、パワーロスの温度特性においてパワーロス値が最小
となる温度(ミニマムポイントと呼ぶ)が、低温側へ著
しく劣化してしまう為、好ましくない。更に、両者いず
れの方法でもスピネル相自身の電気抵抗を向上させて
も、思ったほど焼結体の電気抵抗は大きくならないと言
う最大の欠点がある。
However, the former causes a remarkable deterioration of the initial magnetic permeability μi and an increase of the coercive force Hc due to the extreme decrease of Fe 2+ , resulting in deterioration of the magnetic characteristics. In addition, addition of Ti 4+ , Sn 4+, etc. is not preferable because the temperature at which the power loss value becomes minimum in the temperature characteristic of power loss (called minimum point) is significantly deteriorated to the low temperature side. Furthermore, even if the electrical resistance of the spinel phase itself is improved by either method, the greatest drawback is that the electrical resistance of the sintered body does not increase as much as expected.

【0008】粒界相の電気抵抗の向上の方法としては、
SiO2 ,CaOの他に第3の元素を添加することによ
り高抵抗な粒界相を形成せしめる方法が一般的である。
As a method for improving the electric resistance of the grain boundary phase,
A general method is to form a high-resistance grain boundary phase by adding a third element in addition to SiO 2 and CaO.

【0009】この方法は、フェライト焼結体の抵抗を向
上させる方法としては最も効果的であり、最もよく利用
されている方法である。また、この時、結晶粒径を小さ
くし個々の粒内で発生する渦電流を小さくすること、及
び粒界相を越えて渦電流が流れたとしても結晶粒子が小
さいこと、即ち、粒界相の数を増やすことにより遮断す
る方法を取ることが高抵抗粒界相を効率よく活用するこ
とができ、著しい効果がある。この結晶粒径を小さくす
る方法として、粉末粒径を小さくし、できるだけ低い温
度で焼結することが不可欠である。
This method is the most effective and the most widely used method for improving the resistance of the ferrite sintered body. At this time, the crystal grain size is reduced to reduce the eddy current generated in each grain, and even if the eddy current flows beyond the grain boundary phase, the crystal grain is small, that is, the grain boundary phase. It is possible to effectively utilize the high resistance grain boundary phase and to achieve a remarkable effect by adopting a method of blocking by increasing the number of As a method of reducing the crystal grain size, it is essential to reduce the powder grain size and sinter at a temperature as low as possible.

【0010】従来のMn−Znフェライトの製造方法で
は、先にも述べた如く、Fe,Mn,Znの各酸化物を
混合し、仮焼し、微粉砕することで微細な粉末を得なけ
ればならない。しかしながら、この方法で得られる仮焼
粉末の粒径は、0.5〜1μm又はそれ以上の粒径であ
り、かなり大きいため長時間の微粉砕を要して微細な粉
末を得て焼結体を製造しなければならない。この方法で
は、長時間の粉砕を要する為、コスト高になるばかりで
なく、粉砕中における粉砕機の内壁又はボール等からの
コンタミが著しく、不純物の混入に伴う磁気特性劣化が
著しい為好ましくない。また、従来の製法で得た仮焼粉
末は、そのまま成形したのでは粉末粒径が粗いため、低
温で焼結した場合、焼結体密度が低く、磁気特性も低く
なってしまうと言う欠点がある。
In the conventional method for producing Mn-Zn ferrite, as described above, fine oxides must be obtained by mixing oxides of Fe, Mn and Zn, calcining and finely pulverizing them. I won't. However, since the particle size of the calcined powder obtained by this method is 0.5 to 1 μm or more and is quite large, it requires a long time pulverization to obtain a fine powder to obtain a sintered body. Must be manufactured. This method is not preferable because it requires a long time of crushing, which not only increases the cost, but also causes significant contamination from the inner wall of the crusher or balls during crushing and causes significant deterioration of magnetic properties due to the inclusion of impurities. Further, since the calcined powder obtained by the conventional manufacturing method has a coarse powder particle size when molded as it is, when sintered at a low temperature, the density of the sintered body is low and the magnetic properties are also low. is there.

