JPH07176267A - Manufacture of plasma address liquid crystal display device - Google Patents

Manufacture of plasma address liquid crystal display device

Info

Publication number
JPH07176267A
JPH07176267A JP6257617A JP25761794A JPH07176267A JP H07176267 A JPH07176267 A JP H07176267A JP 6257617 A JP6257617 A JP 6257617A JP 25761794 A JP25761794 A JP 25761794A JP H07176267 A JPH07176267 A JP H07176267A
Authority
JP
Japan
Prior art keywords
plasma
liquid crystal
temporary reinforcing
crystal display
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6257617A
Other languages
Japanese (ja)
Other versions
JP3297789B2 (en
Inventor
Shigeki Miyazaki
滋樹 宮崎
Takehiro Togawa
剛広 外川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP25761794A priority Critical patent/JP3297789B2/en
Priority to KR1019950010824A priority patent/KR100325400B1/en
Priority to US08/434,863 priority patent/US5526151A/en
Priority claimed from US08/434,863 external-priority patent/US5526151A/en
Publication of JPH07176267A publication Critical patent/JPH07176267A/en
Priority to US08/658,598 priority patent/US5810634A/en
Application granted granted Critical
Publication of JP3297789B2 publication Critical patent/JP3297789B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133374Constructional arrangements; Manufacturing methods for displaying permanent signs or marks

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To stably perform a process of polishing a partition formed in a plasma cell of a plasma address liquid crystal display device. CONSTITUTION:A plasma address liquid crystal display device, in which a plasma call and a liquid crystal cell are superposed on each other through an intermediate sheet, is manufactured as follows. First in a substrate 2 previously formed a plasma electrode 1, stripe-shaped partitions 3 are formed to be printed. Next, a part between the stripe-shaped partitions 3 is changed with a temporary reinforcing material 4, to bury the periphery of the individual partition. Successively in a buried condition, a top part of each partition 3 is polished and flattened. Thereafter, the temporary reinforcing material 4 is removed to expose a plasma electrode 1. Finally coming into contact with the flattened top part of each partition 3, the intermediate sheet is connected to assemble the plasma cell.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は中間シートを介してプラ
ズマセルと液晶セルとを互いに重ねたプラズマアドレス
液晶表示装置に関する。より詳しくは、スクリーン印刷
法を用いたプラズマセルの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma addressed liquid crystal display device in which a plasma cell and a liquid crystal cell are superposed on each other via an intermediate sheet. More specifically, the present invention relates to a plasma cell manufacturing method using a screen printing method.

【0002】[0002]

【従来の技術】図7を参照して従来のプラズマアドレス
液晶表示装置の構成を簡潔に説明する。なおプラズマア
ドレス液晶表示装置は例えば特開平4−265931号
公報に開示されている。図示する様に、プラズマアドレ
ス液晶表示装置は液晶セル101とプラズマセル102
と両者の間に介在する中間シート103とを積層した構
造を有する。中間シート103は液晶セル101を駆動
する為にできる限り薄い事が必要であり、例えば厚みが
50μm程度の極薄板ガラスを用いる。液晶セル101
は上側のガラス基板104を用いて構成されており、そ
の内側主面には信号電極Dがストライプ状に形成されて
いる。基板104はスペーサ105を用いて所定の間隙
を介し中間シート103に接着されている。間隙内には
液晶層106が充填されている。この間隙寸法は通常5
μm程度であり表示面全体に渡って均一に保つ必要があ
る。
2. Description of the Related Art The structure of a conventional plasma addressed liquid crystal display device will be briefly described with reference to FIG. A plasma addressed liquid crystal display device is disclosed in, for example, Japanese Patent Laid-Open No. 265931/1992. As shown, the plasma addressed liquid crystal display device includes a liquid crystal cell 101 and a plasma cell 102.
And an intermediate sheet 103 interposed between the two. The intermediate sheet 103 needs to be as thin as possible in order to drive the liquid crystal cell 101, and for example, an ultrathin plate glass having a thickness of about 50 μm is used. Liquid crystal cell 101
Is formed by using the upper glass substrate 104, and the signal electrodes D are formed in stripes on the inner main surface thereof. The substrate 104 is adhered to the intermediate sheet 103 via a spacer 105 with a predetermined gap. A liquid crystal layer 106 is filled in the gap. This gap size is usually 5
It is about μm and must be kept uniform over the entire display surface.

【0003】一方プラズマセル102は下側のガラス基
板107を用いて構成されている。ガラス基板107の
主面上には複数のプラズマ電極108がストライプ状に
パタニング形成されている。このガラス基板107はフ
リットシール材109を介して中間シート103に接合
している。フリットシール材109により密封された空
間内にはイオン化可能なガスが封入されている。各プラ
ズマ電極108の上に沿って隔壁110がスクリーン印
刷法により形成されている。プラズマセル102はこの
隔壁110によってストライプ状に分割されており放電
チャネルを構成する。このスクリーン印刷法は簡単な技
術で且つしかも微細なパタンの形成が可能であり、生産
性や作業性が大幅に向上する。
On the other hand, the plasma cell 102 is constructed using a lower glass substrate 107. A plurality of plasma electrodes 108 are patterned in stripes on the main surface of the glass substrate 107. The glass substrate 107 is bonded to the intermediate sheet 103 via a frit seal material 109. An ionizable gas is enclosed in the space sealed by the frit seal material 109. A partition 110 is formed along each plasma electrode 108 by a screen printing method. The plasma cell 102 is divided into stripes by the partition wall 110 and constitutes a discharge channel. This screen printing method is a simple technique and can form a fine pattern, and the productivity and workability are significantly improved.

