JPH07174888A - Condenser - Google Patents

Condenser

Info

Publication number
JPH07174888A
JPH07174888A JP5322728A JP32272893A JPH07174888A JP H07174888 A JPH07174888 A JP H07174888A JP 5322728 A JP5322728 A JP 5322728A JP 32272893 A JP32272893 A JP 32272893A JP H07174888 A JPH07174888 A JP H07174888A
Authority
JP
Japan
Prior art keywords
pipe
pipes
cooling
condenser
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5322728A
Other languages
Japanese (ja)
Inventor
Fumio Obara
文男 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5322728A priority Critical patent/JPH07174888A/en
Publication of JPH07174888A publication Critical patent/JPH07174888A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To prevent the corrosion of cooling pipes due to the direct hit of the high-speed steam flow without causing a pressure loss by constituting the cooling pipes in the area where at least high-speed steam flows in on the outer periphery section of a pipe bundle with double pipes having inner pipes covered by outer pipes. CONSTITUTION:This condenser has an upper main body 2 and a lower main body 3, and a pipe bundle 5 constituted of many cooling pipes 20 is stored in the lower main body 3. The cooling pipes 20 located at least on the first line of the outer periphery section of the pipe bundle 5 where the turbine exhaust steam flows in are constituted with double pipes over the whole length. An inner pipe 21 in the cooling pipe 20 is made of titanium, and the thickness is set to about 0.5mm. An outer pipe 22 made of aluminum brass covers the whole area of the inner pipe 21, and the thickness is set equal to or slightly thicker than that of the inner pipe 21. The inner pipe 21 is made of titanium, other cooling pipes are also made of titanium, thus the flow speed of the cooling sea water can be kept uniform. The inner pipes 21 are not damaged until the damage of the outer pipes 22 progresses in use for a long period.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は火力、原子力発電プラン
トの蒸気タービンに付設される復水器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a condenser attached to a steam turbine of a thermal power and nuclear power plant.

【0002】[0002]

【従来の技術】原子力発電プラントにおいては蒸気発生
器で発生した蒸気を蒸気タービンに導き、タービン羽根
車を回転させ、発電機により電気出力を得ている。蒸気
タービンで仕事をした蒸気は、低圧タービンの排気口よ
り復水器に排出され、そこで海水によって冷却され、凝
縮して復水となる。
2. Description of the Related Art In a nuclear power plant, steam generated by a steam generator is introduced into a steam turbine, a turbine impeller is rotated, and an electric output is obtained by a generator. The steam that has worked in the steam turbine is discharged from the exhaust port of the low-pressure turbine to a condenser, where it is cooled by seawater and condensed to become condensed water.

【0003】この復水器を図面を参照して説明する。This condenser will be described with reference to the drawings.

【0004】図3において、復水器は低圧タービン1の
下部に接続される上部本体2と、この上部本体2に連結
される下部本体3とからなり、上部本体2にはネックヒ
ータ4が収納されている。下部本体3には低圧タービン
1からの排気蒸気と熱交換するため、多数の冷却管から
なる管束5が収容され、冷却管内には冷却海水を通水す
るため下部本体3に入口水室6aおよび出口水室6bが
設けられる。入口および出口水室6a、6bには各々入
口循環水管7と出口循環水管8とが接続されて、冷却海
水が入口水室6a、冷却管内、出口水室6bにかけて流
動するようになっている。
In FIG. 3, the condenser comprises an upper main body 2 connected to the lower portion of the low pressure turbine 1 and a lower main body 3 connected to the upper main body 2, and a neck heater 4 is housed in the upper main body 2. Has been done. In order to exchange heat with the exhaust steam from the low-pressure turbine 1 in the lower body 3, a tube bundle 5 made up of a large number of cooling tubes is housed. In order to pass cooling seawater into the cooling tubes, the lower body 3 has an inlet water chamber 6a and An outlet water chamber 6b is provided. An inlet circulating water pipe 7 and an outlet circulating water pipe 8 are connected to the inlet and outlet water chambers 6a and 6b, respectively, so that cooling seawater flows through the inlet water chamber 6a, the inside of the cooling pipe, and the outlet water chamber 6b.

