JPH07176416A - Bonded magnet - Google Patents

Bonded magnet

Info

Publication number
JPH07176416A
JPH07176416A JP5322086A JP32208693A JPH07176416A JP H07176416 A JPH07176416 A JP H07176416A JP 5322086 A JP5322086 A JP 5322086A JP 32208693 A JP32208693 A JP 32208693A JP H07176416 A JPH07176416 A JP H07176416A
Authority
JP
Japan
Prior art keywords
magnetic powder
binder
resin
magnetic
bonded magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5322086A
Other languages
Japanese (ja)
Inventor
Junji Hamana
純二 浜名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Electronics Inc
Original Assignee
Canon Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Electronics Inc filed Critical Canon Electronics Inc
Priority to JP5322086A priority Critical patent/JPH07176416A/en
Publication of JPH07176416A publication Critical patent/JPH07176416A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/083Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together in a bonding agent

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To enhance heat resistance and magnetic characteristics of a bonded magnet by using organic bonding material as a bonding material for bonding magnetic powder, molding it and burning and carbonizing the material. CONSTITUTION:As organic bonding material for magnetic powder obtained by regulating pulverizing particle size of a magnetic material, at least one of phenol resin, furan resin, resol resin and epoxy resin for forming three- dimensional mesh structure by curing reaction is used, kneaded, covered with magnetic powder, molded in a predetermined shape by a molding method such as an extrusion compression molding, etc., and the material is cured to form the structure. Thereafter, volatile thermally decomposable product and contained moisture contained in the material is scattered by burning, formed in a desired size, and magnetized to form a bonded magnet. Thus, since the material is of the burned organic bonding material, its thermal stability is high. Further, the material is shrinked by burning the material, and the magnetic powder is approached to improve magnetic characteristics.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁性粉を結合する結合
材である有機結合材を焼成炭化させたボンド磁石に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bonded magnet obtained by firing and carbonizing an organic binder which is a binder for binding magnetic powder.

【0002】[0002]

【従来の技術】従来、ボンド磁石は、図2に表わすよう
に、磁性材料を微細化し、結合材と成る有機樹脂材料エ
ポキシ樹脂、ポリアミド樹脂等と混練、前記微細化した
磁性材料に被覆、押出圧縮・射出等の成形法により所定
形状に成形され、結合材が熱硬化性の場合は硬化工程を
経て、結合材が熱可塑性の場合は成形後に、着磁を施さ
れて、ボンド磁石が作られている。
2. Description of the Related Art Conventionally, as shown in FIG. 2, a bonded magnet is made by miniaturizing a magnetic material and kneading it with an organic resin material such as an epoxy resin or a polyamide resin as a binder, coating the fine magnetic material, and extruding. It is molded into a predetermined shape by a molding method such as compression / injection. If the binder is thermosetting, it goes through a curing step, and if the binder is thermoplastic, it is magnetized after molding to form a bond magnet. Has been.

【0003】しかしながら、上記従来例では、成形上が
りあるいは硬化あがりの状態が磁石として使われる製品
形状に近く(Near Net Shape)追加工を
ほとんど必要としない長所を有しているものの、結合材
がエポキシ樹脂やフェノール樹脂といった熱硬化性樹脂
や、ポリアミド樹脂のような熱可塑性樹脂では結合材の
Tg(ガラス転移温度)は、大略100℃前後であり、
それ以上の温度でのボンド磁石を連続使用ができないと
いう耐熱上の欠点を有していた。
However, in the above-mentioned conventional example, although the state of finished molding or curing is close to the shape of the product used as a magnet (Near Net Shape), there is an advantage that almost no additional machining is required, but the binder is epoxy. In a thermosetting resin such as a resin or a phenol resin or a thermoplastic resin such as a polyamide resin, the Tg (glass transition temperature) of the binder is about 100 ° C.,
It has a drawback in heat resistance that the bonded magnet cannot be continuously used at a temperature higher than that.

【0004】また、結合材がボンド磁石内で占める体積
比も、最も結合材の少ない圧縮成形品でさえも十数%と
高く、焼結磁石を100としたときの最大エネルギー積
(BHmax)は、安定して作れるのは50位と低いも
のであった。
Further, the volume ratio of the binder in the bond magnet is as high as ten and several percent even in the compression molded product having the smallest binder, and the maximum energy product (BHmax) when the sintered magnet is 100 is 100%. However, the number of stable products was as low as 50.