【0011】更に、焼結体密度を向上させる為に焼結温
度を高めると結晶粒径が大きくなり渦電流損失が大とな
り好ましくない。
Further, if the sintering temperature is raised to improve the density of the sintered body, the crystal grain size becomes large and the eddy current loss becomes large, which is not preferable.

【0012】以上のように従来のフェライト製造工程で
は、微細な結晶粒径を有する高周波領域で優れた磁気特
性を示すMn−Znフェライトは得られなかった。
As described above, in the conventional ferrite manufacturing process, Mn-Zn ferrite having a fine crystal grain size and exhibiting excellent magnetic characteristics in a high frequency region could not be obtained.

【0013】また、以上の過電流損失の低減もさる事な
がら、ヒステリシス損失、初透磁率μi,飽和磁束密度
Bs,残留磁化Br,保磁力Hc等の諸磁気特性も電源
用フェライト材として重要な特性項目である。これらの
諸特性は、焼結体組織を如何に原子レベルに及ぶまで均
一にするかが重要である。従来の方法では、固相反応に
より予焼粉末を得ている為、原子の拡散が付不十分であ
り、得られた予焼粉末も不均一な物しか得られず、優れ
た磁気特性が得られないと言う欠点を有していた。
In addition to the above reduction of overcurrent loss, various magnetic characteristics such as hysteresis loss, initial permeability μi, saturation magnetic flux density Bs, residual magnetization Br, coercive force Hc, etc. are important as ferrite materials for power supplies. It is a characteristic item. It is important for these properties to make the texture of the sintered body uniform up to the atomic level. In the conventional method, since the pre-calcined powder is obtained by the solid-phase reaction, the diffusion of atoms is insufficient, and the pre-calcined powder obtained is only non-uniform, resulting in excellent magnetic properties. It had the drawback of not being able to.

【0014】更に、この問題を解決すべき方法として、
噴霧焙焼法によりFe,Mn,Znの塩酸溶液から予焼
粉末を得る、いわゆるルスナー法がある。この方法では
溶液状態で各元素の混合が可能である為、原子レベルで
均一な混合が可能となる。しかしながら、ZnCl2
蒸気圧が高いことによる組成ズレが著しく、目的にかな
う組成粉末を製造できない。更に、本法では、炉内温度
を高温に保持し、噴霧する為、得られる粉体粒径が大き
く、前述同様長時間の粉砕を要する為、前述と同様の欠
点が生じる。更に、大規模なプラントを必要とされ、容
易に量産ができなかった。
Further, as a method for solving this problem,
There is a so-called Lusner method in which a pre-calcined powder is obtained from a hydrochloric acid solution of Fe, Mn, and Zn by a spray roasting method. In this method, since each element can be mixed in a solution state, uniform mixing can be performed at the atomic level. However, the compositional deviation due to the high vapor pressure of ZnCl 2 is significant, and it is not possible to produce a compositional powder that meets the purpose. Further, in this method, since the temperature inside the furnace is kept high and atomization is carried out, the obtained powder particle size is large, and pulverization for a long time as described above is required, so the same drawbacks as described above occur. Furthermore, a large-scale plant was required, and mass production could not be performed easily.

【0015】以上のように、いずれの従来の技術を用い
ても高周波領域では、優れた磁気特性を有するMn−Z
nフェライト材を得ることは困難であった。
As described above, Mn-Z has excellent magnetic characteristics in the high frequency range regardless of which conventional technique is used.
It was difficult to obtain an n-ferrite material.