【0004】[0004]

【発明が解決しようとする課題】ところで、隔壁110
をスクリーン印刷により形成しているが、プラズマセル
102のギャップスペーサとして機能するので相当な厚
みが必要になる。しかしながら、隔壁110の高さには
ばらつきがあり且つ個々の隔壁頂部にもスクリーンメッ
シュ残り等の凹凸が生じる。従って、隔壁110の頂部
と極薄板ガラス等からなる中間シート103が当接した
状態では、中間シート表面にうねりが生じ平坦性が維持
できない。この結果、液晶セル101側の液晶層106
の厚みを均一に制御できず表示品位が著しく損なわれ
る。又、下側のガラス基板107と中間シート103と
の間隙距離にもばらつきが生じ、均一なプラズマ放電を
得る事ができない。
By the way, the partition wall 110
Although it is formed by screen printing, it functions as a gap spacer of the plasma cell 102, so that a considerable thickness is required. However, the heights of the partition walls 110 vary, and irregularities such as screen mesh residue occur at the tops of the individual partition walls. Therefore, in the state where the top of the partition wall 110 and the intermediate sheet 103 made of ultrathin sheet glass are in contact with each other, the surface of the intermediate sheet is undulated and the flatness cannot be maintained. As a result, the liquid crystal layer 106 on the liquid crystal cell 101 side.
The thickness cannot be controlled uniformly and the display quality is significantly impaired. Further, the gap distance between the lower glass substrate 107 and the intermediate sheet 103 also varies, and uniform plasma discharge cannot be obtained.

【0005】そこで、予め隔壁110を厚めに印刷焼成
しておき、その後研磨処理を施して平坦化するという対
策が講じられている。しかしながら、通常隔壁110の
幅寸法は100μm程度に設定され、高さ寸法は100
〜300μmに設定されている。幅寸法に比べて高さ寸
法が大きい為機械的強度が弱く、特に隔壁端部が脆くな
っている。この為、印刷焼成した後頂部平坦化の為の研
磨処理を施すと、機械的応力を受けて隔壁が破損、倒壊
するという課題があった。
Therefore, a measure is taken in which the partition wall 110 is printed and fired thickly in advance and then subjected to a polishing treatment to be flattened. However, the width of the partition 110 is usually set to about 100 μm, and the height is 100 μm.
It is set to ˜300 μm. Since the height dimension is larger than the width dimension, the mechanical strength is weak, and particularly the partition wall end is fragile. For this reason, there is a problem that when the polishing treatment for flattening the top portion is performed after printing and firing, the partition wall is damaged or collapsed due to mechanical stress.

【0006】[0006]

【課題を解決するための手段】上述した従来の技術の課
題に鑑み、本発明は隔壁頂部の安定した研磨処理が可能
なプラズマアドレス液晶表示装置の製造方法を提供する
事を目的とする。かかる目的を達成する為に以下の手段
を講じた。即ち、中間シートを介してプラズマセルと液
晶セルとを互いに重ねたプラズマアドレス液晶表示装置
は以下の工程により製造される。先ず最初に、予めプラ
ズマ電極が形成された基板にストライプ状の隔壁を印刷
形成する隔壁形成工程を行なう。次に、ストライプ状の
隔壁の間に仮補強材を充填し個々の隔壁の周囲を埋め込
む仮補強工程を行なう。続いて、埋め込まれた状態で各
隔壁の頂部を研磨して平坦化する研磨工程を行なう。さ
らに該仮補強材を除去してプラズマ電極を露出する除去
工程を行なう。最後に、各隔壁の平坦化された頂部に当
接して中間シートを接合しプラズマセルを組み立てる接
合工程を行なう。なお、この後プラズマセルの上に重ね
て液晶セルを組み立て、プラズマアドレス液晶表示装置
を完成させる。
SUMMARY OF THE INVENTION In view of the above-mentioned problems of the prior art, it is an object of the present invention to provide a method of manufacturing a plasma addressed liquid crystal display device capable of performing a stable polishing process on the tops of partition walls. The following measures have been taken in order to achieve this object. That is, a plasma addressed liquid crystal display device in which a plasma cell and a liquid crystal cell are superposed on each other via an intermediate sheet is manufactured by the following steps. First, a partition wall forming step of printing and forming stripe-shaped partition walls on a substrate on which plasma electrodes are formed in advance is performed. Next, a temporary reinforcing step is performed in which the temporary reinforcing material is filled between the stripe-shaped partition walls to embed the periphery of each partition wall. Then, a polishing step of polishing and flattening the tops of the partition walls in the embedded state is performed. Further, a removing step of removing the temporary reinforcing material and exposing the plasma electrode is performed. Finally, a joining step is performed in which the flattened tops of the respective partition walls are brought into contact with each other to join the intermediate sheets to assemble a plasma cell. After this, the liquid crystal cell is assembled by stacking it on the plasma cell to complete the plasma addressed liquid crystal display device.

【0007】具体的には、前記仮補強工程では紫外線硬
化型樹脂を基板に供給した後硬化処理を施して仮補強材
を形成する。又、前記除去工程では、撹拌温水中で該紫
外線硬化型樹脂からなる仮補強材を溶解する。好ましく
は、前記仮補強工程では、印刷された隔壁の高さの半分
量以上で且つ隔壁頂部の研磨量以下の高さレベルで仮補
強材を充填すると良い。場合によっては、水溶性紫外線
硬化型樹脂の代わりに、水溶性ポリエチレングリコール
等熱可塑性樹脂を仮補強材に用いる事ができる。
[0007] Specifically, in the temporary reinforcing step, the ultraviolet curable resin is supplied to the substrate and then cured to form a temporary reinforcing material. Further, in the removing step, the temporary reinforcing material made of the ultraviolet curable resin is dissolved in agitated warm water. Preferably, in the temporary reinforcing step, the temporary reinforcing material may be filled at a height level that is not less than half the height of the printed partition wall and not more than the polishing amount of the partition top. In some cases, instead of the water-soluble UV-curable resin, a thermoplastic resin such as water-soluble polyethylene glycol can be used as the temporary reinforcing material.

【0008】[0008]

