JPH07174831A - Magnetism measuring apparatus - Google Patents

Magnetism measuring apparatus

Info

Publication number
JPH07174831A
JPH07174831A JP13737892A JP13737892A JPH07174831A JP H07174831 A JPH07174831 A JP H07174831A JP 13737892 A JP13737892 A JP 13737892A JP 13737892 A JP13737892 A JP 13737892A JP H07174831 A JPH07174831 A JP H07174831A
Authority
JP
Japan
Prior art keywords
magnetic
equation
matrix
magnetic field
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13737892A
Other languages
Japanese (ja)
Inventor
Naoshi Kashiba
直志 加芝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP13737892A priority Critical patent/JPH07174831A/en
Publication of JPH07174831A publication Critical patent/JPH07174831A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To compute the position and the magnetic moment of a magnetic dipole with a single three-axial magnetic sensor by computing the moving speed, etc., of a magnetic substance, which is a measurement object, based on a specified expression. CONSTITUTION:Being converted into digital data, the detected outputs Hx, Hy, Hz of a magnetic sensor are sent to a computation controlling apparatus and stored successively i a memory. In this way, since magnetic field intensity data Hx, Hy, Hz for every set time are obtained, the computation controlling apparatus computes each value of moving speed Vx, Vy, of a magnetic substance based on an expression. Then, based on the computed moving speed Vx, Vy of the magnetic substance each component of a matrix B is computed, and based on the result, the value for each component of the converse matrix B<-1> is determined. The existing position (r)=(x, y, z) of the magnetic substance and the magnetic moment M=(Mx, My, Mz) of the magnetic dipole are computed by the above mentioned processes. Consequently, only one three-axial magnetic sensor is sufficient and the apparatus can be made compact.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、地中または海底に存
在する磁性物体を探査したり、移動目標を追尾する磁気
測定装置に関し、特に3軸磁気センサを1個用いるだけ
で上記の処理を実現できる磁気測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic measuring device for exploring a magnetic object existing in the ground or the seabed and for tracking a moving target, and particularly to the above-mentioned processing by using only one three-axis magnetic sensor. A magnetic measurement device that can be realized.

【0002】[0002]

【従来の技術】磁性物体の探査などの為には、当該磁性
物体の位置や磁気モーメントを算出する必要があるが、
従来は、磁界の3軸または2軸成分を測定できる磁気セ
ンサを複数個分散して配置し、この複数個の磁気センサ
の出力に基づいて磁界強度の空間的な傾きを算出するこ
とが不可欠であった。以下、一例について具体的に説明
すると、磁気双極子に対するオイラーの方程式 x∂H/∂x+y∂H/∂y+z∂H/∂z=3Hよ
り、磁界Hを3軸方向成分Hx ,Hy ,Hz によって
2. Description of the Related Art In order to search a magnetic object, it is necessary to calculate the position and magnetic moment of the magnetic object.
Conventionally, it is indispensable to disperse a plurality of magnetic sensors capable of measuring three-axis or two-axis components of a magnetic field and calculate the spatial inclination of the magnetic field strength based on the outputs of the plurality of magnetic sensors. there were. A specific example will be described below. From the Euler equation for magnetic dipoles x∂H / ∂x + y∂H / ∂y + z∂H / ∂z = 3H, the magnetic field H is divided into three-axis direction components H x , H y , By H z

【0003】[0003]

【数4】 [Equation 4]

【0004】磁気双極子の位置rをThe position r of the magnetic dipole is

【0005】[0005]

【数5】 [Equation 5]