【0005】図4は上記の復水器を低圧タービン1から
下向きに見た図である。低圧タービン1の軸方向と直角
に管束5が2つ配置され、この2つの管束5の間に管束
長手方向にネックヒータ4が配置されている。なお、符
号9はタービン軸を示している。図3に低圧タービン1
と上部本体2との結合部付近のタービン排気蒸気の流れ
を矢印aで示している。
FIG. 4 is a view of the above condenser viewed from the low pressure turbine 1 downward. Two tube bundles 5 are arranged at right angles to the axial direction of the low-pressure turbine 1, and a neck heater 4 is arranged between the two tube bundles 5 in the tube bundle longitudinal direction. In addition, the code | symbol 9 has shown the turbine shaft. Low pressure turbine 1 in FIG.
The flow of the turbine exhaust steam in the vicinity of the joint between the upper body 2 and the upper body 2 is indicated by an arrow a.

【0006】タービン排気蒸気が矢印aの方向から管束
5に衝突するとき、蒸気中に含まれる微小な水滴が高速
で冷却管に衝突し、この繰り返しにより冷却管が浸食す
ることがある。浸食が進行すると、冷却管の管壁が破
れ、貫通部を通して冷却管内部の冷却海水が復水器内へ
漏洩し、復水に混入してしまう可能性がある。この対策
として管束5の上部に高速湿分の直撃を避ける保護装置
10が使用される。
When the turbine exhaust steam collides with the tube bundle 5 in the direction of the arrow a, minute water droplets contained in the steam collide with the cooling pipe at a high speed, and the cooling pipe may be eroded due to this repetition. As the erosion progresses, the pipe wall of the cooling pipe may be broken, and the cooling seawater inside the cooling pipe may leak into the condenser through the penetrating portion and be mixed into the condensate. As a countermeasure against this, a protective device 10 is used on the upper part of the tube bundle 5 to avoid direct hit of high-speed moisture.

【0007】このような保護装置10の例を図5に示し
ている。保護装置10は鋼製の枠材11と保護部材12
とから構成され、蒸気が保護部材12に衝突し、湿分を
含む蒸気が衝突によりエネルギを失って低速となり、管
束5に導かれる。
An example of such a protection device 10 is shown in FIG. The protective device 10 includes a steel frame member 11 and a protective member 12.
The steam collides with the protection member 12, and the steam containing moisture loses energy due to the collision and becomes low speed, and is guided to the tube bundle 5.

【0008】図6(a)(b)に保護装置9の別な例を
示している。上述の図5に示すよりもさらに小形の保護
装置13を管束5の外周付近に設けたものであり、復水
器の胴板4側へ数箇所配置して管束5の保護を図ってい
る。
FIGS. 6A and 6B show another example of the protection device 9. A protective device 13 which is smaller than that shown in FIG. 5 is provided near the outer periphery of the tube bundle 5, and the tube bundle 5 is protected by arranging it at several positions on the body plate 4 side of the condenser.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、このよ
うな保護装置10、13を設けた場合、圧力損失の増加
により、復水器の真空度が低下することになる。図7に
この種の保護装置の設置面積が増加したとき、圧力損失
の影響から復水器真空度が低下する様子を具体的に示し
ている。この真空度の低下のために熱交換性能は保護装
置がないものと比べて大幅に低下することになる。
However, when such protective devices 10 and 13 are provided, the vacuum degree of the condenser is lowered due to an increase in pressure loss. FIG. 7 specifically shows how the condenser vacuum degree decreases due to the influence of pressure loss when the installation area of this type of protection device increases. Due to this decrease in the degree of vacuum, the heat exchange performance is significantly reduced as compared with the case without the protective device.

【0010】たとえば、冷却管にチタン材を使用した復
水器においては、湿分で浸食を受けることに対し、湿分
の衝突する管束4の外周側に厚さを増した管を使用し、
浸食が進んでも長く寿命が保てるような対策を講じる方
法も考えられる。しかし、この対策には2つの問題が発
生する。1つは厚肉のチタン管を採用すると、熱交換に
おける熱貫流率が低下し、結果として復水器真空度が低
下してしまうことである。2つ目は、一般に、チタン管
は高価であり、厚さを増した場合に一層高価となること
から経済性が損なわれる。
For example, in a condenser using a titanium material for a cooling pipe, a tube having an increased thickness is used on the outer peripheral side of the tube bundle 4 which collides with moisture, while being eroded by moisture.
It is also possible to take measures to maintain a long life even if erosion progresses. However, this measure has two problems. One is that when a thick titanium tube is used, the heat transmission coefficient in heat exchange is reduced, and as a result, the condenser vacuum degree is reduced. Second, in general, the titanium tube is expensive, and it becomes more expensive when the thickness is increased, which impairs the economical efficiency.