【0016】[0016]

【発明が解決しようとする課題】本発明は、数百kHz
〜1MHz付近までの高周波領域においてもパワーロス
が小さく、発熱量を抑えることが可能な低損失磁性材料
用の予焼粉末の製造方法を提供することにある。
DISCLOSURE OF THE INVENTION The present invention is designed for use with several hundred kHz.
It is an object of the present invention to provide a method for producing a pre-calcined powder for a low loss magnetic material, which has a small power loss even in a high frequency region up to about 1 MHz and can suppress the amount of heat generation.

【0017】[0017]

【課題を解決するための手段】上述の問題を解決するた
め数々の検討を行った結果、本発明者は、Fe,Mn,
Znを含むアミノ酸の錯体の溶液を加熱し、乾燥させる
ことにより、高周波低損失磁性材料に適した予焼粉末を
得られることを見出だしたものである。
As a result of various studies to solve the above-mentioned problems, the present inventor found that Fe, Mn,
It has been found that a solution of a complex of an amino acid containing Zn is heated and dried to obtain a pre-calcined powder suitable for a high frequency low loss magnetic material.

【0018】この粉末を原料とし、混合、造粒、成形、
焼結することにより、6μm以下の平均結晶粒径を有す
る極めて微細な組織により成る焼結体が得られる。この
焼結体は、極めて電気抵抗が高く高周波領域で優れた磁
気特性を有する。
Using this powder as a raw material, mixing, granulation, molding,
By sintering, a sintered body having an extremely fine structure having an average crystal grain size of 6 μm or less can be obtained. This sintered body has extremely high electric resistance and excellent magnetic characteristics in a high frequency region.

【0019】[0019]

【作用】本発明の場合、Fe,Mn,Znの各元素は、
アミノ酸の錯体の溶液状態で混合が可能となる為、原子
レベルで均一な混合が可能となる。更にこの溶液を加
熱、乾燥することにより、溶液の溶媒を除去すると残留
物が自己燃焼を起こす。この燃焼は、極めて狭い範囲で
且つ短時間で燃焼し、終了する為、粉体粒径が非常に微
細且つ均一な粉末を得ることが可能となる。更に、得ら
れた粉末をX線回析により生成相を解析すると、スピネ
ル単相が得られることを見い出したものである。本発明
によれば、ルスナー法のように炉内を高温に保持せずに
噴霧が可能な為、量産に大規模なプラントを必要とせず
工業的価値も高い。また、アミノ酸を含む溶液には工業
的に水が安価であり、コスト的にも好ましい。又、工業
的には、加熱方法としてスプレー造粒のように噴霧乾燥
を用いることで、得られる粉体物性が取り扱いに適した
ものとなる。
In the case of the present invention, each element of Fe, Mn and Zn is
Since the amino acid complex can be mixed in a solution state, uniform mixing can be performed at the atomic level. When the solvent of the solution is removed by further heating and drying this solution, the residue causes self-combustion. Since this combustion is completed within a very narrow range and in a short time, and is completed, it is possible to obtain a powder having a very fine and uniform particle size. Further, it was found that a spinel single phase was obtained by analyzing the produced phase of the obtained powder by X-ray diffraction. According to the present invention, since spraying can be performed without maintaining the temperature inside the furnace at a high temperature as in the Rusner method, a large-scale plant is not required for mass production and the industrial value is high. Further, water is industrially inexpensive for the solution containing the amino acid, which is preferable in terms of cost. Further, industrially, by using spray drying as a heating method like spray granulation, the obtained powder properties become suitable for handling.

【0020】請求項2記載の発明において、加熱温度を
400℃以下とした理由は、加熱温度を400℃以上で
行った場合、微細な粉体粒径の粉末が得られなくなって
しまうためである。また、請求項5記載の発明におい
て、焼結体の平均粒径が6μm以下とした理由は、6μ
mを越えた領域では前述の如く渦電流損が大となるから
である。
In the second aspect of the invention, the reason why the heating temperature is set to 400 ° C. or lower is that if the heating temperature is set to 400 ° C. or higher, fine powder particles cannot be obtained. . In the invention of claim 5, the reason why the average particle size of the sintered body is 6 μm or less is 6 μm.
This is because the eddy current loss becomes large as described above in the region exceeding m.