【作用】本発明によれば、ストライプ状に隔壁をスクリ
ーン印刷しさらに焼成した後、研磨処理に先立って仮補
強材を充填して隔壁の周囲を埋め込む様にした。これに
より機械的強度の比較的弱い隔壁は補強され、研磨処理
時に加わる機械的なストレスに対して十分に耐える事が
可能である。これにより歩留り良く高品質のプラズマセ
ルを作成する事が可能である。研磨処理後用済みとなっ
た仮補強材は除去されプラズマ電極が露出する。仮補強
材として紫外線硬化型樹脂が好適である。熱硬化型樹脂
と異なり、硬化処理時実質的に変形が伴なわないので隔
壁に損傷を与える惧れがない。さらに水溶性の紫外線硬
化型樹脂を用いれば撹拌温水中で容易に溶解除去できる
為、下地のプラズマ電極に悪影響を及ぼす事もない。
又、水溶性ポリエチレングリコールも仮補強材として好
適であり、紫外線硬化型樹脂に比べ取り扱いが簡便化さ
れる。
According to the present invention, the barrier ribs are screen-printed in stripes and further fired, and then the temporary reinforcing material is filled prior to the polishing treatment so that the periphery of the barrier ribs is embedded. As a result, the partition walls having relatively low mechanical strength are reinforced, and it is possible to sufficiently withstand the mechanical stress applied during the polishing process. This makes it possible to produce a high-quality plasma cell with high yield. After the polishing process, the used temporary reinforcing material is removed and the plasma electrode is exposed. An ultraviolet curable resin is suitable as the temporary reinforcing material. Unlike thermosetting resins, there is no risk of damaging the partition walls because they are not substantially deformed during the curing process. Furthermore, if a water-soluble UV-curable resin is used, it can be easily dissolved and removed in warm water with stirring, so that it does not adversely affect the underlying plasma electrode.
In addition, water-soluble polyethylene glycol is also suitable as a temporary reinforcing material, and is easier to handle than ultraviolet curable resins.

【0009】[0009]

【実施例】以下図面を参照して本発明の好適な実施例を
詳細に説明する。図1は本発明にかかるプラズマアドレ
ス液晶表示装置の製造方法の要部を示す工程図である。
先ず最初に(A)に示す隔壁形成工程を行なう。即ち、
予めプラズマ電極1が形成された基板2に、ストライプ
状の隔壁3を印刷形成する。所望の高さ寸法を得る為重
ね塗り印刷が行なわれる。しかしながら個々の隔壁3の
高さ寸法にはある程度のばらつきが含まれ、且つその頂
部には印刷に用いられたスクリーンメッシュの跡等が残
り凹凸が生じている。次に(B)に示す仮補強工程を行
なう。ここでは、ストライプ状の隔壁の間に仮補強材4
を充填し、個々の隔壁3の周囲を埋め込む。好ましく
は、仮補強材4の充填量は、印刷された隔壁3の高さの
半分量以上で且つ隔壁3頂部の研磨量以下の高さレベル
に設定する。仮補強材4が隔壁3の高さの半分量以下の
場合には所望の機械的強度が得られず後工程の研磨によ
り隔壁3が倒壊する惧れがある。又、研磨量以上の高さ
レベルまで仮補強材4を充填するとやはり後工程の研磨
処理に悪影響を及ぼす事がある。なお、予め研磨量に合
わせて仮補強材4の表面高さを設定すれば、研磨処理の
終点検出を略自動的に行なう事が可能である。本例で
は、仮補強材4としては紫外線硬化型樹脂を用いてい
る。この場合には加熱処理を要しないので充填された仮
補強材の体積変化が生ぜず隔壁3に不要な機械的ストレ
スが加わらない。次に(C)で示す研磨工程を行ない、
各隔壁3の頂部を研磨して平坦化する。同時に個々の隔
壁3の高さ寸法も均一に揃える事ができる。最後に
(D)に示す除去工程を行なう。即ち仮補強材を除去し
て下地のプラズマ電極1を露出する。この場合、水溶性
の紫外線硬化型樹脂を仮補強材として用いると除去を極
めて容易に行なえる。例えば、撹拌温水中に浸漬する事
により紫外線硬化型樹脂が溶解し極めて容易に剥離でき
る。この方法を採用すれば、プラズマ電極や隔壁の耐薬
品性に考慮を払う必要がなくなる。なお、この後隔壁の
平坦化された頂部に当接して中間シートを接合しプラズ
マセルを組み立てる接合工程を行なう。さらにプラズマ
セルの上に液晶セルを組み立てプラズマアドレス液晶表
示装置を完成させる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a process diagram showing a main part of a method of manufacturing a plasma addressed liquid crystal display device according to the present invention.
First, the partition wall forming step shown in (A) is performed. That is,
Stripe-shaped partition walls 3 are formed by printing on the substrate 2 on which the plasma electrode 1 is formed in advance. Overprinting is performed to obtain the desired height dimension. However, the heights of the individual partition walls 3 include a certain amount of variation, and the tops of the partition walls 3 have irregularities such as traces of the screen mesh used for printing. Next, the temporary reinforcing step shown in (B) is performed. Here, the temporary reinforcing member 4 is provided between the stripe-shaped partition walls.
To fill in the periphery of each partition 3. Preferably, the filling amount of the temporary reinforcing material 4 is set to a height level that is not less than half the height of the printed partition walls 3 and not more than the polishing amount of the tops of the partition walls 3. If the temporary reinforcing material 4 is less than half the height of the partition wall 3, desired mechanical strength cannot be obtained, and the partition wall 3 may collapse due to polishing in a subsequent process. Further, if the temporary reinforcing material 4 is filled up to a height level equal to or higher than the polishing amount, the polishing process in the subsequent process may be adversely affected. If the surface height of the temporary reinforcing member 4 is set in advance according to the polishing amount, the end point of the polishing process can be detected almost automatically. In this example, an ultraviolet curable resin is used as the temporary reinforcing material 4. In this case, since the heat treatment is not required, the volume change of the filled temporary reinforcing material does not occur, and unnecessary mechanical stress is not applied to the partition wall 3. Next, the polishing step shown in (C) is performed,
The top of each partition wall 3 is polished and flattened. At the same time, the height of each partition 3 can be made uniform. Finally, the removal step shown in (D) is performed. That is, the temporary reinforcing material is removed to expose the underlying plasma electrode 1. In this case, if a water-soluble UV-curable resin is used as a temporary reinforcing material, the removal can be performed very easily. For example, the UV curable resin is dissolved by being immersed in warm water with stirring and can be peeled off very easily. If this method is adopted, it is not necessary to consider the chemical resistance of the plasma electrode or the partition. After this, a joining step is carried out in which the plasma sheet is assembled by contacting the flattened top of the partition wall and joining the intermediate sheet. Further, a liquid crystal cell is assembled on the plasma cell to complete a plasma addressed liquid crystal display device.