【0006】で表現すると、H=Brの関係式が成立す
る。ここで、行列Bは、前記した〔数2〕の通りである
ので、原理的には空間上の3点に(図3のa,b,c参
照)、3軸磁気センサを3個配置して磁界強度の空間的
な傾きを求める必要があった(尚、実際には3軸センサ
2個と2軸センサ1個で足りる)。そして、原理的に
は、各磁気センサの出力Ha =(Hax,Hay,Haz),
b =(Hbx,Hby,Hbz),Hc =(Hcx,Hcy,H
cz)と各磁気センサの座標位置に基づいて行列Bの各要
素を算出し、その結果に基づいてr=B-1Hの関係式よ
り磁気双極子の位置rを求めていた。尚、B-1は行列B
の逆行列である。
When expressed by, the relational expression H = Br holds. Here, since the matrix B is as shown in the above [Formula 2], in principle, three triaxial magnetic sensors are arranged at three points in space (see a, b, c in FIG. 3). Therefore, it was necessary to obtain the spatial gradient of the magnetic field strength (actually, two triaxial sensors and one biaxial sensor are sufficient). Then, in principle, the output of each magnetic sensor is H a = (H ax , H ay , H az ),
H b = (H bx , H by , H bz ), H c = (H cx , H cy , H
cz ) and the coordinate position of each magnetic sensor, each element of the matrix B is calculated, and based on the result, the position r of the magnetic dipole is obtained from the relational expression of r = B −1 H. Note that B -1 is the matrix B
Is the inverse matrix of.

【0007】[0007]

【発明が解決しようとする課題】しかし、上記した従来
の装置においては、少なくとも3個の磁気センサを空間
的に分散して配置しなければならず、そのために装置が
大型・複雑化してしまうという問題点があった。この発
明は、この問題点に着目してなされたものであって、た
った1個の3軸磁気センサによって磁気双極子の位置及
び磁気モーメントを算出することのできる磁気測定装置
を提供することを目的とする。
However, in the above-mentioned conventional apparatus, at least three magnetic sensors must be spatially dispersed and arranged, which causes the apparatus to become large and complicated. There was a problem. The present invention has been made in view of this problem, and an object thereof is to provide a magnetic measuring device capable of calculating the position and magnetic moment of a magnetic dipole with only one triaxial magnetic sensor. And

【0008】[0008]

【課題を解決するための手段】上記の目的を達成する
為、この発明に係る磁気測定装置は、磁界Hの3軸方
向成分Hx ,Hy ,Hz を検出する磁気センサと、こ
の磁気センサの出力を一定時間ごとに取り込む入力手段
と、この入力手段が取り込んだ磁界の3軸方向成分デ
ータに基づいて測定対象である磁性物体の位置r及び磁
気モーメントMを求める演算手段とを備える磁気測定装
置であって、前記演算手段は、〔数1〕に基づいて、前
記磁性物体の移動速度vx ,vy を算出し、この算出結
果vx ,vy に基づいて磁界傾度∂Hx /∂x、∂Hy
/∂x、∂Hz /∂x、∂Hy /∂y、∂Hz /∂yを
算出し、この算出結果により逆行列B-1を特定して、r
=B-1Hより前記磁性物体の位置rを求め、M=A-1
より前記磁性体の磁気モーメントMを求めている。但
し、行列B,行列Aは、それぞれ〔数2〕〔数3〕に示
す通りである。
In order to achieve the above object, a magnetic measuring device according to the present invention comprises a magnetic sensor for detecting triaxial components H x , H y and H z of a magnetic field H, and a magnetic sensor for detecting the magnetic field. A magnet having an input means for taking in the output of the sensor at regular intervals and a computing means for obtaining the position r and the magnetic moment M of the magnetic object to be measured based on the three-axis component data of the magnetic field taken in by the input means. In the measurement device, the calculating means calculates the moving speeds v x and v y of the magnetic object based on [Equation 1], and the magnetic field gradient ∂H x based on the calculation results v x and v y. / ∂x, ∂H y
/ ∂x, ∂H z / ∂x, ∂H y / ∂y, ∂H z / ∂y are calculated, and the inverse matrix B -1 is specified by the calculation result, and r
= B -1 H to obtain the position r of the magnetic object, M = A -1 H
The magnetic moment M of the magnetic material is obtained from the above. However, the matrix B and the matrix A are as shown in [Equation 2] and [Equation 3], respectively.

