JPH09115713A - Rare earth metal bonded magnet and its manufacture - Google Patents

Rare earth metal bonded magnet and its manufacture

Info

Publication number
JPH09115713A
JPH09115713A JP7274116A JP27411695A JPH09115713A JP H09115713 A JPH09115713 A JP H09115713A JP 7274116 A JP7274116 A JP 7274116A JP 27411695 A JP27411695 A JP 27411695A JP H09115713 A JPH09115713 A JP H09115713A
Authority
JP
Japan
Prior art keywords
rare earth
bonded magnet
earth bonded
coating
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7274116A
Other languages
Japanese (ja)
Inventor
Takeshi Anpo
武志 安保
Takeshi Kusagaya
健 草ケ谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP7274116A priority Critical patent/JPH09115713A/en
Publication of JPH09115713A publication Critical patent/JPH09115713A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably provide a rare earth bonde magnet having magnetic characteristics of maximum enery product (BH) max >=11.0MGOe. SOLUTION: In a rare earth metal bonded magnet manufacturing, R-Fe-B based alloy (R is one kind or more kinds out of Nd, Sm, Pr, La and Ce) powder is mixed with organic binder, and molded and hardened, and then the surface is coated. In this case, the density after molding and hardening is adjusted to be higher than or equal to 6.29g/cm<3> , the surface is coated with coating material capable of hardening at 140 deg.C or lower, and the coated film is hardened at 140 deg.C or lower. The hardening of a molded object is performed by heating in an inert gas atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は希土類ボンド磁石お
よびその製造方法に係り、特に、Nd−Fe−B系ボン
ド磁石およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth bonded magnet and a method for manufacturing the same, and more particularly to an Nd-Fe-B based bonded magnet and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、Nd−Fe−B系ボンド磁石は、
Nd:27〜30wt%、B:0.8〜1.3wt%、
残部FeからなるNd−Fe−B合金を溶解し、これを
回転円盤上に滴下して超急冷リボンを形成し、この超急
冷リボンを粉砕した上で、さらに保磁力を確保するため
の適正な熱処理をした合金粉末と、エポキシ樹脂等の熱
硬化性樹脂バインダとを混合し、プレス金型により所望
の形状の成形体を成形し、この成形体を150〜200
℃の温度で所定時間保持して硬化処理し、さらに、この
硬化後の成形体の表面に防錆のための塗装を行い、製品
化されていた。なお、合金粉末に対して混合される有機
バインダの量は、2.0〜3.0wt%であった。ま
た、防錆用の塗装としては、焼付塗料を用い、150〜
190℃にて焼付硬化処理を施して表面塗装を完成して
いた。
2. Description of the Related Art Conventionally, Nd-Fe-B based bonded magnets are
Nd: 27-30 wt%, B: 0.8-1.3 wt%,
The Nd-Fe-B alloy consisting of the balance Fe is melted, dropped on a rotating disk to form a super-quenching ribbon, and the super-quenching ribbon is crushed, and then a proper coercive force is secured to secure the coercive force. The heat-treated alloy powder is mixed with a thermosetting resin binder such as an epoxy resin, and a molded product having a desired shape is molded by a press die.
The product was commercialized by holding it at a temperature of ° C for a predetermined time for a curing treatment, and then coating the surface of the cured product for rust prevention. The amount of organic binder mixed with the alloy powder was 2.0 to 3.0 wt%. In addition, as a coating for rust prevention, a baking paint is used,
The surface coating was completed by performing bake hardening treatment at 190 ° C.

【0003】[0003]

【発明が解決しようとする課題】このようにして製造さ
れた従来のNd−Fe−B系ボンド磁石は、最大エネル
ギー積(BH)maxが8.5〜10.5MGOe程度
であった。しかし、ハードディスク用モータ等における
小型化の要求はきわめて高く、さらに磁気特性のよい希
土類ボンド磁石が望まれている。
The maximum energy product (BH) max of the conventional Nd-Fe-B based bonded magnet produced in this manner was about 8.5 to 10.5 MGOe. However, there is an extremely high demand for miniaturization of hard disk motors and the like, and a rare earth bonded magnet having good magnetic characteristics is desired.