【0021】[0021]

【実施例】以下に本発明の実施例を示す。EXAMPLES Examples of the present invention will be shown below.

【0022】[実施例1]高純度のFe(NO3 ) 3
Mn(NO3 2 ,Zn(NO3 2 をFe2 3 ,M
nO,ZnOの換算で53mol%−39mol%−8
mol%となるように秤量し純水中に溶解した。この溶
液にアミノ酢酸をFe(NO3 3 ,Mn(N
3 2 ,Zn(NO3 2 の総重量に対し20wt%
となるように添加し、よく混合した。次にこの溶液を炉
中温度を300℃に保持した炉内に噴霧した。その後、
炉内で反応し得られた生成物を見たところ粉末状となっ
ていた。
Example 1 High-purity Fe (NO 3 ) 3 ,
Mn (NO 3 ) 2 and Zn (NO 3 ) 2 are replaced with Fe 2 O 3 and M
53 mol% -39 mol% -8 in terms of nO and ZnO
It was weighed to be mol% and dissolved in pure water. Aminoacetic acid was added to this solution by adding Fe (NO 3 ) 3 , Mn (N
20 wt% based on the total weight of O 3 ) 2 and Zn (NO 3 ) 2 .
And mixed well. Next, this solution was sprayed into a furnace in which the temperature in the furnace was kept at 300 ° C. afterwards,
The product obtained by the reaction in the furnace was in powder form.

【0023】この粉末をX線回析により生成相を調査し
たところ、Mn−Znフェライトスピネル単相となって
いた。またこの粉末の組成を分析した結果、52.9F
23 −39.0MnO−8.1ZnO(mol%)
であり、組成にズレが殆ど生じていないことが判った。
この粉末に0.04SiO2 ,0.08CaO(wt
%)及び0.06wt%のV2 5 を添加し、ボールミ
ルにて混合した。その後、バインダーとしてポリビニル
アルコールを添加し、バインダー混合を行った。得られ
たスラリーを乾燥、造粒後、φ25×φ15×t5のト
ロイダル形状に2t/cm2 の圧力で成形した。得られ
た成形体を酸素分圧をコントロールした窒素気流中85
0〜1200℃の温度で焼結した。
When the generated phase of this powder was examined by X-ray diffraction, it was found to be a Mn-Zn ferrite spinel single phase. Moreover, as a result of analyzing the composition of this powder, 52.9F
e 2 O 3 -39.0MnO-8.1ZnO ( mol%)
It was found that there was almost no deviation in the composition.
0.04SiO 2 , 0.08CaO (wt
%) And 0.06 wt% V 2 O 5 were added and mixed in a ball mill. Then, polyvinyl alcohol was added as a binder, and the binder was mixed. The resulting slurry was dried and granulated, and then shaped into a toroidal shape of φ25 × φ15 × t5 at a pressure of 2 t / cm 2. The obtained molded body was placed in a nitrogen stream with a controlled oxygen partial pressure.
Sintered at a temperature of 0 to 1200 ° C.

【0024】これらの条件を変化させて製造した焼結体
の中で、最も優れたパワーロス特性の温度特性を図1に
示す。また、表1にこの焼結体の諸磁気特性を示す。こ
の時の焼結体の平均結晶粒径は4μmであった。
FIG. 1 shows the most excellent temperature characteristic of the power loss characteristic among the sintered bodies produced by changing these conditions. Table 1 shows various magnetic properties of this sintered body. The average crystal grain size of the sintered body at this time was 4 μm.