【0005】このため耐熱性に関しては、より耐熱性の
高い結合材の選定、たとえばZn、Sn、Al、Pb等
の低融点金属結合材が提案されているが圧縮成形におい
て十分な結合力が得られないため有機系結合材よりさら
に結合材料を増加させねばならず、耐熱性の上昇を引き
換えに、BHmax値を低下させている。
Therefore, with respect to heat resistance, selection of a binder having higher heat resistance, for example, a low melting point metal binder such as Zn, Sn, Al, or Pb has been proposed, but sufficient bonding force can be obtained in compression molding. Therefore, it is necessary to further increase the amount of the binding material rather than the organic binding material, and the BHmax value is lowered in exchange for the increase in heat resistance.

【0006】また、BHmax値の低さに対しては、フ
ェライト系、SmCo5 系、Nd2Fe14B系の等方性
磁石材料さらには、Sm2 Co17系、Nd2 Fe14
系、Sm2 Fe173 系異方性材料等、より高い磁気特
性の材料使用が行なわれているが、前記理由により磁性
材料本来の性能を十分引き出して使用されていないのが
現状である。
Further, for low BHmax values, isotropic magnet materials of ferrite type, SmCo 5 type, Nd 2 Fe 14 B type, and further Sm 2 Co 17 type, Nd 2 Fe 14 B type.
Materials having higher magnetic properties such as Sm 2 Fe 17 N 3 system anisotropic materials have been used, but the present situation is that they are not used because of the above-mentioned reasons. .

【0007】[0007]

【発明が解決しようとする課題】解決しようとする問題
点は、ボンド磁石の熱的安定性の欠如、および最大エネ
ルギー積の値が小さい点である。
The problems to be solved are the lack of thermal stability of the bonded magnet and the small value of the maximum energy product.

【0008】[0008]

【課題を解決するための手段】本発明は、磁性粉を結合
材で結合させてなるボンド磁石において、結合材が焼成
させた有機結合材であることを特徴とするものである。
SUMMARY OF THE INVENTION The present invention is characterized in that, in a bonded magnet formed by binding magnetic powder with a binder, the binder is an organic binder that has been fired.

【0009】本発明によるボンド磁石は、結合材が焼成
された有機結合材であることから、熱安定性が高く、ま
た、有機結合材の焼成処理によって、結合材が収縮し、
磁性粉が接近して磁性特性も改良することができるもの
である。
The bonded magnet according to the present invention has a high thermal stability because the binder is an organic binder which is fired, and the binder shrinks due to the firing treatment of the organic binder.
The magnetic powder can approach and the magnetic properties can be improved.

【0010】本発明の結合材として用いられる有機結合
材としては、硬化反応により、三次元網目構造を有する
有機結合材であって、軟化後の焼成により、有機結合材
から揮発性熱分解生成物および内蔵水分が飛散なものが
好適である。
The organic binder used as the binder of the present invention is an organic binder having a three-dimensional network structure by a curing reaction, and the volatile thermal decomposition product from the organic binder is obtained by firing after softening. It is also preferable that the water content is scattered.

【0011】硬化反応に伴ない三次元網目構造の形成
時、硬化収縮応力が生じており、前記焼成による揮発性
熱分解生成物及び内蔵水分の飛散に伴ない、磁性粉を被
覆している結合材は収縮することで磁性粉は近接、磁気
性能を高めることを可能にした。さらに、前記焼成にお
いても三次元網目構造は保たれており、収縮分を勘案し
た成形形状としておくことで焼成後も、ボンド磁石の長
所であるNear Net Shapeを維持すること
ができるのである。
When a three-dimensional network structure is formed in association with the curing reaction, a curing shrinkage stress is generated, and the binding that covers the magnetic powder is accompanied by the scattering of the volatile thermal decomposition products and the built-in moisture due to the firing. By contracting the material, it became possible for the magnetic powder to approach and enhance the magnetic performance. Further, the three-dimensional network structure is maintained even during the firing, and by setting the molding shape in consideration of the shrinkage, it is possible to maintain the Near Net Shape, which is an advantage of the bonded magnet, even after the firing.