【0004】そこで、本発明は、最大エネルギー積(B
H)max≧11.0MGOeの磁気特性を有する希土
類ボンド磁石を安定して提供することを目的とする。
Therefore, according to the present invention, the maximum energy product (B
(H) An object of the present invention is to stably provide a rare earth bonded magnet having magnetic properties of max ≧ 11.0 MGOe.

【0005】[0005]

【課題を解決するための手段、発明の実施の形態及び発
明の効果】かかる目的を達成するため、本発明の希土類
ボンド磁石は、R−Fe−B系合金(R:Nd,Sm,
Pr,La,Ceの一種または2種以上)粉末を有機バ
インダと混合して成形硬化し、表面塗装した希土類ボン
ド磁石において、前記表面塗装が140℃以下で硬化可
能な塗料により形成されると共に、塗装部を除く金属圧
粉体の密度を6.20g/cm3 以上とされていること
を特徴とする。この場合、前記表面塗装が常温硬化型塗
料により形成するとよい。また、金属圧粉体の密度を
6.20g/cm3 以上とするには、有機バインダを
1.5wt%以下に抑制するのが効果的である。また、
合金粉末としては、粒径5〜500μmのものを用いる
とよい。
Means for Solving the Problems, Embodiments of the Invention and Effects of the Invention In order to achieve the above object, the rare earth bonded magnet of the present invention comprises an R—Fe—B alloy (R: Nd, Sm,
(1 or more of Pr, La, Ce) powder is mixed with an organic binder, molded and hardened, and in the surface-coated rare earth bonded magnet, the surface coating is formed by a coating material curable at 140 ° C. or lower, and It is characterized in that the density of the metal powder compact excluding the coated part is 6.20 g / cm 3 or more. In this case, it is preferable that the surface coating is formed by a room temperature curable coating material. Further, in order to set the density of the metal green compact to 6.20 g / cm 3 or more, it is effective to suppress the organic binder to 1.5 wt% or less. Also,
As the alloy powder, it is preferable to use one having a particle size of 5 to 500 μm.

【0006】こうした希土類ボンド磁石の製造方法は、
R−Fe−B系合金(R:Nd,Sm,Pr,La,C
eの1種または2種以上)粉末を有機バインダと混合し
て成形硬化した後、表面塗装する希土類ボンド磁石の製
造方法において、前記成形硬化後の密度を6.20g/
cm3 以上とすると共に、140℃以下で硬化可能な塗
料により表面塗装を行い、140℃以下で塗膜を硬化さ
せることを特徴とする。この場合も、前記表面塗装を常
温硬化型塗料で行い、常温にて硬化させるとよい。ま
た、有機バインダの混合量を1.5wt%以下とし、合
金粉末としては、粒径5〜500μmのものを用いると
よい。また、成形体の硬化は、不活性ガス雰囲気中での
加熱により行うことが望ましい。
The method of manufacturing such a rare earth bonded magnet is
R-Fe-B system alloy (R: Nd, Sm, Pr, La, C
In the method for producing a rare earth bonded magnet, the powder is mixed with an organic binder and molded and cured, and then the surface is coated, and the density after molding and curing is 6.20 g /
It is characterized in that the surface coating is performed with a coating material that is not less than cm 3 and that is curable at 140 ° C. or less, and the coating film is cured at 140 ° C. or less. Also in this case, it is advisable to perform the surface coating with a room temperature curable paint and cure at room temperature. Further, it is preferable that the mixing amount of the organic binder is 1.5 wt% or less and the alloy powder has a particle diameter of 5 to 500 μm. Further, it is desirable to cure the molded body by heating in an inert gas atmosphere.