【0011】他の方法として管束4の外周側にチタン管
よりも肉厚で熱貫流率の良いアルミニウム黄銅製の冷却
管を使用することも考えられるが、チタン管で構成され
る復水器の一部にアルミニウム黄銅管を使用するには、
2つの大きな問題がある。1つはチタン管の場合、復水
器は冷却管内の流速を高めて熱交換性能をアルミニウム
黄銅管と同等に保持しており、通常アルミニウム黄銅管
の2〜3倍の流速となっている。
As another method, it is conceivable to use a cooling pipe made of aluminum brass, which is thicker than the titanium pipe and has a better heat transmission coefficient, on the outer peripheral side of the tube bundle 4, but the condenser of the titanium pipe is used. To use aluminum brass tube for some parts,
There are two major problems. First, in the case of a titanium pipe, the condenser increases the flow velocity in the cooling pipe to maintain the heat exchange performance equivalent to that of the aluminum brass pipe, and the flow velocity is usually 2-3 times that of the aluminum brass pipe.

【0012】すなわち、復水器内に2種類の材料の冷却
管を混在させると著しい流速の相違が生じることにな
り、個別に流速を調節することはできないため、熱交換
性能を維持するのが困難になる。2つ目はチタン管の場
合、熱交換性能を保つため、管内面の清浄度を常に高く
保持する必要があり、スポンジボールによる洗浄を頻繁
に実施しなければならない。これに対し、アルミニウム
黄銅管では海水による腐食防止のため、管内面の保護被
膜を保持する必要があり、スポンジボールによる洗浄頻
度は極力制限することになる。つまり、チタン管とアル
ミニウム黄銅管では、洗浄頻度が全く異なり、復水器に
2種類の材料からなる冷却管を混在させるのは好ましく
ない。
That is, if two condenser tubes of two kinds of materials are mixed in the condenser, a remarkable difference in flow velocity will occur, and the flow velocity cannot be adjusted individually, so that the heat exchange performance can be maintained. It will be difficult. Secondly, in the case of a titanium tube, in order to maintain heat exchange performance, it is necessary to keep the cleanliness of the inner surface of the tube high at all times, and cleaning with a sponge ball must be carried out frequently. On the other hand, in the aluminum brass tube, in order to prevent corrosion by seawater, it is necessary to hold a protective coating on the inner surface of the tube, and the frequency of cleaning with sponge balls is limited as much as possible. That is, the titanium tube and the aluminum brass tube have completely different cleaning frequencies, and it is not preferable to mix the cooling tubes made of two kinds of materials in the condenser.

【0013】本発明の目的は圧力損失の発生を伴うこと
なく、高速蒸気流の直撃を受ける冷却管で浸食が生じる
のを防止するようにした復水器を提供することにある。
An object of the present invention is to provide a condenser which prevents erosion from occurring in a cooling pipe which is directly hit by a high-speed steam flow, without causing pressure loss.

【0014】[0014]

【課題を解決するための手段】本発明は復水器本体内に
多数の冷却管で構成される管束を具備してなる復水器に
おいて、管束外周部で少なくとも高速蒸気が流入する区
域の冷却管を保護面として働く外管で内側の内管を覆う
二重管で構成したことを特徴とするものである。
DISCLOSURE OF THE INVENTION The present invention relates to a condenser having a tube bundle composed of a large number of cooling tubes in a condenser body, and cooling at least an area where high-speed steam flows in at the outer periphery of the tube bundle. It is characterized in that it is composed of a double tube in which the inner tube is covered with an outer tube that acts as a protective surface.

【0015】[0015]

【作用】チタン製の薄い肉厚を持つ冷却管を守るために
使用される保護装置は復水器内の圧力損失を増大させる
大きな要因と考えられており、保護装置を使用しないこ
とがこれによりもたらされる熱交換性能の低下をなくす
うえでの主要な眼目となる。
[Function] The protective device used to protect the thin-walled cooling pipe made of titanium is considered to be a major factor that increases the pressure loss in the condenser. It is the main focus in eliminating the loss of heat exchange performance.