【0009】[0009]

【作用】 磁気センサは、当該センサの設置位置における磁界H
の3軸方向成分Hx ,Hy ,Hz を検出する。 入力手段は、磁気センサの出力を一定時間ごとに取り
込み、これを演算手段に加える。
The magnetic sensor has a magnetic field H at the installation position of the sensor.
The three-axis direction components H x , H y , and H z are detected. The input means fetches the output of the magnetic sensor at regular intervals and adds it to the computing means.

【0010】演算手段は、入力手段からの磁界成分デ
ータHx ,Hy ,Hz を一定時間ごとに受けこれを記憶
してゆく。従って、演算手段は、磁界成分データの時間
tについての一階微分値dHx /dt,dHy /dt,
dHz /dtや、2階微分値d2 x /dt2 ,d2
y /dt2 ,d2 z /dt2 を適宜に算出することが
できる。
The calculation means receives the magnetic field component data H x , H y , H z from the input means at fixed time intervals and stores them. Therefore, the calculating means calculates the first-order differential value dH x / dt, dH y / dt, with respect to the time t of the magnetic field component data.
dH z / dt, second derivative d 2 H x / dt 2 , d 2 H
y / dt 2 and d 2 H z / dt 2 can be calculated appropriately.

【0011】以下、演算手段の作用を説明する為に理論
的な根拠から説明する。オイラーの方程式をH=Brで
表現すると、行列Bは前記した〔数2〕の通りである
が、rotH=0及び∇2 H=0の関係が成立するの
で、行列Bの要素のうち独立なものは次の5つに絞られ
る。 ∂Hx /∂x、∂Hy /∂x、∂Hz /∂x、∂Hy
∂y、∂Hz /∂y 従って、上記5つの要素を求めれば行列Bの各要素を特
定できることになる。
In order to explain the operation of the calculating means, description will be given below from a theoretical basis. When Euler's equation is expressed by H = Br, the matrix B is as shown in the above [Equation 2], but since the relationship of rotH = 0 and ∇ 2 H = 0 holds, the matrix B is independent of the elements. Things are narrowed down to the following five. ∂H x / ∂x, ∂H y / ∂x, ∂H z / ∂x, ∂H y /
∂y, ∂H z / ∂y Therefore, if the above five elements are obtained, each element of the matrix B can be specified.

【0012】ところで、上記5つの要素には、それぞ
れ、 ∂Hx /∂x=(dHx /dt)(dt/dx)=(dHx /dt)/vx ∂Hy /∂x=(dHy /dt)(dt/dx)=(dHy /dt)/vx ∂Hz /∂x=(dHz /dt)(dt/dx)=(dHz /dt)/vx ∂Hy /∂y=(dHy /dt)(dt/dy)=(dHy /dt)/vy ∂Hz /∂y=(dHz /dt)(dt/dy)=(dHz /dt)/vy ……〔数6〕 の関係があるので、上記5つの要素は、磁界Hの各軸方
向成分の時間的変化率dHx /dt,dHy /dt,d
z /dtと、磁性物体(磁気双極子)の移動速度
x ,vy とで与えられることになる。
By the way, in the above five elements, ∂H x / ∂x = (dH x / dt) (dt / dx) = (dH x / dt) / v x ∂H y / ∂x = ( dH y / dt) (dt / dx) = (dH y / dt) / v x ∂H z / ∂x = (dH z / dt) (dt / dx) = (dH z / dt) / v x ∂H y / ∂y = (dH y / dt) (dt / dy) = (dH y / dt) / v y ∂H z / ∂y = (dH z / dt) (dt / dy) = (dH z / dt ) / V y (Equation 6), the above five elements have the rate of temporal change dH x / dt, dH y / dt, d of each axial component of the magnetic field H.
It is given by H z / dt and the moving speeds v x and v y of the magnetic object (magnetic dipole).