【0007】発明者らの実験によれば、R−Fe−B系
合金粉末と有機バインダとの混合物の成形体自体の磁気
特性は、硬化後の成形体密度と密接な関係が確認され、
図1に示すようになっている。図から明かな様に、R−
Fe−B合金と有機バインダとの混合物の成形体は、密
度が高いほど磁気特性が高くなっている。そして、密度
6.2g/cm3 未満では、(BH)max≧11.0
MGOeを達成するのが困難であるということが分か
る。一方、(BH)max≧11.0MGOeの成形体
であっても、図2に示す様に、これを大気中で加熱する
と磁気特性が低下することも分かる。そして、(BH)
max≧11.0MGOeを達成する上で、焼付塗料に
対する焼付硬化処理温度を140℃以下とすべきことが
分かる。そして、特に、常温であれば、成形体の有する
磁気特性がほぼそのまま維持できることも分かる。よっ
て、常温硬化型塗料を用いて常温で硬化させる方法が、
磁気特性向上には最も効果的であるといえる。
According to the experiments by the inventors, the magnetic characteristics of the compact itself of the mixture of the R—Fe—B alloy powder and the organic binder were confirmed to be closely related to the density of the compact after curing,
It is as shown in FIG. As is clear from the figure, R-
The higher the density, the higher the magnetic properties of the molded body of the mixture of the Fe-B alloy and the organic binder. When the density is less than 6.2 g / cm 3 , (BH) max ≧ 11.0
It can be seen that achieving MGOe is difficult. On the other hand, even in the case of a (BH) max ≧ 11.0 MGOe compact, as shown in FIG. 2, it can be seen that heating this in the atmosphere deteriorates the magnetic characteristics. And (BH)
It can be seen that the bake hardening treatment temperature for the baking paint should be 140 ° C. or lower in order to achieve max ≧ 11.0 MGOe. It is also found that, particularly at room temperature, the magnetic properties of the molded body can be maintained almost unchanged. Therefore, a method of curing at room temperature using a room temperature curable coating is
It can be said that it is most effective in improving the magnetic characteristics.

【0008】本発明は、以上の実験結果に基づき、成形
体密度の調整と塗料の選択及び硬化温度の設定とによ
り、(BH)max≧11.0MGOeの希土類ボンド
磁石を安定して供給することを可能ならしめているので
ある。即ち、成形体密度を成形硬化後において6.20
g/cm3 以上とすることで高い磁気特性を得るための
前提条件を整え、塗膜の硬化を140℃以下で行うこと
により、成形体が本質的に獲得した磁気特性を低下させ
ることなく防錆塗装付きの希土類ボンド磁石を提供する
ことができるのである。なお、焼付塗料に対する焼付硬
化処理温度は、より望ましくは、120℃以下に抑えて
おくとよい。
Based on the above experimental results, the present invention stably supplies a rare earth bonded magnet with (BH) max ≧ 11.0 MGOe by adjusting the density of the molded body, selecting the coating material and setting the curing temperature. Is possible. That is, the molded body density was set to 6.20 after molding and curing.
By setting the preconditions for obtaining high magnetic properties by setting g / cm 3 or more, and curing the coating film at 140 ° C. or less, it is possible to prevent the molded product from essentially deteriorating the acquired magnetic properties. It is possible to provide a rare earth bonded magnet with a rust coating. The baking and curing treatment temperature for the baking paint is more preferably kept at 120 ° C. or lower.

【0009】合金粉末としては、希土類元素Rを5〜3
0wt%、B(一部をN,Cに置換されていてもよい)
を0.5〜3.0wt%、Al,Si,Mn等の不純物
を1wt%以下、残部をFe(一部をCo,Niに置換
されていてもよい)とした合金を従来同様に超急冷リボ
ンを粉砕して熱処理を施した超急冷粉を使用するとよ
い。有機バインダとしては、これも従来同様に、エポキ
シ樹脂系のものなどを用いるとよい。
The alloy powder contains rare earth element R of 5 to 3
0 wt%, B (some may be replaced with N, C)
Of 0.5 to 3.0 wt%, Al, Si, Mn and other impurities of 1 wt% or less, and the balance of Fe (some of which may be replaced by Co and Ni) are rapidly quenched as in the conventional case. It is recommended to use an ultra-quenched powder obtained by crushing the ribbon and subjecting it to heat treatment. As the organic binder, an epoxy resin-based one or the like may be used as in the conventional case.