【0025】[0025]

【表1】 [Table 1]

【0026】[実施例2]実施例1と同様な製法で粉末
を得、焼結条件を変化させて得られた焼結体のそれぞれ
の平均結晶粒径とその焼結体のパワーロスの関係を図2
に示す。尚、この時の測定条件は1MHz−500G−
80℃である。図面中より、本実施例が優れていること
が判る。
Example 2 A powder was obtained by the same manufacturing method as in Example 1, and the relationship between the average crystal grain size of each sintered body obtained by changing the sintering conditions and the power loss of the sintered body was shown. Figure 2
Shown in. The measurement condition at this time is 1 MHz-500G-
It is 80 ° C. From the drawings, it can be seen that this embodiment is superior.

【0027】[実施例3]噴霧の温度条件を変化させ、
他の条件は実施例1と同様な製法で粉末を得、同様な焼
結条件で得られた焼結体のパワーロス特性を図3に示
す。図面中より、本実施例が優れていることが判る。
[Embodiment 3] By changing the temperature condition of spraying,
Under other conditions, powder was obtained by the same manufacturing method as in Example 1, and the power loss characteristics of the sintered body obtained under the same sintering conditions are shown in FIG. From the drawings, it can be seen that this embodiment is superior.

【0028】[実施例4]実施例1と同様に、高純度の
Fe(NO3 3 ,Mn(NO3 2 ,Zn(NO3
2 をFe2 3 ,MnO,ZnOの換算で53mol%
−39mol%−8mol%となるように秤量し、純粋
中に溶解した。この溶液にアミノ酢酸を酸Fe(N
3 3 ,Mn(NO3 2 ,Zn(NO3 2 の総重
量に対し、20wt%となるように添加し、よく混合し
た。次にこの溶液をビーカーに入れ、加熱し水分を蒸発
させ反応させて後、得られた生成物を見たところ粉末状
になっていた。
[Embodiment 4] Similar to Embodiment 1, high-purity Fe (NO 3 ) 3 , Mn (NO 3 ) 2 , Zn (NO 3 )
2 is 53 mol% in terms of Fe 2 O 3 , MnO, ZnO
It was weighed to be −39 mol% −8 mol% and dissolved in pure water. Aminoacetic acid was added to this solution as acid Fe (N
O 3 ) 3 , Mn (NO 3 ) 2 and Zn (NO 3 ) 2 were added to the total weight of 20 wt% and mixed well. Next, this solution was put into a beaker and heated to evaporate water to cause a reaction. After that, the product obtained was found to be powdery.

【0029】この生成物を実施例1と同様な方法で成形
し、焼結し、得られた焼結体のパワーロス特性を図1に
示す。
This product was molded and sintered in the same manner as in Example 1, and the power loss characteristics of the obtained sintered body are shown in FIG.

【0030】[比較例]高純度の酸化鉄、酸化マンガ
ン、酸化亜鉛を用いて53Fe2 3 −39MnO−8
ZnO(mol%)となるように秤量し、ボールミルで
混合後、約1000℃で予焼した。
Comparative Example 53 Fe 2 O 3 -39MnO-8 was prepared by using high-purity iron oxide, manganese oxide, and zinc oxide.
ZnO (mol%) was weighed, mixed with a ball mill, and then pre-baked at about 1000 ° C.

【0031】この予焼粉末を実施例1と同等にSi
2 ,CaO,V2 5 を添加、造粒し、実施例1と同
様に成形、焼結した。
This pre-calcined powder was made into Si in the same manner as in Example 1.
O 2 , CaO and V 2 O 5 were added, granulated, molded and sintered in the same manner as in Example 1.

【0032】これらの条件を変化させた焼結体の中で、
最も優れたパワーロス特性の温度特性を図1に示す。ま
た、表1にこの焼結体の諸磁気特性を示す。
Among the sintered bodies in which these conditions are changed,
The temperature characteristics of the most excellent power loss characteristics are shown in FIG. Table 1 shows various magnetic properties of this sintered body.