【0013】一方、オイラーの公式より、磁気双極子の
位置rは、磁界Hと逆行列B-1から r=B-1H……〔数7〕 と与えられる。いま、磁気双極子が等速度で移動してい
ると近似して、〔数7〕を時間tで微分すると前記した
〔数1〕の関係式が成立する。この〔数1〕に〔数6〕
の関係を代入して各成分を計算すると、移動速度の
x ,vy を未知数とした以下の非線形連立方程式が導
出されることになる。 avx 4 +bvx 3 y +cvx 2 y 2 +dvx y 3 +evy 4 =0 fvx 4 +gvx 3 y +hvx 2 y 2 +ivx y 3 +jvy 4 =0 ……〔数8〕 なお、aからe及びfからjまでの係数は磁界3成分H
x ,Hy ,Hzと、時間tに関する2階までの導関数か
ら計算される。
On the other hand, according to Euler's formula, the magnetic dipole
The position r is the magnetic field H and the inverse matrix B-1From r = B-1H ... [Equation 7] is given. Now, the magnetic dipole is moving at a constant speed.
Then, when [Equation 7] is differentiated with respect to time t,
The relational expression of [Equation 1] is established. [Equation 1] to [Equation 6]
When each component is calculated by substituting the relationship of
v x, VyThe following nonlinear simultaneous equations with
Will be issued. avx Four+ Bvx 3vy+ Cvx 2vy 2+ Dvxvy 3+ Evy Four= 0 fvx Four+ Gvx 3vy+ Hvx 2vy 2+ Ivxvy 3+ Jvy Four= 0 [Equation 8] Note that the coefficients from a to e and from f to j are the three magnetic field components H
x, Hy, Hz and the derivative up to the second order with respect to time t
Calculated from

【0014】以上の理論式より明らかなように、磁界3
成分の1階および2階の導関数を求めれば〔数8〕を解
くことができ、〔数8〕の解として求まる移動速度
x ,v y を〔数6〕に代入すれば行列Bの各要素を特
定でき、最後に〔数7〕より磁気双極子の位置rが特定
できることになる。そこで、演算手段は、取り込まれた
時系列データを用いて磁界3成分の1階および2階の導
関数を求め、これを用いて、先ず〔数8〕の非線形連立
方程式の数値解を求める。
As is clear from the above theoretical formula, the magnetic field 3
Solving [Equation 8] by obtaining the first and second derivatives of the component
Moving speed that can be reduced and is obtained as the solution of [Equation 8]
vx, V ySubstituting into [Equation 6], each element of matrix B
Can be determined, and finally the position r of the magnetic dipole is specified from [Equation 7]
You can do it. Therefore, the calculation means was incorporated
Derivation of the first and second floors of three magnetic field components using time series data
Find a function, and use it to first create a nonlinear simultaneous equation [Equation 8].
Find the numerical solution of the equation.

【0015】以上の処理によって磁気双極子の移動速度
x ,vy が求まるので、この値v x ,vy と、磁界3
成分の時間的変化率dHx /dt,dHy /dt,dH
z /dtとを〔数6〕に代入して、行列Bの各要素を特
定し、その結果に基づいて逆行列B-1の各要素を特定
し、r=B-1Hの関係より磁気双極子の位置rを算出す
る。なお、測定器は磁性物体が磁気双極子とみなせる位
置に設置するものとし、磁性物体が移動しない場合に
は、測定器の方を移動させるものとする。
By the above processing, the moving speed of the magnetic dipole
vx, VySince this is obtained, this value v x, VyAnd magnetic field 3
Change rate of component dHx/ Dt, dHy/ Dt, dH
zSubstituting / dt and [Equation 6] into each element of matrix B
And the inverse matrix B based on the result-1Identify each element of
And r = B-1Calculate the position r of the magnetic dipole from the relationship of H
It In addition, the measuring device is such that a magnetic object can be regarded as a magnetic dipole.
If a magnetic object does not move,
Shall move the measuring instrument.