【0016】本発明においては保護装置を用いずに冷却
管の水滴から受ける浸食を防ぐために内管と外管とから
なる組合わせ構造の冷却管を使用する。この二重管から
なる冷却管については蒸気中の水滴から受ける損傷の程
度を考慮して管束の箇所によって厚みを増しても良い
が、本発明においては一律に同じ厚さの外管で内管を保
護するように全域を覆って構成される。外管は、たとえ
ば水滴からの浸食に良好な耐性を示すアルミニウム黄銅
材であり、内管は冷却海水に対して耐食性の良いチタン
材から構成される。
In the present invention, a cooling pipe having a combination structure of an inner pipe and an outer pipe is used without using a protective device in order to prevent erosion from water droplets on the cooling pipe. Regarding the cooling pipe consisting of this double pipe, the thickness may be increased depending on the location of the pipe bundle in consideration of the degree of damage caused by water droplets in the steam, but in the present invention, the outer pipe having the same thickness is uniformly used as the inner pipe. It is configured to cover the entire area to protect the. The outer pipe is made of, for example, an aluminum brass material having good resistance to erosion from water droplets, and the inner pipe is made of a titanium material having good corrosion resistance to cooling seawater.

【0017】この冷却管における侵食量の推移を図面を
参照して説明する。
The transition of the erosion amount in this cooling pipe will be described with reference to the drawings.

【0018】図2において、耐食性のあるアルミニウム
黄銅材で構成した外管における浸食の進行状況が示され
ており、外管の浸食で内管への浸食がくい止められる。
FIG. 2 shows the progress of erosion in the outer tube made of a corrosion-resistant aluminum brass material. The erosion of the outer tube prevents the erosion of the inner tube.

【0019】このように内管へ浸食が及ぶのをくい止め
て冷却管の寿命を延ばすことができる。そして、保護装
置は使用しないので、これを用いたことによる圧力損失
は全く発生せず、したがって、復水器の性能低下を免れ
ることができる。外管についてはアルミニウム黄銅材で
あれば、熱貫流率がチタン材よりも優れており、チタン
材で厚みを増して浸食に備えるようにした冷却管と比べ
て熱交換性能を向上させることができる。勿論、チタン
材と比べてアルミニウム黄銅材は安価であり、単にチタ
ン管の肉厚を増したものと比べて経済性に富むものとい
える。
In this way, the erosion of the inner pipe can be prevented and the life of the cooling pipe can be extended. Further, since the protection device is not used, no pressure loss occurs due to the use of the protection device, so that the performance of the condenser can be prevented from being deteriorated. Regarding the outer tube, if it is an aluminum brass material, the heat transmission coefficient is superior to the titanium material, and it is possible to improve the heat exchange performance as compared with a cooling tube prepared by increasing the thickness of the titanium material to prepare for erosion. . Of course, the aluminum brass material is cheaper than the titanium material, and it can be said that it is more economical than the material in which the thickness of the titanium tube is simply increased.

【0020】[0020]

【実施例】以下、本発明の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0021】図1(a)において、復水器の基本的な構
成は図3に示したものと同じである。すなわち、復水器
は上部本体2と下部本体3とを備え、下部本体3内に多
数の冷却管からなる管束5が収容されている。タービン
排気蒸気が流入する管束5外周部の少なくとも1列目に
ある冷却管20は全長にわたって二重管によって構成さ
れる。他の冷却管はチタン材から構成される。二重管の
冷却管20の横断面を図1(b)に示している。
In FIG. 1A, the basic structure of the condenser is the same as that shown in FIG. That is, the condenser includes an upper main body 2 and a lower main body 3, and the lower main body 3 accommodates a tube bundle 5 including a large number of cooling tubes. The cooling pipe 20 in at least the first row of the outer peripheral portion of the tube bundle 5 into which the turbine exhaust steam flows is formed by a double tube over the entire length. The other cooling pipe is made of titanium material. A cross section of the double pipe cooling pipe 20 is shown in FIG.

【0022】内側の内管21はチタン材からなり、厚さ
を従来と同等に0.5mm程度に形成される。また、アル
ミニウム黄銅材からなる外管22は内管21全域を覆っ
ており、厚さは内管21と同等か、これよりも若干厚さ
を増して形成される。
The inner pipe 21 on the inner side is made of a titanium material and is formed to have a thickness of about 0.5 mm, which is the same as the conventional one. The outer tube 22 made of an aluminum brass material covers the entire area of the inner tube 21 and is formed to have a thickness equal to or slightly larger than that of the inner tube 21.