【0012】図1は、本発明によるボンド磁石の製造工
程図である。磁性材料を粉砕粒度調整された磁性粉に結
合材として、軟化反応により、三次元網目構造を形成す
る有機結合材としてフェノール樹脂、フラン樹脂、レゾ
ール樹脂およびエポキシ樹脂等の少なくとも一種を用
い、混練・磁性粉に被覆を行ない、押出し圧縮射出等の
成形法により所定形状に成形、結合材を硬化して、三次
元網目構造を形成、その後焼成により結合材に含まれる
揮発性熱分解生成物及び内蔵水分を飛散させ所望寸法と
して着磁を施しボンド磁石を作成する。結合材の軟化完
了時を基準とした焼成による重量減少率は、熱安定性の
向上および磁気特性の改善の点から2%以上、特には5
%以上が好ましく、Near Net Shapeおよ
び機械的強度の点から90%以上、特に60%以下が好
適である。
FIG. 1 is a process drawing of a bonded magnet according to the present invention. The magnetic material is used as a binder for the magnetic powder whose grain size is adjusted, and at least one of phenol resin, furan resin, resole resin, epoxy resin, etc. is used as an organic binder for forming a three-dimensional network structure by a softening reaction, and kneading / The magnetic powder is coated, molded into a predetermined shape by a molding method such as extrusion compression injection, the binder is hardened to form a three-dimensional network structure, and then the volatile pyrolysis products contained in the binder and built-in by firing. Water is dispersed and magnetized to a desired size to form a bonded magnet. The weight reduction rate due to firing based on the completion of softening of the binder is 2% or more, particularly 5% from the viewpoint of improving thermal stability and magnetic properties.
% Or more, preferably 90% or more, and particularly preferably 60% or less from the viewpoint of Near Net Shape and mechanical strength.

【0013】[0013]

【実施例】【Example】

実施例 1 磁性材料として、等方性Nd2 −Fe14−B系磁石(商
品名:MQP−B、デルコ・デミ社製)を250μm以
下に粉砕調整、結合材としてフェノール樹脂(商品名:
HP−500R、日立化成(株)製)を磁性粉に対する
体積比で12%加え、磁性粉に被覆を行なった。この被
覆された磁粉を用いて圧縮成形装置で5ton/cm2
の圧力で10×10×10mmの角粒状成形物を得た。
Example 1 As a magnetic material, an isotropic Nd 2 —Fe 14 —B magnet (trade name: MQP-B, manufactured by Delco Demi) was pulverized and adjusted to 250 μm or less, and a phenol resin (trade name: as a binder).
HP-500R, manufactured by Hitachi Chemical Co., Ltd., was added to the magnetic powder at a volume ratio of 12% to cover the magnetic powder. Using this coated magnetic powder, 5ton / cm 2 in a compression molding device
With a pressure of 10 × 10 × 10 mm, a rectangular granular molded product was obtained.

【0014】これらを150℃/3時間硬化後、2群に
分け、1群は比較として着磁後の磁石性能を測定、もう
1群は、実施例として三方向の寸法を測定しておき、焼
成条件として240℃10時間、窒素流量100ml/
cm2 下で予備焼成を行ない、さらに280℃/20時
間、窒素流量150ml/cm2 下で焼成を行ない、室
温にもどして後三方向の寸法測定及び着磁後の磁石性能
を求めた、なお、耐熱性は、フェノール樹脂単独で硬化
し上記焼成前後の差異をDSC(差動走査熱量計)より
求めた。それらの結果は
After curing these at 150 ° C. for 3 hours, they were divided into two groups, one group was used to measure the magnet performance after magnetization, and the other group was used as an example to measure the dimensions in three directions. As firing conditions, 240 ° C. for 10 hours, nitrogen flow rate 100 ml /
Pre-baking was carried out under cm 2 , further baking was carried out under a nitrogen flow rate of 150 ml / cm 2 for 280 ° C./20 hours, and the temperature was returned to room temperature to measure the dimensions in the following three directions and obtain the magnet performance after magnetization. The heat resistance was determined by a DSC (differential scanning calorimeter) after curing with a phenol resin alone and the difference before and after the firing. Those results are

【0015】[0015]

【表1】 [Table 1]

【0016】また、本実施例においての三方向の寸法変
化も焼成による、収縮率は焼成前に比較し98.8%と
三方向共等しく等方的に収縮していることが確認され
た。
It was also confirmed that the dimensional changes in the three directions in this example were also caused by firing, and the shrinkage ratio was 98.8% as compared with that before firing, and the shrinkage was isotropic in all three directions.

【0017】なお、この焼成により結合材の重量減少率
は、硬化完了時に対し7.5%であった。
The weight reduction rate of the binder due to this firing was 7.5% with respect to the completion of curing.