【0010】図2は以上の様にして製造されたプラズマ
アドレス液晶表示装置の完成品状態を示す模式的な断面
図である。図示する様に完成した状態では、プラズマア
ドレス液晶表示装置は液晶セル11とプラズマセル12
と両者の間に介在する中間シート13とを積層したフラ
ットパネルとなっている。中間シート13は液晶セルを
駆動する為にできる限り薄い事が必要であり、例えば板
厚が50μm程度の極薄板ガラスを用いる。液晶セル1
1はガラス基板14を用いて構成されており、その内側
主面には透明導電膜からなる複数の信号電極Dが互いに
列方向に沿って平行に形成されている。ガラス基板14
はスペーサ15を用いて所定の間隙を介し中間シート1
3に接着されている。間隙内には液晶層16が充填され
ている。この間隙寸法は通常5μm程度であり表示面全
体に渡って均一に保つ必要がある。この為、図示しない
が通常間隙内には所定の粒径を有するスペーサ粒子が散
布されている。又、中間シート13は、研磨処理により
表面が平坦化され且つ高さが揃えられた隔壁3により支
持されているのでその表面状態は極めて平坦である。こ
れにより、液晶セル11の間隙寸法は±0.1μm程度
の誤差内に制御する事ができる。
FIG. 2 is a schematic cross-sectional view showing a completed product state of the plasma addressed liquid crystal display device manufactured as described above. In the completed state as shown in the figure, the plasma addressed liquid crystal display device has a liquid crystal cell 11 and a plasma cell 12.
And an intermediate sheet 13 interposed between the two are a flat panel. The intermediate sheet 13 needs to be as thin as possible in order to drive the liquid crystal cell, and for example, an extremely thin glass plate having a plate thickness of about 50 μm is used. Liquid crystal cell 1
Reference numeral 1 denotes a glass substrate 14, and a plurality of signal electrodes D made of a transparent conductive film are formed on the inner main surface of the glass substrate 14 in parallel to each other in the column direction. Glass substrate 14
Is the intermediate sheet 1 through a predetermined gap using the spacer 15.
It is glued to 3. A liquid crystal layer 16 is filled in the gap. This gap size is usually about 5 μm and must be kept uniform over the entire display surface. For this reason, although not shown, usually, spacer particles having a predetermined particle diameter are scattered in the gap. Further, since the intermediate sheet 13 is supported by the partition walls 3 whose surface is flattened by polishing and whose heights are uniform, the surface state thereof is extremely flat. Thereby, the gap size of the liquid crystal cell 11 can be controlled within an error of about ± 0.1 μm.

【0011】一方プラズマセル12は前述した基板2を
用いて構成されている。基板2の内側主面にはプラズマ
電極1が形成されている。プラズマ電極1は交互にアノ
ードA及びカソードKとして機能しプラズマ放電を発生
させる。なお、各プラズマ電極1の表面からは仮補強材
が完全に除去されているので放電に悪影響を及ぼす惧れ
がない。プラズマ電極1の上に沿って隔壁3が形成され
ている。前述した様に、この隔壁3の頂部は研磨処理に
より平坦化されており、中間シート13に当接してプラ
ズマセル12及び液晶セル11の間隙寸法を一定に制御
する。隔壁3の外側において基板2の周辺部に沿って低
融点ガラス等からなるフリットシール材17が配設され
ており、中間シート13と基板2とを接合している。両
者の間に気密封止された放電チャネルPが形成される。
この放電チャネルPの内部にはイオン化可能なガスが封
入されている。ガス種は例えばヘリウム、ネオン、アル
ゴン、キセノンあるいはこれらの混合気体から選ぶ事が
できる。隣接する一対のプラズマ電極1即ちアノードA
とカソードKとの間に所定の電圧を印加すると、封入さ
れているガスが選択的にイオン化されイオン化ガスの局
在化した放電領域Sが形成される。この放電領域Sは隔
壁3によって実質的に限定されており行走査単位とな
る。放電チャネルPと信号電極Dとの交差部に個々の画
素が位置する事になる。なお、本例では隔壁3がプラズ
マ電極1の上に整合して設けられているが、本発明はこ
れに限られるものではない。例えば、互いに隣接する一
対の隔壁の間にアノードA及びカソードKとして機能す
る一対のプラズマ電極を設ける様にしても良い。又、場
合によってはプラズマ電極1と隔壁3を互いに直交する
方向に設け、所謂オープンセル構造としても良い。
On the other hand, the plasma cell 12 is constructed by using the above-mentioned substrate 2. A plasma electrode 1 is formed on the inner main surface of the substrate 2. The plasma electrode 1 alternately functions as an anode A and a cathode K to generate plasma discharge. Since the temporary reinforcing material is completely removed from the surface of each plasma electrode 1, there is no fear of adversely affecting the discharge. A partition wall 3 is formed along the plasma electrode 1. As described above, the tops of the partition walls 3 are flattened by the polishing process, and contact the intermediate sheet 13 to control the gap size between the plasma cell 12 and the liquid crystal cell 11 to be constant. A frit seal material 17 made of low-melting glass or the like is provided outside the partition wall 3 along the peripheral portion of the substrate 2, and joins the intermediate sheet 13 and the substrate 2 together. A hermetically sealed discharge channel P is formed between the two.
An ionizable gas is enclosed inside the discharge channel P. The gas species can be selected from, for example, helium, neon, argon, xenon or a mixed gas thereof. A pair of adjacent plasma electrodes 1 or anodes A
When a predetermined voltage is applied between the cathode and the cathode K, the enclosed gas is selectively ionized to form the localized discharge region S of the ionized gas. The discharge area S is substantially limited by the barrier ribs 3 and serves as a row scanning unit. Each pixel is located at the intersection of the discharge channel P and the signal electrode D. In this example, the partition wall 3 is provided so as to be aligned with the plasma electrode 1, but the present invention is not limited to this. For example, a pair of plasma electrodes functioning as an anode A and a cathode K may be provided between a pair of partition walls adjacent to each other. In addition, in some cases, the plasma electrode 1 and the partition walls 3 may be provided in directions orthogonal to each other to form a so-called open cell structure.