【0023】実施例の復水器は上記の構成からなり、多
量の湿分を含む蒸気が管束5に流入するとき、微小な水
滴が外周部にある冷却管20の外管22に衝突する。こ
の外管22は復水器の冷却管材として多く使用されてい
るアルミニウム黄銅管であり、たび重なる水滴の直撃を
受けても容易に浸食は進まない。流入蒸気が運ぶ水滴は
管束5の一列目にある冷却管20を直撃することから、
少なくとも管束5の一列目についてはこの厚さを増した
外管22で浸食に備える。こうした水滴に直撃される部
分には重点的に配置するときも、管束5の内側に入る箇
所、外周であっても水滴の直撃を受ける可能性の少ない
箇所については、この二重管からなる冷却管20は使用
する必要はない。
The condenser of the embodiment has the above-mentioned structure, and when steam containing a large amount of moisture flows into the tube bundle 5, minute water droplets collide with the outer tube 22 of the cooling tube 20 at the outer peripheral portion. The outer tube 22 is an aluminum brass tube that is often used as a cooling tube material for a condenser, and erosion does not easily proceed even if it is directly hit by overlapping water drops. Since the water droplets carried by the inflowing steam directly hit the cooling pipe 20 in the first row of the tube bundle 5,
At least the first row of the tube bundle 5 is prepared for erosion by the outer tube 22 having the increased thickness. Even when arranging the portion directly hit by the water droplets with emphasis, the double pipe is used for the portion that enters the inside of the tube bundle 5 and the outer periphery where there is little possibility of being directly hit by the water droplets. The tube 20 need not be used.

【0024】本実施例の内管21についてはチタン製で
あり、他の冷却管も同様なチタン製であるので、冷却海
水の流速は一様に保つことができる。スポンジボールの
洗浄もチタン材を基準として時間あたりの適用回数を決
めることができる。つまり、復水器を全体でみれば、い
わゆる全チタン復水器と同様な配慮をもって使用すれば
良く、何ら特別な運転方法の適用を強いられることもな
い。
Since the inner pipe 21 of this embodiment is made of titanium and the other cooling pipes are also made of titanium, the flow velocity of the cooling seawater can be kept uniform. As for the cleaning of the sponge balls, the number of applications per hour can be determined based on the titanium material. In other words, if the condenser is viewed as a whole, it can be used with the same consideration as a so-called all-titanium condenser, and no special operation method is required to be applied.

【0025】かくして、本実施例によれば、長期の使用
で外管22の損傷が進むまでは内管21に損傷は起こら
ず、冷却管の寿命を大幅に延ばすことが可能になる。
Thus, according to this embodiment, the inner tube 21 is not damaged until the outer tube 22 is damaged due to long-term use, and the life of the cooling tube can be greatly extended.

【0026】[0026]

【発明の効果】以上の発明から明らかなように本発明は
管束外周部で拘束蒸気が流入する区域の冷却管を外側の
外管で内側の内管を覆う二重管で構成したので、外管の
保護のもとにある内管に高速蒸気によって運ばれる水滴
が衝突せず、水滴によって内管が浸食を受けるのを防止
することができる。
As is apparent from the above invention, according to the present invention, the cooling pipe in the region where the restraint steam flows in the outer peripheral portion of the tube bundle is constituted by the double pipe in which the outer outer pipe covers the inner inner pipe. It is possible to prevent water droplets carried by the high-speed steam from colliding with the inner pipe under the protection of the pipes and prevent the inner pipes from being corroded by the water droplets.

【0027】したがって、本発明によれば復水器におけ
る熱交換性能を何ら低下させずに冷却管の寿命を大幅に
延ばすことが可能である。
Therefore, according to the present invention, it is possible to greatly extend the life of the cooling pipe without lowering the heat exchange performance of the condenser.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による復水器の一実施例を示す構成図。FIG. 1 is a configuration diagram showing an embodiment of a condenser according to the present invention.

【図2】本発明に係る冷却管における侵食量推移を示す
線図。
FIG. 2 is a diagram showing a transition of erosion amount in a cooling pipe according to the present invention.

【図3】従来の復水器を示す断面図。FIG. 3 is a cross-sectional view showing a conventional condenser.

【図4】図3に示される復水器の平面図。FIG. 4 is a plan view of the condenser shown in FIG.

【図5】従来の保護装置の一例を示す斜視図。FIG. 5 is a perspective view showing an example of a conventional protection device.

【図6】従来の保護装置の他の例を示す構成図。FIG. 6 is a configuration diagram showing another example of a conventional protection device.