【0018】実施例2 磁性粉としてSm2 −Co17系異方性磁性粉(商品名:
R30、信越化学製)を用意し、250μm以下に調
整、フェノール樹脂(HP−500R)を磁性粉に対し
体積比で10%加え、磁性粉に被覆を行なった。
Example 2 Sm 2 -Co 17 type anisotropic magnetic powder (trade name: as magnetic powder)
R30, manufactured by Shin-Etsu Chemical Co., Ltd.) was prepared, adjusted to 250 μm or less, and 10% by volume of phenol resin (HP-500R) was added to the magnetic powder to coat the magnetic powder.

【0019】この磁性粉を横磁場型圧縮装置で5ton
/cm2 の圧力を加えながら磁場中成形を行ない、実施
例1同様、10×10×10mmの角粒状成形物を得
た。
5 tons of this magnetic powder was applied in a transverse magnetic field type compression device.
Molding was performed in a magnetic field while applying a pressure of / cm 2 to obtain a 10 × 10 × 10 mm square granular molded product as in Example 1.

【0020】これらを150℃/3時間硬化後、2群に
分け、1群は比較例として着磁後の磁石性能評価を、も
う1群は、実施例として三方向の寸法測定の後、焼成条
件として、240℃/10時間、N2 流気100ml/
cm2 下で予備焼成を行ない、280℃/20時間、N
2 流気150ml/cm2 下で焼成を行ない、さらに4
00℃/20時間、N2 流気150ml/cm2 下で焼
成を行なった。室温にもどして後、三方向の寸法測定及
び着磁後の磁石性能、さらには、実施例1と同様、フェ
ノール樹脂単独硬化物も上記条件で焼成しておき、その
耐熱性の評価をDSCで行なったところ
After curing these at 150 ° C. for 3 hours, they were divided into two groups, one group was used as a comparative example to evaluate the magnet performance after magnetization, and the other group was used as an example to measure the dimensions in three directions and then fired. As conditions, 240 ° C./10 hours, N 2 flowing air 100 ml /
cm subjected to preliminary calcination at 2 under, 280 ° C. / 20 hours, N
2 Nagareki 150 ml / cm 2 performs calcination under further 4
Firing was carried out at 00 ° C. for 20 hours under a N 2 stream of 150 ml / cm 2 . After returning to room temperature, the magnet performance after three-dimensional dimension measurement and magnetization, and also as in Example 1, the phenol resin alone cured product was baked under the above conditions, and its heat resistance was evaluated by DSC. Where I did

【0021】[0021]

【表2】 [Table 2]

【0022】また、本実施例においての三方向の寸法変
化も焼成により等方的に収縮しており、97.7%と焼
成前より収縮していたがこの値を勘案して前もって成形
型を大きく作成しておけば、所望のNear Net
Shapeのボンド磁石が得られる。
Further, the dimensional changes in the three directions in this example also contracted isotropically by firing, which was 97.7%, which was less than that before firing. If you make it big, the desired Near Net
A Shape bond magnet is obtained.

【0023】また、この焼成により結合材の重量減少率
は、硬化完了時に対し15.0%であった。
The weight reduction rate of the binder due to this firing was 15.0% compared to when the curing was completed.

【0024】なお、実施例1および2で用いたフェノー
ル樹脂について焼成に伴う構造変化をFT−IR(フー
リエ変換形赤外分光光度計)で観測を行った。その結果
は図3〜図7に示される。
The structural changes of the phenolic resins used in Examples 1 and 2 due to firing were observed by FT-IR (Fourier transform infrared spectrophotometer). The results are shown in FIGS.

【0025】図3は、硬化処理(150℃)後のFT−
IRの吸収曲線である。
FIG. 3 shows the FT- after the curing treatment (150 ° C.).
It is an IR absorption curve.

【0026】図4は硬化処理後240℃(5hr)で焼
成したときのFT−IRの吸収曲線である。
FIG. 4 is an absorption curve of FT-IR when baked at 240 ° C. (5 hr) after the curing treatment.

【0027】図5は軟化処理後280℃(5hr)で焼
成したときのFT−IRの吸収曲線である。
FIG. 5 is an absorption curve of FT-IR when baked at 280 ° C. (5 hr) after the softening treatment.

【0028】図6は軟化処理後400℃(5hr)で焼
成したときのFT−IRの吸収曲線である。
FIG. 6 is an absorption curve of FT-IR when baked at 400 ° C. (5 hr) after the softening treatment.

【0029】図7は軟化処理後700℃(5hr)で焼
成したときのFT−IRの吸収曲線である。
FIG. 7 is an absorption curve of FT-IR when baked at 700 ° C. (5 hr) after the softening treatment.