【0012】次に図3のフローチャートを用い、且つ図
4ないし図6を補助として参照しながら、本発明にかか
るプラズマアドレス液晶表示装置の製造方法の具体例を
詳細に説明する。先ず最初に工程S1においてプラズマ
電極の印刷を行なう。例えばニッケルペースト等をスク
リーン印刷法により塗布する。次に工程S2において隔
壁を印刷する。同様にスクリーン印刷を用い、ガラスペ
ースト等を重ねて繰り返し塗布する事により所望の隔壁
高さを出す。但し、予め研磨量を見込んで印刷高さを設
定する事が好ましい。次に工程S3で所定の温度プロフ
ァイルに従って印刷されたプラズマ電極及び隔壁を同時
に焼成する。
Next, a specific example of a method of manufacturing a plasma addressed liquid crystal display device according to the present invention will be described in detail with reference to the flowchart of FIG. 3 and with reference to FIGS. First, in step S1, printing of plasma electrodes is performed. For example, nickel paste or the like is applied by a screen printing method. Next, in step S2, partition walls are printed. Similarly, by using screen printing, a desired partition wall height is obtained by repeatedly applying glass paste or the like and applying it repeatedly. However, it is preferable to set the printing height in consideration of the polishing amount in advance. Next, in step S3, the plasma electrode and the partition printed according to a predetermined temperature profile are simultaneously fired.

【0013】この段階で形成されたプラズマ電極及び隔
壁の高さ寸法及び幅寸法を図4に示す。本例ではプラズ
マ電極1は300μmの幅寸法を有し、410μmのピ
ッチでストライプ状に配列されている。一方隔壁3は幅
寸法が100μmであり、基板2表面から頂部までの高
さ寸法が200μmに設定されている。この様に隔壁3
は幅寸法よりも高さ寸法が大きく壁形状を有しており且
つ機械的強度もそれ程高くない為、直接研磨処理を施す
と破損あるいは倒壊の惧れがある。
FIG. 4 shows the height and width dimensions of the plasma electrode and the partition walls formed at this stage. In this example, the plasma electrodes 1 have a width of 300 μm and are arranged in stripes at a pitch of 410 μm. On the other hand, the partition wall 3 has a width dimension of 100 μm, and the height dimension from the surface of the substrate 2 to the top is set to 200 μm. Partition wall 3
Has a wall shape with a height dimension larger than a width dimension, and its mechanical strength is not so high. Therefore, if it is directly subjected to a polishing treatment, it may be damaged or collapsed.

【0014】再び図3のフローチャートに戻って工程S
4で仮補強材の充填を行なう。本例では、スリーボンド
社製の水溶性紫外線硬化型樹脂(3046B)を用い、
スプレーで霧状にして塗布を行なった。その後紫外線を
照射して硬化させる。この塗布及び照射を数回繰り返す
事により、160〜170μmの高さレベルまで仮補強
材を充填し個々の隔壁の周囲を埋め込む。なお、図4に
隔壁3の高さ寸法と仮補強材4の高さレベルとの関係を
模式的に示している。なお、スプレー法に代えてディッ
プ法により紫外線硬化型樹脂を塗布しても良い。ディッ
プを行なう場合、引き上げ方向を隔壁のストライプと直
交する方向に選ぶ事が好ましい。仮にストライプと平行
な方向に基板を引き上げると上方と下方とで厚みむらが
生じてしまう。
Returning to the flowchart of FIG. 3 again, step S
In step 4, the temporary reinforcing material is filled. In this example, a water-soluble UV curable resin (3046B) manufactured by ThreeBond is used,
Application was performed by atomizing with a spray. Then, it is irradiated with ultraviolet rays to be cured. By repeating this application and irradiation several times, the temporary reinforcing material is filled up to a height level of 160 to 170 μm, and the periphery of each partition wall is embedded. Note that FIG. 4 schematically shows the relationship between the height dimension of the partition wall 3 and the height level of the temporary reinforcing member 4. The UV curable resin may be applied by a dip method instead of the spray method. When dipping is performed, it is preferable to select the pulling direction to be a direction orthogonal to the stripes of the partition walls. If the substrate is pulled up in a direction parallel to the stripes, uneven thickness will occur between the upper side and the lower side.

【0015】次に工程S5で研磨処理を行なう。本例で
は液晶表示素子ガラス基板用の片面ポリッシングマシン
(例えば、スピードファム社製のSP−800)を用い
て研磨処理を行なった。図5に、片面ポリッシングマシ
ンの斜視外観構造を示す。回転砥石板21の上面に一対
のアーム22が取り付けられている。各アーム22の下
面には加圧板23が取り付けられている。この加圧板2
3の裏面に研磨対象となる基板2が固定される。
Next, in step S5, a polishing process is performed. In this example, a polishing process was performed using a single-side polishing machine for a glass substrate of a liquid crystal display device (for example, SP-800 manufactured by Speed Fam Co.). FIG. 5 shows a perspective external structure of the single-side polishing machine. A pair of arms 22 are attached to the upper surface of the rotary grindstone plate 21. A pressure plate 23 is attached to the lower surface of each arm 22. This pressure plate 2
The substrate 2 to be polished is fixed to the back surface of the substrate 3.

【0016】図6は、図5に示した片面ポリッシングマ
シンの研磨動作を表わす模式的な平面図である。図示す
る様に、回転砥石板21はシャフト24を中心として双
方向に回転する。一方、一対のアーム22はシャフト2
5を中心として回転砥石板21と平行な方向に揺動す
る。この結果、加圧板23の裏面に固着された基板2に
設けられた隔壁頂部が均一に研磨できる。本例では研磨
材としてWA#2000を用い、加圧板23に0.3kg
f の圧力を加え、回転砥石板21の回転数を25rpm に
設定し、一対のアーム22の揺動回数を4rpm に設定し
た。10〜15秒の研磨処理を行なう事により、約20
μmの隔壁頂部研削が実施できた。
FIG. 6 is a schematic plan view showing a polishing operation of the single-sided polishing machine shown in FIG. As shown in the figure, the rotary grindstone plate 21 rotates bidirectionally around the shaft 24. On the other hand, the pair of arms 22 is the shaft 2
It swings in the direction parallel to the rotary grindstone plate 21 around the center 5. As a result, the tops of the partition walls provided on the substrate 2 fixed to the back surface of the pressure plate 23 can be uniformly polished. In this example, WA # 2000 is used as the abrasive, and 0.3 kg is applied to the pressure plate 23.
A pressure of f was applied, the number of rotations of the rotary grindstone plate 21 was set to 25 rpm, and the number of swings of the pair of arms 22 was set to 4 rpm. By polishing for 10 to 15 seconds, about 20
The top of the partition wall of μm could be ground.