【0010】表面塗装の方法としては、電着塗装、吹付
塗装を用いるとよいが、塗料中にドブ漬けとしても構わ
ない。いずれにしても、焼付硬化処理の温度を上述した
範囲内に抑制することが重要である。使用する塗料は1
40℃以下でも硬化が可能なものであり、例えば、アク
リル樹脂系塗料、アシルアルキド樹脂系塗料、フェノー
ル樹脂系塗料、不飽和ポリエステル樹脂系塗料、変性ポ
リエステル樹脂系塗料などを用いることができる。ま
た、常温硬化型のエポキシ樹脂系塗料も効果的である。
As a method of surface coating, electrodeposition coating or spray coating may be used, but it may be dipped in the coating. In any case, it is important to control the temperature of the bake hardening treatment within the above range. The paint used is 1
It can be cured even at 40 ° C. or lower, and for example, acrylic resin-based paint, acyl alkyd resin-based paint, phenol resin-based paint, unsaturated polyester resin-based paint, modified polyester resin-based paint, etc. can be used. In addition, a room temperature curing type epoxy resin coating material is also effective.

【0011】本発明に使用可能な市販の電着塗装用塗料
としては、例えば、日本ペイント(株)製の商品名「パワ
ートップエクセル」の「#200」,「#500」,
「ブラック」,「ホワイト」などがある。同じく、本発
明に使用可能な市販の低温吹付塗装用塗料としては、例
えば、メラミンアルキド樹脂系塗料である日本ペイント
(株)製の商品名「オルガセレクト200」、変性ポリエ
ステル樹脂系塗料である大橋化学工業(株)製の商品名
「ファスタイト−140(N)」、エポキシ樹脂系塗料
である大日本塗料(株)製の商品名「エポニックス#10
〜#190」などが適当である。大日本塗料(株)製の商
品名「エポニックス#9」などは、ディッピング塗装に
用いることができ、常温硬化させることができる。
Commercially available paints for electrodeposition coating which can be used in the present invention include, for example, "# 200", "# 500", and "# 500" of "Power Top Excel" manufactured by Nippon Paint Co., Ltd.
There are "black" and "white". Similarly, commercially available paints for low-temperature spray coating that can be used in the present invention include, for example, Nippon Paint, which is a melamine alkyd resin-based paint.
Brand name "Olga Select 200" manufactured by Co., Ltd., modified polyester resin-based paint Ohashi Chemical Industry Co., Ltd. product name "Fastite-140 (N)", epoxy resin-based paint Dainippon Paint Co., Ltd. ) Product name "Eponics # 10"
~ # 190 "or the like is suitable. The product name "Eponics # 9" manufactured by Dainippon Paint Co., Ltd. can be used for dipping coating and can be cured at room temperature.

【0012】[0012]

【実施例】次に、本発明を一層明らかにするために、発
明の実施の形態を、具体的実施例に基づいて説明する。 [実施例1]Nd:27wt%、B:1wt%、Co:
5wt%、残部Feからなる合金を溶解し、これを回転
円盤上に滴下して得た超急冷リボンを粉砕し、平均粒径
100〜150μmの粒子を得た。また、これに適正な
熱処理(625℃で5分保持)を施した。こうして得ら
れた合金粉末をエポキシ樹脂と混合し、プレス金型にて
外径20.3mm×内径18.3mm×高さ10mmの
短い円筒状の成形体を得た。そして、この成形体をAr
雰囲気中で180℃×30分間加熱し、硬化処理を施し
た。
EXAMPLES Next, in order to further clarify the present invention, embodiments of the present invention will be described based on concrete examples. [Example 1] Nd: 27 wt%, B: 1 wt%, Co:
An ultra-quenched ribbon obtained by melting an alloy composed of 5 wt% and the balance Fe and dropping it on a rotating disk was crushed to obtain particles having an average particle size of 100 to 150 μm. Further, this was subjected to an appropriate heat treatment (holding at 625 ° C. for 5 minutes). The alloy powder thus obtained was mixed with an epoxy resin, and a short cylindrical molded body having an outer diameter of 20.3 mm, an inner diameter of 18.3 mm and a height of 10 mm was obtained using a press die. Then, this molded body is
Curing treatment was performed by heating at 180 ° C. for 30 minutes in the atmosphere.