【0033】[0033]

【発明の効果】以上のように、本発明は、高周波低損失
磁性材料用予焼粉末を製造する方法において、Fe,M
n,Znを含むアミノ酸を錯体の溶液を加熱し、乾燥さ
せて予焼粉末を得るようにしたもので、この方法により
得られた粉末を原料とし、混合、造粒、成形、焼結する
ことにより極めて微細な組織により成る焼結体が得ら
れ、パワーロス及び諸磁気特性を改善することができ、
スイッチング電源等に搭載した場合発熱量が小さくな
り、優れた低損失磁性材料を得ることがきる。
As described above, the present invention provides a method for producing a pre-calcined powder for high frequency low loss magnetic material, comprising Fe, M
A solution of an amino acid complex containing n and Zn is heated and dried to obtain a pre-calcined powder. The powder obtained by this method is used as a raw material for mixing, granulating, molding and sintering. By this, a sintered body having an extremely fine structure can be obtained, and power loss and various magnetic characteristics can be improved,
When mounted on a switching power supply or the like, the amount of heat generated is reduced, and an excellent low loss magnetic material can be obtained.

【0034】これはMn−Znフェライト焼結体中の平
均結晶粒径の微細化、及びアミノ酸の錯体の溶液中で各
元素の原子レベルでの均一な場合、拡散が好特性を生み
出したものと推察される。
This is because the average crystal grain size in the Mn-Zn ferrite sintered body was refined, and when the elements in the solution of the amino acid complex were uniform at the atomic level, diffusion produced good characteristics. Inferred.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1及び比較例による焼結体の各温度に対
するパワーロス特性を示す。
FIG. 1 shows power loss characteristics with respect to respective temperatures of sintered bodies according to Example 1 and a comparative example.

【図2】実施例2による焼結体の平均結晶粒径とパワー
ロスの関係を示す。
FIG. 2 shows the relationship between the average crystal grain size and the power loss of the sintered body according to Example 2.

【図3】実施例3における噴霧時の温度条件とパワーロ
スの関係を示す。
FIG. 3 shows the relationship between the temperature condition during spraying and power loss in Example 3.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 35/38 C04B 35/38 Z Continuation of front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display area C04B 35/38 C04B 35/38 Z

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 高周波低損失磁性材料用予焼粉末の製造
方法において、Fe,Mn,Znを含むアミノ酸の錯体
の溶液を加熱し、乾燥させて、該Fe,Mn,Znの予
焼粉末を得るようにしたことを特徴とする高周波低損失
磁性材料用予焼粉末の製造方法。
1. A method for producing a pre-calcined powder for a high frequency low loss magnetic material, wherein a solution of an amino acid complex containing Fe, Mn and Zn is heated and dried to obtain the pre-calcined powder of Fe, Mn and Zn. A method for producing a pre-calcined powder for high-frequency low-loss magnetic material, characterized by being obtained.
【請求項2】 前記Fe,Mn,Znを含むアミノ酸の
錯体の溶液を加熱する温度が、該溶液の沸点以上400
℃以下であることを特徴とする請求項1記載の高周波低
損失磁性材料用予焼粉末の製造方法。
2. The temperature for heating the solution of the amino acid complex containing Fe, Mn, and Zn is 400 or higher than the boiling point of the solution.
The method for producing a pre-calcined powder for a high frequency low loss magnetic material according to claim 1, wherein the temperature is not higher than ° C.
【請求項3】 前記Fe,Mn,Znを含むアミノ酸の
錯体の溶液を加熱し、乾燥させる工程が、噴霧熱乾燥法
により行われることを特徴とする請求項1又は請求項2
記載の高周波低損失磁性材料用予焼粉末の製造方法。
3. The method according to claim 1 or 2, wherein the step of heating and drying the solution of the amino acid complex containing Fe, Mn, and Zn is performed by a spray heat drying method.
A method for producing a pre-calcined powder for a high frequency low loss magnetic material according to claim 1.
【請求項4】 請求項1乃至請求項3記載の高周波低損
失磁性材料用予焼粉末の製造方法により得られた粉末
に、バインダーを混合してスラリーを得、該スラリーを
造粒後、成形して成形体を得、該成形体を焼結して焼結
体を得るようにしたことを特徴とする高周波低損失磁性
焼結体の製造方法。
4. A binder is mixed with the powder obtained by the method for producing a pre-calcined powder for a high frequency low loss magnetic material according to claim 1 to obtain a slurry, and the slurry is granulated and then molded. The method for producing a high-frequency low-loss magnetic sintered body is characterized in that the molded body is obtained by sintering, and the molded body is sintered to obtain a sintered body.
【請求項5】 請求項4記載の高周波低損失磁性焼結体
の製造方法により得られた焼結体であって、該焼結体の
平均結晶粒径が6μm以下であることを特徴とする高周
波低損失磁性焼結体。
5. A sintered body obtained by the method for producing a high-frequency low-loss magnetic sintered body according to claim 4, wherein the average crystal grain size of the sintered body is 6 μm or less. High frequency low loss magnetic sintered body.
JP5318492A 1993-12-17 1993-12-17 Method of manufacturing pre-baked powder for high frequency low loss magnetic material Withdrawn JPH07176419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5318492A JPH07176419A (en) 1993-12-17 1993-12-17 Method of manufacturing pre-baked powder for high frequency low loss magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5318492A JPH07176419A (en) 1993-12-17 1993-12-17 Method of manufacturing pre-baked powder for high frequency low loss magnetic material