【0017】再び図3のフローチャートに戻り工程S6
で、紫外線硬化型樹脂の洗浄を行なう。この洗浄は約8
0℃の温水を用い超音波及び揺動を加えて行なった。1
5分程度の洗浄処理により紫外線硬化型樹脂を略完全に
剥離する事ができた。この後洗浄液を温水からIPAに
置換して乾燥むらをなくした。この後工程S7でフリッ
トシールを行ない研磨処理の済んだ基板と中間シートを
接合し内部にイオン化可能なガスを封入してプラズマセ
ルを組み立てた。最後に工程S8で中間シートの上面側
に液晶セルを組み立てプラズマアドレス液晶表示装置を
完成させた。
Returning to the flowchart of FIG. 3 again, step S6
Then, the UV curable resin is washed. This cleaning is about 8
Ultrasonic waves and rocking were added using warm water of 0 ° C. 1
The UV curable resin could be peeled off almost completely by the washing treatment for about 5 minutes. After that, the washing liquid was replaced with warm water by IPA to eliminate unevenness in drying. After this, in step S7, frit sealing was performed to bond the polished substrate to the intermediate sheet, and an ionizable gas was sealed inside to assemble a plasma cell. Finally, in step S8, a liquid crystal cell was assembled on the upper surface side of the intermediate sheet to complete a plasma addressed liquid crystal display device.

【0018】図8は、本発明にかかるプラズマアドレス
液晶表示装置製造方法の他の具体例を示すフローチャー
トである。基本的には、図3に示した先の具体例と同様
である。異なる点は、仮補強材として水溶性紫外線硬化
型樹脂に代え、水溶性ポリエチレングリコールを用いた
事である。なお、この材料は熱可塑性である。先ず工程
S1においてプラズマ電極の印刷を行なう。次に工程S
2において隔壁を印刷する。次に工程S3で、印刷され
たプラズマ電極及び隔壁を同時に焼成する。この後工程
S41,S42及びS43で仮補強材の充填を行なう。
ここでは、仮補強材として水溶性のポリエチレングリコ
ール(PEG)を用意する。例えば、第一工業製薬株式
会社製の商品名PEG1540を用いる事ができる。あ
るいは、ユニオン カーバイド ケミカルズ アンド
プラスティックス 株式会社から供給される商品名CA
RBO−WAX1450を用いる事ができる。何れも、
溶融温度が45℃〜50℃の熱可塑性であり、且つ完全
水溶性である。先ず工程S41で、予めプラズマ電極及
び隔壁が形成された基板にポリエチレングリコールを供
給する。基板はホットプレート上に載置されており、供
給されたポリエチレングリコールは溶融状態になる。続
いて工程S42に進み、電気路で基板加熱を行ないポリ
エチレングリコールの表面を平坦化する。ポリエチレン
グリコールの溶融温度より5℃程度高い条件で基板加熱
を行なう事により、表面張力の作用で溶融状態にあるポ
リエチレングリコールの表面が平らになる。次に工程S
43で基板を除冷する。仮に、基板を急冷するとポリエ
チレングリコールが固化する時表面にひびが入る惧れが
ある。この様にして仮補強材の充填工程が終わると、工
程S5に進み研磨処理を行なう。次に工程S6で、水溶
性ポリエチレングリコールの洗浄を行なう。この後工程
S7でフリットシールを行ない研磨処理の済んだ基板と
中間シートを接合し内部にイオン化可能なガスを封入し
てプラズマセルを組み立てる。最後に工程S8で中間シ
ートの上面側に液晶セルを組み立てプラズマアドレス液
晶表示装置を完成する。
FIG. 8 is a flow chart showing another specific example of the method of manufacturing a plasma addressed liquid crystal display device according to the present invention. Basically, it is the same as the previous specific example shown in FIG. The difference is that water-soluble polyethylene glycol is used as the temporary reinforcing material instead of the water-soluble UV-curable resin. Note that this material is thermoplastic. First, in step S1, the plasma electrodes are printed. Next step S
At 2, print the septum. Next, in step S3, the printed plasma electrodes and barrier ribs are simultaneously fired. After this, in steps S41, S42 and S43, the temporary reinforcing material is filled.
Here, water-soluble polyethylene glycol (PEG) is prepared as a temporary reinforcing material. For example, the trade name PEG1540 manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd. can be used. Or Union Carbide Chemicals and
Product name CA supplied by Plastics Co., Ltd.
RBO-WAX1450 can be used. Both
It is thermoplastic with a melting temperature of 45 ° C to 50 ° C and is completely water-soluble. First, in step S41, polyethylene glycol is supplied to the substrate on which the plasma electrode and the partition are formed in advance. The substrate is placed on the hot plate, and the supplied polyethylene glycol is in a molten state. Subsequently, in step S42, the substrate is heated by an electric path to flatten the surface of polyethylene glycol. By heating the substrate at a temperature about 5 ° C. higher than the melting temperature of polyethylene glycol, the surface tension acts to flatten the surface of the molten polyethylene glycol. Next step S
The substrate is cooled at 43. If the substrate is rapidly cooled, the surface of the polyethylene may crack when the polyethylene glycol is solidified. When the filling process of the temporary reinforcing material is completed in this way, the process proceeds to step S5 and the polishing process is performed. Next, in step S6, the water-soluble polyethylene glycol is washed. After this, in step S7, frit sealing is performed to bond the polished substrate to the intermediate sheet, and an ionizable gas is sealed inside to assemble a plasma cell. Finally, in step S8, a liquid crystal cell is assembled on the upper surface side of the intermediate sheet to complete a plasma addressed liquid crystal display device.

【0019】図9は、ポリエチレングリコールからなる
仮補強材4の充填状態を示す模式的な部分断面図であ
る。本例では、隔壁3全体を被覆する様に厚めにポリエ
チレングリコールを塗布している。前述した様に、ポリ
エチレングリコールからなる仮補強材4の表面は平坦化
されているので、均一且つ確実な研磨処理ができる。
又、ポリエチレングリコールは完全水溶性であるので、
水のみの洗浄でかなり綺麗に除去できる。従って、プラ
ズマ放電に悪影響を与えない。紫外線硬化型樹脂と異な
り紫外線ランプ等特別の装置を必要としない。ポリエチ
レングリコール自体は化学的に安全な材料である。
FIG. 9 is a schematic partial sectional view showing a filled state of the temporary reinforcing material 4 made of polyethylene glycol. In this example, polyethylene glycol is applied thickly so as to cover the entire partition wall 3. As described above, since the surface of the temporary reinforcing material 4 made of polyethylene glycol is flattened, uniform and reliable polishing can be performed.
Also, since polyethylene glycol is completely water soluble,
It can be removed fairly cleanly by washing with water only. Therefore, it does not adversely affect the plasma discharge. Unlike UV curable resin, no special equipment such as UV lamp is required. Polyethylene glycol itself is a chemically safe material.