【0030】図3に示されるベンゼン環に付随するOH
基のピークは、図4(240℃焼成)、図5(280℃
焼成)および図6(400℃焼成)で消失し、図7(7
00℃焼成)では炭素へと変化していくのが認められ
る。
OH associated with the benzene ring shown in FIG.
The peaks of the base are shown in Fig. 4 (240 ° C firing) and Fig. 5 (280 ° C).
(Firing) and FIG. 6 (firing at 400 ° C.), and FIG.
It is recognized that the carbon is changed in the baking at 00 ° C.

【0031】〔他の実施例〕本発明に適用できる有機系
結合材料としては、反応により、三次元的網目構造を有
し、高温焼成において網目構造が破断されることなく、
揮発性熱分解生成物及び内蔵水分が飛散するものであれ
ば好ましく、前記実施例の材料に限られるものではな
い。また、この焼成条件としては、温度は少なくとも、
180℃以上、特には、飛散効率を考慮すると200℃
以上が好ましく、結合材の前記飛散に伴なう収縮は高温
になる程進むことから、1200℃までは上限として許
されるが、磁性材料により酸化あるいは相変態による磁
石性能の低下をまねくものもあり、それより低い温度を
選択し、処理時間も寸法・形状をも勘案して決定され
る。
[Other Examples] Organic binders applicable to the present invention have a three-dimensional network structure due to reaction, and the network structure is not broken during high temperature firing.
It is preferable that the volatile thermal decomposition product and the built-in moisture are scattered, and the material is not limited to the material of the above-mentioned embodiment. Further, as the firing conditions, the temperature is at least
180 ℃ or above, especially 200 ℃ considering the scattering efficiency
The above is preferable, and the shrinkage due to the scattering of the binder progresses as the temperature increases, so an upper limit is allowed up to 1200 ° C, but some magnetic materials may cause deterioration of magnet performance due to oxidation or phase transformation. A lower temperature is selected, and the processing time and size / shape are taken into consideration.

【0032】焼成雰囲気についても窒素流気のみ実施例
で述べているが、他の不活性ガスや、還元雰囲気、真空
中等も適用可能である。
As for the firing atmosphere, only nitrogen flow is described in the embodiment, but other inert gas, reducing atmosphere, vacuum, etc. are also applicable.

【0033】本発明による焼成後防錆を目的とした塗装
やボンド磁石の結合力上昇を目的とした樹脂含浸を行な
ってもよい。
After firing according to the present invention, coating for the purpose of rust prevention or resin impregnation for the purpose of increasing the bond strength of the bonded magnet may be carried out.

【0034】さらに本実施例において、圧縮成形につい
て述べているが、他の押し出し成形や射出成形への応用
も可能である。
Further, although the compression molding is described in the present embodiment, it can be applied to other extrusion molding and injection molding.

【0035】ボンド磁石に占める結合材の体積比は、実
施例では、12%、10%の2例について述べている
が、圧縮成形においてよりBHmaxを高めるための体
積比であって、結合材の種類や、成形方法により、一般
に体積比は、2%〜90%の範囲で選択されるものであ
り、変化することが認められる。
Regarding the volume ratio of the binder in the bonded magnet, the two examples of 12% and 10% are described in the examples, but it is a volume ratio for further increasing BHmax in compression molding. The volume ratio is generally selected in the range of 2% to 90% depending on the type and the molding method, and it is recognized that it changes.

【0036】[0036]

【発明の効果】以上説明したように、磁性粉を結合する
結合材に、有機結合材料を用い、成形硬化後結合材を焼
成炭化することで、従来ボンド磁石の長所であるNea
r Net Shapeを維持したまま、従来ボンド磁
石の短所であった、耐熱性の悪さ磁石性能の低さを大巾
に改良することを可能にした。
As described above, the organic bonding material is used as the binding material for binding the magnetic powder, and the binding material is calcined and carbonized after molding and curing.
While maintaining r Net Shape, it was possible to greatly improve the poor heat resistance and poor magnet performance, which were the disadvantages of conventional bonded magnets.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施する工程図。FIG. 1 is a process drawing for carrying out the present invention.

【図2】従来例を示す工程図。FIG. 2 is a process drawing showing a conventional example.

【図3】フェノール樹脂の硬化処理(150℃)後のF
T−IRの吸収曲線である。
FIG. 3 F after phenolic resin curing treatment (150 ° C.)
It is an absorption curve of T-IR.