【図7】復水器の保護装置と真空度との関係を示す線
図。
FIG. 7 is a diagram showing a relationship between a condenser protection device and a degree of vacuum.

【符号の説明】[Explanation of symbols]

2…………上部本体 3…………下部本体 5…………管束 10、13…保護装置 20…………冷却管 21…………内管 22…………外管 2 ………… Upper body 3 ………… Lower body 5 ………… Tube bundle 10, 13… Protection device 20 ………… Cooling tube 21 ………… Inner tube 22 ………… Outer tube

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 復水器本体内に多数の冷却管で構成され
る管束を具備してなる復水器において、前記管束外周部
で少なくとも高速蒸気が流入する区域の冷却管を保護面
として働く外管で内側の内管全域を覆うように二重管で
構成したことを特徴とする復水器。
1. A condenser having a tube bundle composed of a plurality of cooling tubes in a condenser main body, wherein at least a cooling tube in a region into which a high-speed steam flows at an outer peripheral portion of the tube bundle serves as a protective surface. A condenser characterized by being configured with a double pipe so that the outer pipe covers the entire inner pipe.
【請求項2】 前記外管をアルミニウム黄銅材で構成
し、前記内管を他の冷却管と共にチタン材で構成したこ
とを特徴とする請求項1記載の復水器。
2. The condenser according to claim 1, wherein the outer pipe is made of an aluminum brass material, and the inner pipe is made of a titanium material together with other cooling pipes.
JP5322728A 1993-12-21 1993-12-21 Condenser Pending JPH07174888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5322728A JPH07174888A (en) 1993-12-21 1993-12-21 Condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5322728A JPH07174888A (en) 1993-12-21 1993-12-21 Condenser

Publications (1)

Publication Number Publication Date
JPH07174888A true JPH07174888A (en) 1995-07-14

Family

ID=18146963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5322728A Pending JPH07174888A (en) 1993-12-21 1993-12-21 Condenser

Country Status (1)

Country Link
JP (1) JPH07174888A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100065253A1 (en) * 2008-09-16 2010-03-18 Mitsubishi Heavy Industries Ltd. Condenser
DE112013004969B4 (en) * 2012-10-11 2016-06-09 Mitsubishi Hitachi Power Systems, Ltd. capacitor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100065253A1 (en) * 2008-09-16 2010-03-18 Mitsubishi Heavy Industries Ltd. Condenser
US8157898B2 (en) * 2008-09-16 2012-04-17 Mitsubishi Heavy Industries, Ltd. Condenser
DE112013004969B4 (en) * 2012-10-11 2016-06-09 Mitsubishi Hitachi Power Systems, Ltd. capacitor
US9708936B2 (en) 2012-10-11 2017-07-18 Mitsubishi Hitachi Power Systems, Ltd. Condenser

Similar Documents

Publication Publication Date Title
US4539940A (en) Tube and shell heat exchanger with annular distributor
JP4386215B2 (en) EGR gas cooling device
US6582263B1 (en) Marine exhaust elbow structure with enhanced water drain capability
JPH07174888A (en) Condenser
RU99112177A (en) METHOD FOR OPERATING A FLOW-IN STEAM GENERATOR AND A FLOW-IN STEAM GENERATOR FOR THE IMPLEMENTATION OF THE METHOD
US6481208B1 (en) External steam dump
US5437768A (en) Non-baffled low pressure drop vacuum cooled inserted smelt spout
JPH0926272A (en) Condenser
US3472315A (en) Protective device for condenser tubes
JPH0545089A (en) Condenser
JP7002420B2 (en) Direct contact condenser and power plant
JPS58178186A (en) Condenser
JPH07158408A (en) Inlet pipe device for steam turbine
JP2002364988A (en) Structure of condenser section
JP3262431B2 (en) Condenser
JPH05118772A (en) Seawater cooling condenser
JPS5847994A (en) Heat exchanger tube
JPS5930993B2 (en) condenser
JPH05296675A (en) Condenser
CN216742192U (en) Low noise fan device of heat exchanger
JPH074601A (en) Exhaust gas inlet and outlet structure of exhaust gas boiler
JPS586390A (en) Heat transfer pipes of condenser
JP2941543B2 (en) Cathodic protection of heat exchanger
EP0591215B1 (en) A device for protecting condenser tubes
JP3611373B2 (en) Jet heating equipment for power plants

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030506