【0020】以上説明した2通りの実施例では、仮補強
材として水溶性紫外線硬化型樹脂又はポリエチレングリ
コール等の熱可塑性樹脂を用いている。個々の製造条件
に合わせて最適な仮補強材を選択すれば良く、本発明は
開示された樹脂材料に限られるものではない。なお、紫
外線硬化型樹脂を用いる場合、粘度によって仮補強材の
剥離量が異なる点に注意する必要がある。粘度が比較的
高い場合には、仮補強材が水に溶解するのではなく、む
しろ水によって剥離する傾向がある。この為、研磨時に
仮補強材の役割を果たさなくなる場合がある。又、粘度
が比較的低い場合には、水によって取れた樹脂が固まっ
てしまい、研磨時に研磨剤を取り込んで隔壁に損傷を与
える場合がある。ポリエチレングリコールを用いる場合
には、これらの難点はない。
In the two examples described above, a water-soluble ultraviolet curable resin or a thermoplastic resin such as polyethylene glycol is used as the temporary reinforcing material. The optimum temporary reinforcing material may be selected according to individual manufacturing conditions, and the present invention is not limited to the disclosed resin material. It should be noted that when the ultraviolet curable resin is used, the peeling amount of the temporary reinforcing material varies depending on the viscosity. If the viscosity is relatively high, the temporary reinforcement will not dissolve in water, but rather will tend to peel off with water. For this reason, there is a case where the role of the temporary reinforcing material is not fulfilled at the time of polishing. Further, when the viscosity is relatively low, the resin taken out by water may be solidified, and the polishing agent may be taken in during polishing to damage the partition walls. When using polyethylene glycol, these difficulties do not occur.

【0021】[0021]

【発明の効果】以上説明した様に、本発明によれば、紫
外線硬化型樹脂あるいはポリエチレングリコール等の仮
補強材を充填する事により強度を増して隔壁頂部の研磨
を行ない、その後仮補強材を除去する事により、歩留り
良く均一な高さの隔壁を作成する事ができた。研磨の仕
上がり精度(平坦度)が改善され、液晶セル側と貼り合
わせた後のギャップむらは0.1μm以下まで均一に制
御する事が可能になった。
As described above, according to the present invention, by filling a temporary reinforcing material such as an ultraviolet curable resin or polyethylene glycol, the strength is increased to polish the top of the partition wall, and then the temporary reinforcing material is used. By removing the barrier ribs, it was possible to form partition walls with high yield and uniform height. The finishing accuracy (flatness) of polishing was improved, and it became possible to uniformly control the gap unevenness after bonding with the liquid crystal cell side to 0.1 μm or less.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかるプラズマアドレス液晶表示装置
の製造方法を示す基本的な工程図である。
FIG. 1 is a basic process diagram showing a method of manufacturing a plasma addressed liquid crystal display device according to the present invention.

【図2】本発明に従って製造されたプラズマアドレス液
晶表示装置の完成品状態を示す模式的な断面図である。
FIG. 2 is a schematic cross-sectional view showing a completed product state of a plasma addressed liquid crystal display device manufactured according to the present invention.

【図3】本発明にかかるプラズマアドレス液晶表示装置
の製造方法の具体例を示すフローチャートである。
FIG. 3 is a flowchart showing a specific example of a method for manufacturing a plasma addressed liquid crystal display device according to the present invention.

【図4】隔壁及びプラズマ電極の具体的な寸法を示す説
明図である。
FIG. 4 is an explanatory diagram showing specific dimensions of partition walls and plasma electrodes.

【図5】研磨処理に用いられた片面ポリッシングマシン
の外観斜視図である。
FIG. 5 is an external perspective view of a single-sided polishing machine used for a polishing process.

【図6】同じく片面ポリッシングマシンの平面図であ
る。
FIG. 6 is a plan view of the single-sided polishing machine.

【図7】従来のプラズマアドレス液晶表示装置を示す断
面図である。
FIG. 7 is a cross-sectional view showing a conventional plasma addressed liquid crystal display device.

【図8】本発明にかかるプラズマアドレス液晶表示装置
製造方法の他の具体例を示すフローチャートである。
FIG. 8 is a flowchart showing another specific example of the method of manufacturing a plasma addressed liquid crystal display device according to the present invention.

【図9】仮補強材の充填状態を示す模式的な断面図であ
る。
FIG. 9 is a schematic cross-sectional view showing a filled state of a temporary reinforcing material.

【符号の説明】[Explanation of symbols]

1 プラズマ電極 2 基板 3 隔壁 4 仮補強材 11 液晶セル 12 プラズマセル 13 中間シート 1 Plasma Electrode 2 Substrate 3 Partition 4 Temporary Reinforcing Material 11 Liquid Crystal Cell 12 Plasma Cell 13 Intermediate Sheet