【0013】次に、この硬化した成形体に電着塗装又は
吹き付け塗装により防錆用の表面塗装を施し、焼付処理
を行った。電着塗装用の塗料としては、日本ペイント
(株)製の商品名「パワートップエクセル#200」を使
用した。吹付塗装用の塗料としては、大橋化学工業(株)
製の商品名「ファスタイト−140(N)」を使用し
た。
Next, a surface coating for rust prevention was applied to the cured molded body by electrodeposition coating or spray coating, and baking treatment was performed. Nippon Paint as the paint for electrodeposition coating
The product name "Power Top Excel # 200" manufactured by Co., Ltd. was used. As paint for spray coating, Ohashi Chemical Industry Co., Ltd.
The product name "Fastite-140 (N)" manufactured by K.K.

【0014】なお、成形体の硬化後の密度が種々になる
ように有機バインダの混合量等を調節すると共に、焼付
処理の温度も種々に変えて実験を行った。そして、製造
されたボンド磁石の最大エネルギー積(BH)maxを
測定し、これをまとめたのが下記表1である。
Experiments were carried out by adjusting the mixing amount of the organic binder and the like so that the density of the molded body after curing became various, and changing the baking temperature variously. Then, the maximum energy product (BH) max of the manufactured bonded magnet was measured and summarized in Table 1 below.

【0015】[0015]

【表1】 [Table 1]

【0016】なお、上記表中、電着塗装としたのは試料
No.1〜10であり、吹付塗装としたのは試料No.
11〜16である。また、密度は、成形硬化後の密度を
いう。さらに、有機バインダの混合量は、実施例の資料
No.7,8では1.25wt%、比較例の試料No.
1〜6は2.5wt%、比較例の試料No.11,12
は1.5wt%とした。そして、焼付硬化は、上記温度
にて大気中に30分保持の条件にて実施した。
In the above table, sample No. is electrodeposition coated. 1 to 10, and the sample No. 1 was spray coated.
11-16. The density means the density after molding and curing. Further, the mixing amount of the organic binder is the same as the material No. Nos. 7 and 8 were 1.25 wt%, and comparative sample No.
1 to 6 are 2.5 wt%, and sample No. of the comparative example. 11,12
Was 1.5 wt%. Then, the bake-hardening was carried out under the conditions of holding in the air at the above temperature for 30 minutes.

【0017】実施例である試料No.7〜10、13〜
16は、いずれも、成形硬化後密度6.2g/cm3
上であり、焼付温度が140℃以下である。そして、こ
れらは、いずれも最大エネルギー積(BH)maxが1
1.0MGOe以上と高い磁気特性を示している。
Sample No. 1 as an example. 7-10, 13-
All of Nos. 16 have a density after molding and curing of 6.2 g / cm 3 or more and a baking temperature of 140 ° C. or less. The maximum energy product (BH) max of each of these is 1
The magnetic characteristics are as high as 1.0 MGOe or more.

【0018】一方、比較例である試料No.1〜6は、
焼付硬化温度が120℃となっているにもかかわらず、
(BH)maxは9.00〜10.70MGOeしか示
さず、磁気特性は向上していない。これら試料は、いず
れも、成形硬化後密度が6.2g/cm3 に満たないも
のであり、これが原因と考えられる。
On the other hand, the sample No. 1 to 6
Despite the bake-hardening temperature of 120 ° C,
(BH) max shows only 9.00 to 10.70 MGOe, and the magnetic characteristics are not improved. In all of these samples, the density after molding and curing was less than 6.2 g / cm 3 , which is considered to be the cause.

【0019】また、比較例である試料No.11,12
は、成形硬化後密度を6.2g/cm3 以上としたにも
拘らず、(BH)maxは10.0MGOe,10.5
MGOeしか示さず、磁気特性は向上していない。これ
ら試料は、いずれも、焼付温度が140℃を越えるもの
であり、これが原因と考えられる。
Further, the sample No. which is a comparative example. 11,12
Has a (BH) max of 10.0 MGOe, 10.5, even though the density after molding and curing is set to 6.2 g / cm 3 or more.
Only MGOe is shown and the magnetic properties are not improved. In all of these samples, the baking temperature exceeds 140 ° C., which is considered to be the cause.