【図4】フェノール樹脂の硬化処理後240℃で焼成し
たときのFT−IRの吸収曲線である。
FIG. 4 is an absorption curve of FT-IR when baked at 240 ° C. after curing treatment of a phenol resin.

【図5】フェノール樹脂の硬化処理後280℃で焼成し
たときのFT−IRの吸収曲線である。
FIG. 5 is an absorption curve of FT-IR when baked at 280 ° C. after curing treatment of a phenol resin.

【図6】フェノール樹脂の硬化処理後400℃で焼成し
たときのFT−IRの吸収曲線である。
FIG. 6 is an absorption curve of FT-IR when baked at 400 ° C. after curing treatment of a phenol resin.

【図7】フェノール樹脂の硬化処理後700℃で焼成し
たときのFT−IRの吸収曲線である。
FIG. 7 is an absorption curve of FT-IR when baked at 700 ° C. after curing treatment of a phenol resin.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 磁性粉を結合材で結合させてなるボンド
磁石において、結合材が焼成された有機結合材であるこ
とを特徴とするボンド磁石。
1. A bond magnet obtained by binding magnetic powder with a binder, wherein the binder is a fired organic binder.
【請求項2】 有機結合材が、フェノール樹脂、フラン
樹脂、レゾール樹脂およびエポキシ樹脂から選ばれたも
のである請求項1のボンド磁石。
2. The bonded magnet according to claim 1, wherein the organic binder is selected from a phenol resin, a furan resin, a resole resin and an epoxy resin.
【請求項3】 焼成された有機結合材の焼成による重量
減少率が2〜90%である請求項1および2のボンド磁
石。
3. The bonded magnet according to claim 1, wherein the weight loss rate of the fired organic binder is 2 to 90%.
JP5322086A 1993-12-21 1993-12-21 Bonded magnet Withdrawn JPH07176416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5322086A JPH07176416A (en) 1993-12-21 1993-12-21 Bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5322086A JPH07176416A (en) 1993-12-21 1993-12-21 Bonded magnet

Publications (1)

Publication Number Publication Date
JPH07176416A true JPH07176416A (en) 1995-07-14

Family

ID=18139763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5322086A Withdrawn JPH07176416A (en) 1993-12-21 1993-12-21 Bonded magnet

Country Status (1)

Country Link
JP (1) JPH07176416A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7833432B2 (en) 2005-10-11 2010-11-16 Canon Denshi Kabushiki Kaisha Composite metal molding and method for manufacturing thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7833432B2 (en) 2005-10-11 2010-11-16 Canon Denshi Kabushiki Kaisha Composite metal molding and method for manufacturing thereof

Similar Documents

Publication Publication Date Title
JPS63232301A (en) Magnetic anisotropic bond magnet, magnetic powder used therefor, and manufacture thereof
JPH10163055A (en) Manufacture of high electric resistance rare earth permanent magnet
JPH01150303A (en) Magnetic anisotropy type sintered magnet and manufacture thereof
KR102454806B1 (en) Anisotropic bonded magnet and preparation method thereof
JPH07176416A (en) Bonded magnet
JP2018174175A (en) Ferrite powder for bond magnet, and manufacturing method thereof
KR102118955B1 (en) Magnetic powder, compressed powder core and method of preparation thereof
JP2568511B2 (en) High strength with excellent heat and oxidation resistance
EP0549149B1 (en) Rare-earth bonded magnet, material therefor and method for manufacturing a bonded magnet
JPH08241811A (en) Bonded magnet and manufacture thereof
JP4527225B2 (en) Manufacturing method of dust core
JPH08293411A (en) Bond magnet
JPH06314605A (en) Manufacture of rare earth bonded magnet
JPS6393105A (en) Manufacture of isotropic bonded magnet
JPH08316077A (en) Bond magnet and its production
JPH09115713A (en) Rare earth metal bonded magnet and its manufacture
JPS63306603A (en) Material composition of permanent magnet
JPH02116104A (en) Manufacture of resin-bonded permanent magnet
JPH0450725B2 (en)
JP3131022B2 (en) Fe-BR bonded magnet
JPS61247003A (en) Compact having projections for magnetic poles
JPH0666212B2 (en) Method for manufacturing anisotropic bonded magnet
JPS63147302A (en) Composite material for permanent magnet and its manufacture
CN117690685A (en) High-temperature-resistant high-frequency high-impedance iron-silicon-chromium alloy material and method for manufacturing device by using same
JPH0617184A (en) Manufacture of sintered anisotropic magnet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010306