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 中間シートを介してプラズマセルと液晶
セルとを互いに重ねたプラズマアドレス液晶表示装置の
製造方法において、 予めプラズマ電極が形成された基板にストライプ状の隔
壁を印刷形成する隔壁形成工程と、 ストライプ状の隔壁の間に仮補強材を充填し個々の隔壁
の周囲を埋め込む仮補強工程と、 埋め込まれた状態で各隔壁の頂部を研磨して平坦化する
研磨工程と、 該仮補強材を除去してプラズマ電極を露出する除去工程
と、 各隔壁の平坦化された頂部に当接して該中間シートを接
合しプラズマセルを組み立てる接合工程とを行なう事を
特徴とするプラズマアドレス液晶表示装置の製造方法。
1. A method of manufacturing a plasma addressed liquid crystal display device in which a plasma cell and a liquid crystal cell are superposed on each other via an intermediate sheet, and a partition forming step of printing and forming a stripe-shaped partition on a substrate on which a plasma electrode is formed in advance. And a temporary reinforcing step of filling a temporary reinforcing material between the stripe-shaped partition walls to fill the periphery of each partition wall, a polishing step of polishing and flattening the top of each partition wall in the embedded state, and the temporary reinforcing Plasma addressed liquid crystal display characterized by performing a removing step of removing a material to expose a plasma electrode and a joining step of assembling a plasma cell by abutting on a flattened top of each partition wall and joining the intermediate sheet. Device manufacturing method.
【請求項2】 前記仮補強工程は、紫外線硬化型樹脂を
基板に供給した後硬化処理を施して仮補強材を形成する
事を特徴とする請求項1記載のプラズマアドレス液晶表
示装置の製造方法。
2. The method of manufacturing a plasma addressed liquid crystal display device according to claim 1, wherein in the temporary reinforcing step, an ultraviolet curable resin is supplied to the substrate and then a curing process is performed to form the temporary reinforcing material. .
【請求項3】 前記除去工程は、撹拌温水中で該紫外線
硬化型樹脂からなる仮補強材を溶解する事を特徴とする
請求項2記載のプラズマアドレス液晶表示装置の製造方
法。
3. The method of manufacturing a plasma addressed liquid crystal display device according to claim 2, wherein in the removing step, the temporary reinforcing material made of the ultraviolet curable resin is dissolved in agitated warm water.
【請求項4】 前記仮補強工程は、印刷された隔壁の高
さの半分量以上で且つ隔壁頂部の研磨量以下の高さレベ
ルで該仮補強材を充填する事を特徴とする請求項1記載
のプラズマアドレス液晶表示装置の製造方法。
4. The temporary reinforcing step is characterized in that the temporary reinforcing material is filled at a height level of not less than half the height of the printed partition wall and not more than the polishing amount at the top of the partition wall. A method for manufacturing the plasma addressed liquid crystal display device described.
【請求項5】 前記仮補強工程は、仮補強材として水溶
性ポリエチレングリコールを用いる事を特徴とする請求
項1記載のプラズマアドレス液晶表示装置の製造方法。
5. The method of manufacturing a plasma addressed liquid crystal display device according to claim 1, wherein the temporary reinforcing step uses water-soluble polyethylene glycol as a temporary reinforcing material.
JP25761794A 1993-11-05 1994-09-27 Manufacturing method of plasma addressed liquid crystal display device Expired - Lifetime JP3297789B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP25761794A JP3297789B2 (en) 1993-11-05 1994-09-27 Manufacturing method of plasma addressed liquid crystal display device
KR1019950010824A KR100325400B1 (en) 1994-09-27 1995-05-03 Manufacturing Method of Plasma Address Liquid Crystal Display Device
US08/434,863 US5526151A (en) 1994-09-27 1995-05-04 Method of manufacturing a plasma addressed liquid crystal display device having planarized barrier ribs
US08/658,598 US5810634A (en) 1994-09-27 1996-06-05 Method of manufacturing a plasma addressed liquid crystal display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP5-301334 1993-11-05
JP30133493 1993-11-05
JP25761794A JP3297789B2 (en) 1993-11-05 1994-09-27 Manufacturing method of plasma addressed liquid crystal display device
US08/434,863 US5526151A (en) 1994-09-27 1995-05-04 Method of manufacturing a plasma addressed liquid crystal display device having planarized barrier ribs

Publications (2)

Publication Number Publication Date
JPH07176267A true JPH07176267A (en) 1995-07-14
JP3297789B2 JP3297789B2 (en) 2002-07-02

Family

ID=27334644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25761794A Expired - Lifetime JP3297789B2 (en) 1993-11-05 1994-09-27 Manufacturing method of plasma addressed liquid crystal display device

Country Status (1)

Country Link
JP (1) JP3297789B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997030570A1 (en) * 1996-02-13 1997-08-21 Schmidt Boecking Horst Device for preparing a plasma and use of said device for preparing a plasma
KR100416086B1 (en) * 1999-11-17 2004-01-31 삼성에스디아이 주식회사 Method of flating separators in a plasma display pannel for preventing cross talk

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997030570A1 (en) * 1996-02-13 1997-08-21 Schmidt Boecking Horst Device for preparing a plasma and use of said device for preparing a plasma
KR100416086B1 (en) * 1999-11-17 2004-01-31 삼성에스디아이 주식회사 Method of flating separators in a plasma display pannel for preventing cross talk

Also Published As

Publication number Publication date
JP3297789B2 (en) 2002-07-02

Similar Documents

Publication Publication Date Title
US6242859B1 (en) Plasma display panel and method of manufacturing same
JP4854127B2 (en) INLINE SYSTEM FOR LIQUID CRYSTAL DISPLAY DEVICE, MANUFACTURING DEVICE CONSTRUCTING THE SAME, AND MANUFACTURING METHOD FOR LIQUID CRYSTAL DISPLAY DEVICE
JP2002014360A (en) Method and device for manufacturing liquid crystal panel
KR100648770B1 (en) Manufacturing method for display panel
US5526151A (en) Method of manufacturing a plasma addressed liquid crystal display device having planarized barrier ribs
JPWO2009060884A1 (en) Droplet coating apparatus, droplet coating method, liquid crystal display panel manufacturing apparatus, and liquid crystal display panel manufacturing method
JPH07176267A (en) Manufacture of plasma address liquid crystal display device
US5810634A (en) Method of manufacturing a plasma addressed liquid crystal display device
KR100325400B1 (en) Manufacturing Method of Plasma Address Liquid Crystal Display Device
KR100731041B1 (en) Liquid crystal deaeration apparatus and method using it
KR20050073659A (en) Liquid crystal display and method for manufacturing the same
JP2005038635A (en) Manufacturing method and manufacturing apparatus for plasma display panel
JP2009255317A (en) Printing screen, printing method and printing apparatus
KR100302133B1 (en) Plasma Cell Manufacturing Method of Plasma Address Liquid Crystal Display
JP2000193942A (en) Plasma address liquid crystal display device and its manufacture
JP4087163B2 (en) Manufacturing method of liquid crystal display device
JPH10301073A (en) Method for bonding base plate
JPH08304795A (en) Manufacture of plasma address display device
JPH10115831A (en) Manufacture of liquid crystal display device
JPH11354018A (en) Rib forming method for plasma display panel back plate and device
EP1939918B1 (en) Method of manufacturing lower panel having barrier ribs for plasma display panel
JPH10213791A (en) Production of plasma address display device
JPH11249107A (en) Production of plasma address display device
JP2003317622A (en) Method of manufacturing display panel
JP2000214425A (en) Production of liquid crystal display device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080419

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100419

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100419

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110419

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110419

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120419

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120419

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130419

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130419

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140419

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term