【0020】このように、この実施例1によれば、成形
硬化後密度と焼付温度の両方の条件を満足して初めて磁
気特性の向上が見られることが確認できる。また、試料
No.7〜10の結果から、成形硬化後密度が高いほど
磁気特性が向上する傾向にあり、試料No.13〜16
の結果から、焼付温度は低いほど磁気特性が向上する傾
向にあるということができる。
As described above, according to the first embodiment, it can be confirmed that the magnetic properties are improved only when both the density after molding and curing and the baking temperature are satisfied. In addition, the sample No. From the results of Nos. 7 to 10, the higher the density after molding and curing, the more the magnetic properties tend to improve. 13-16
From the results, it can be said that the lower the baking temperature, the more the magnetic properties tend to improve.

【0021】[実施例2]Nd:23.0wt%、P
r:4.0wt%、B:1.0wt%、Co:5.0w
t%、残部Feからなる合金を用いて実施例1と希土類
ボンド磁石の成形硬化を行った。なお、合金の溶解には
高周波誘導炉を使用し、超急冷リボンは不活性ガス中で
製造した。硬化した成形体には、エポキシ樹脂系塗料を
電着塗装し、焼付硬化した。塗料としては、日本ペイン
ト(株)製の商品名「パワートップエクセル#200」を
使用した。
[Example 2] Nd: 23.0 wt%, P
r: 4.0 wt%, B: 1.0 wt%, Co: 5.0 w
Example 1 and the rare earth bonded magnet were molded and hardened using an alloy composed of t% and the balance being Fe. A high-frequency induction furnace was used to melt the alloy, and the ultra-quenched ribbon was manufactured in an inert gas. The cured molded body was electrodeposited with an epoxy resin paint and baked and cured. As the paint, the product name "Power Top Excel # 200" manufactured by Nippon Paint Co., Ltd. was used.

【0022】なお、実施例1と同様に、成形体の硬化後
の密度が種々になるように有機バインダの混合量等を調
節すると共に、焼付処理の温度も種々に変えて実験を行
った。そして、製造されたボンド磁石の最大エネルギー
積(BH)maxを測定し、これをまとめたのが下記表
2である。
As in Example 1, the experiment was carried out by adjusting the mixing amount of the organic binder and the like so that the density of the molded body after curing was various and varying the baking temperature. Then, the maximum energy product (BH) max of the manufactured bonded magnet was measured and summarized in Table 2 below.

【0023】[0023]

【表2】 [Table 2]

【0024】なお、上記表中の密度は成形硬化後の密度
をいう。また、有機バインダの混合量は、実施例ではN
o.7,8で1.5wt%、No.9,10では1.2
5wt%、比較例の試料No.1〜6は2.5wt%、
比較例の試料No.11,12は1.5wt%とした。
そして、焼付硬化は、上記温度にて大気中に30分保持
の条件にて実施した。
The density in the above table means the density after molding and curing. Further, the mixing amount of the organic binder is N in the embodiment.
o. 1.5 wt% in Nos. 7 and 8, No. 1.2 for 9 and 10
5 wt%, sample No. of the comparative example. 1 to 6 is 2.5 wt%,
Sample No. of Comparative Example 11 and 12 were set to 1.5 wt%.
Then, the bake-hardening was carried out under the conditions of holding in the air at the above temperature for 30 minutes.

【0025】この実施例2からも、実施例1と同様の結
果が確認され、(BH)maxを11.0MGOe以上
に向上させるには、成形硬化後の密度を6.2g/cm
3 以上とし、焼付温度を140℃以下とすべきことが確
認できる。また、成形硬化後密度が高いほど磁気特性が
向上する傾向にあり、焼付温度が低いほど磁気特性が向
上する傾向にあるという点でも、実施例1と同様の結果
が確認できる。
The same results as in Example 1 were confirmed from Example 2, and in order to improve (BH) max to 11.0 MGOe or more, the density after molding and curing was 6.2 g / cm 2.
It can be confirmed that the baking temperature should be 3 or more and the baking temperature should be 140 ° C or less. The same results as in Example 1 can be confirmed in that the higher the density after molding and curing, the more the magnetic properties tend to improve, and the lower the baking temperature, the more the magnetic properties tend to improve.