Publications (1)

Publication Number Publication Date
JPH07176419A true JPH07176419A (en) 1995-07-14

Family

ID=18099726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5318492A Withdrawn JPH07176419A (en) 1993-12-17 1993-12-17 Method of manufacturing pre-baked powder for high frequency low loss magnetic material

Country Status (1)

Country Link
JP (1) JPH07176419A (en)

Similar Documents

Publication Publication Date Title
KR101540516B1 (en) Ferrite sintered body
JP2000501893A (en) Ferrite magnets, powders for ferrite magnets, and methods for producing them
CN113896521B (en) Low-saturation narrow-linewidth gyromagnetic material and preparation method thereof
JP2004161593A (en) Ferritic material
CN113053649A (en) Method for manufacturing magnetic body and coil component including magnetic body
JP2008251848A (en) NiMnZn-BASED FERRITE AND ITS MANUFACTURING METHOD
KR102414450B1 (en) Ferrite composition, electronic component, and power supply device
JPH06290926A (en) Mn-zn ferrite magnetic material
CN116323491A (en) MnZn ferrite and method for producing same
JPH07176419A (en) Method of manufacturing pre-baked powder for high frequency low loss magnetic material
JPS6131601B2 (en)
JP2011195415A (en) MnZn-BASED FERRITE POWDER, METHOD FOR PRODUCING MnZn-BASED FERRITE CORE, AND FERRITE CORE
JPH11307336A (en) Manufacture of soft magnetic ferrite
JPH0867554A (en) Production of oxide magnetic material
JP3584437B2 (en) Method for producing Mn-Zn ferrite
JPH07211534A (en) Method of manufacturing low loss oxide magnetic material
JP7426818B2 (en) Manufacturing method of magnetic material and coil parts including magnetic material
JP3856722B2 (en) Manufacturing method of spinel type ferrite core
JP3871149B2 (en) Manufacturing method of low-loss ferrite sintered body
JPH0661033A (en) Low-loss oxide magnetic material
JP7426819B2 (en) Manufacturing method of magnetic material and coil parts including magnetic material
JPH06333724A (en) Sintered ferrite with crystallite particle and manufacture thereof
JP3552817B2 (en) Method for producing low-loss oxide magnetic material
JP2006206384A (en) Ceramic material for non-reciprocal circuit element and its production method
JPH09306718A (en) Ferrite magnetic material and method of fabricating the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010306