【0026】[実施例3]実施例1と同様の組成の成形
体を製造し、これに各種の塗料を用いてディッピング
(ドブ漬け)塗装、吹き付け塗装を施し、塗膜を硬化さ
せた後に最大エネルギー積(BH)maxを測定した。
これをまとめたのが下記表3である。
Example 3 A molded product having the same composition as in Example 1 was produced, and various coating materials were used for dipping (spraying) coating and spray coating to cure the coating film, and then to the maximum. The energy product (BH) max was measured.
This is summarized in Table 3 below.

【0027】[0027]

【表3】 [Table 3]

【0028】なお、上記表中の密度は成形硬化後の密度
をいう。また、有機バインダの混合量は、成形硬化後密
度6.2g/cm3 以上のものは1.5,5wt%、成
形硬化後密度6.2g/cm3 未満のものは2.0〜
3.0wt%である。焼付硬化は、上記温度にて大気中
に30分保持の条件にて実施した。
The density in the above table means the density after molding and curing. The mixing amount of the organic binder, the molded cured density 6.2 g / cm 3 or more ones 1.5,5Wt%, but less than the molding after curing density 6.2 g / cm 3 is 2.0
It is 3.0 wt%. The bake-hardening was carried out under the conditions of holding in the air at the above temperature for 30 minutes.

【0029】この実施例3では、常温硬化型の塗料を用
いた場合に最も磁気特性が高いことが分かる。その他の
傾向は、実施例1,2と同様である。
In Example 3, it can be seen that the magnetic characteristics are highest when the room temperature curable coating material is used. The other tendencies are similar to those of the first and second embodiments.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の作用効果を説明するためのグラフで
ある。
FIG. 1 is a graph for explaining the function and effect of the present invention.

【図2】 本発明の作用効果を説明するためのグラフで
ある。
FIG. 2 is a graph for explaining the function and effect of the present invention.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 R−Fe−B系合金(R:Nd,Sm,
Pr,La,Ceの1種または2種以上)粉末を有機バ
インダと混合して成形硬化し、表面塗装した希土類ボン
ド磁石において、 前記表面塗装が140℃以下で硬化可能な塗料により形
成されると共に、塗装部を除く金属圧粉体の密度を6.
20g/cm3 以上とされていることを特徴とする希土
類ボンド磁石。
1. An R-Fe-B based alloy (R: Nd, Sm,
(1 type or 2 types or more of Pr, La, Ce) powder is mixed with an organic binder, molded and hardened, and a surface coating is applied to the rare earth bonded magnet, wherein the surface coating is formed by a paint curable at 140 ° C. or lower, and The density of the metal green compact excluding the coating part is 6.
A rare-earth bonded magnet characterized by having a content of 20 g / cm 3 or more.
【請求項2】 請求項1記載の希土類ボンド磁石におい
て、前記表面塗装が常温硬化型塗料により形成されてい
ることを特徴とする希土類ボンド磁石。
2. The rare earth bonded magnet according to claim 1, wherein the surface coating is formed of a room temperature curable coating material.
【請求項3】 請求項1又は請求項2記載の希土類ボン
ド磁石において、有機バインダが1.5wt%以下であ
ることを特徴とする希土類ボンド磁石。
3. The rare earth bonded magnet according to claim 1, wherein the organic binder is 1.5 wt% or less.
【請求項4】 R−Fe−B系合金(R:Nd,Sm,
Pr,La,Ceの1種または2種以上)粉末を有機バ
インダと混合して成形硬化した後、表面塗装する希土類
ボンド磁石の製造方法において、 前記成形硬化後の密度を6.20g/cm3 以上とする
と共に、140℃以下で硬化可能な塗料により表面塗装
を行い、140℃以下で塗膜を硬化させることを特徴と
する希土類ボンド磁石の製造方法。
4. An R—Fe—B based alloy (R: Nd, Sm,
(1 or more of Pr, La, Ce) powder is mixed with an organic binder and molded and hardened, and then the surface is coated. In the method for manufacturing a rare earth bonded magnet, the density after molding and hardening is 6.20 g / cm 3. In addition to the above, a method for producing a rare earth bonded magnet, characterized in that surface coating is performed with a coating material curable at 140 ° C. or lower, and the coating film is cured at 140 ° C. or lower.
【請求項5】 請求項4記載の希土類ボンド磁石の製造
方法において、前記表面塗装を常温硬化型塗料で行い、
常温にて硬化させることを特徴とする希土類ボンド磁石
の製造方法。
5. The method for producing a rare earth bonded magnet according to claim 4, wherein the surface coating is a room temperature curable coating,
A method for producing a rare earth bonded magnet, which comprises curing at room temperature.
【請求項6】 請求項4又は請求項5記載の希土類ボン
ド磁石の製造方法において、有機バインダの混合量が
1.5wt%以下であることを特徴とする希土類ボンド
磁石の製造方法。
6. The method for producing a rare earth bonded magnet according to claim 4 or 5, wherein the amount of the organic binder mixed is 1.5 wt% or less.
【請求項7】 請求項4〜請求項6のいずれか記載の希
土類ボンド磁石の製造方法において、前記成形体の硬化
は、不活性ガス雰囲気中での加熱により行うことを特徴
とする希土類ボンド磁石の製造方法。
7. The rare earth bonded magnet according to claim 4, wherein the compact is hardened by heating in an inert gas atmosphere. Manufacturing method.
JP7274116A 1995-10-23 1995-10-23 Rare earth metal bonded magnet and its manufacture Pending JPH09115713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7274116A JPH09115713A (en) 1995-10-23 1995-10-23 Rare earth metal bonded magnet and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7274116A JPH09115713A (en) 1995-10-23 1995-10-23 Rare earth metal bonded magnet and its manufacture

Publications (1)

Publication Number Publication Date
JPH09115713A true JPH09115713A (en) 1997-05-02

Family

ID=17537244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7274116A Pending JPH09115713A (en) 1995-10-23 1995-10-23 Rare earth metal bonded magnet and its manufacture

Country Status (1)

Country Link
JP (1) JPH09115713A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200079514A (en) 2017-12-05 2020-07-03 미쓰비시덴키 가부시키가이샤 Permanent magnet, manufacturing method of permanent magnet, and rotator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200079514A (en) 2017-12-05 2020-07-03 미쓰비시덴키 가부시키가이샤 Permanent magnet, manufacturing method of permanent magnet, and rotator

Similar Documents

Publication Publication Date Title
JP6595542B2 (en) Method for producing R-Fe-B sintered magnet
US20030001718A1 (en) Composite magnetic body, and magnetic element and method of manufacturing the same
US5443617A (en) Powdery raw material composition for a permanent magnet
JPH0669003B2 (en) Powder for permanent magnet and method for manufacturing permanent magnet
JP6314020B2 (en) Powder magnetic core using nanocrystalline soft magnetic alloy powder and manufacturing method thereof
JP3822031B2 (en) Method for producing replacement spring magnet powder
US5905424A (en) Bonded magnet made from gas atomized powders of rare earth alloy
JPH09115713A (en) Rare earth metal bonded magnet and its manufacture
JPS62177158A (en) Permanent magnet material and its production
JPH07302705A (en) Corrosion-resistant rare earth magnet and its manufacture
JPS60223102A (en) Manufacture of magnetic powder
JP3160817B2 (en) Rare earth bonded magnet material, rare earth bonded magnet, and method for manufacturing rare earth bonded magnet
JPS60257107A (en) Manufacture of permanent magnet powder and permanent magnet
JPS62177150A (en) Permanent magnet material and its production
JP2757040B2 (en) Method for producing Nd-Fe-B bonded magnet
JPH06188110A (en) Nitride for refemen permanent magnet, refeme alloy to be used in the nitride, and permanent magnet using the nitride
JPS6180805A (en) Permanent magnet material
JPS60254707A (en) Manufacture of permanent magnet
JPH05211102A (en) Powder for permanent magnet and permanent magnet
EP0480722B1 (en) Method of making a Nd-Fe type permanent magnetic material
JPH07230906A (en) Permanent magnet and its manufacture
JPH0231483B2 (en)
JPH02109304A (en) Complex magnet
JPS62136553A (en) Permanent magnet material
JPH10112405A (en) Rare-earth bonded magnet and its manufacture

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040716

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040914