【0016】次に、演算手段は、磁性物体の磁気モーメ
ントM=(Mx ,My ,Mz )を公知の式であるM=A
-1Hより算出する。尚、行列Aは〔数3〕の通りであ
る。
Next, the calculating means calculates the magnetic moment M = (M x , M y , M z ) of the magnetic substance by a known equation M = A.
Calculated from -1 H. The matrix A is as in [Equation 3].

【0017】[0017]

【実施例】以下、実施例に基づいて、この発明を更に詳
細に説明する。図1は、この発明の一実施例である磁気
測定装置のブロック図を示したものである。この装置
は、磁界強度の3軸方向成分Hx ,Hy ,Hz を検出す
る3軸磁気センサ1と、この3軸磁気センサ1の検出出
力Hx ,Hy ,Hz を受けて、その中の1つを切り換え
て出力するマルチプレクサ2と、マルチプレクサ2から
の信号を一定時間保持するサンプル&ホールド回路3
と、サンプル&ホールド回路3からの信号をデジタルデ
ータに変換するA/Dコンバータ4と、A/Dコンバー
タ4からのデジタルデータを一定時間ごとに受けて〔数
1〕等の演算によって磁性物体(磁気双極子)の移動速
度などを算出する演算制御装置5とで構成されている。
The present invention will be described in more detail based on the following examples. FIG. 1 is a block diagram of a magnetic measuring device according to an embodiment of the present invention. This device receives a triaxial magnetic sensor 1 for detecting triaxial components H x , H y , H z of magnetic field strength, and detection outputs H x , H y , H z of the triaxial magnetic sensor 1, A multiplexer 2 that switches and outputs one of them, and a sample and hold circuit 3 that holds a signal from the multiplexer 2 for a certain period of time.
, An A / D converter 4 for converting the signal from the sample and hold circuit 3 into digital data, and the digital data from the A / D converter 4 at regular time intervals, and a magnetic object ( The calculation control device 5 calculates the moving speed of the magnetic dipole).

【0018】図2は、図1の磁気測定装置における3軸
磁気センサ1と被測定物たる磁性物体との位置関係を図
示したものであり、3軸磁気センサ1は、P点にある磁
性物体が磁気双極子とみなせる位置であるO点に配置さ
れる。そして、3軸磁気センサは、O点における磁界強
度の3軸方向成分Hx ,Hy ,Hz を検出する。一方、
磁性物体は、P点の位置(x,y,z)において、移動
速度v=(vx ,vy,vz )で移動している。ここ
で、移動速度vとは、磁性物体の磁気センサ1に対する
相対移動速度をいう。なお、磁気双極子たる磁性物体の
磁気モーメントを(Mx ,My ,Mz )とする。
FIG. 2 shows the positional relationship between the triaxial magnetic sensor 1 and the magnetic object as the object to be measured in the magnetic measuring apparatus of FIG. 1. The triaxial magnetic sensor 1 is a magnetic object at point P. Is placed at the point O, which is the position where it can be regarded as a magnetic dipole. Then, the triaxial magnetic sensor detects triaxial components H x , H y , and H z of the magnetic field strength at the point O. on the other hand,
The magnetic object is moving at the moving speed v = (v x , v y , v z ) at the position (x, y, z) of point P. Here, the moving speed v means a relative moving speed of the magnetic object with respect to the magnetic sensor 1. Incidentally, the magnetic moment of the magnetic dipole serving magnetic object and (M x, M y, M z).

【0019】以下、図1の磁気測定装置の動作を説明す
ると、マルチプレクサ2は、磁気センサ1の検出出力H
x ,Hy ,Hz を時間順次にサンプル&ホールド回路3
に供給する。また、A/Dコンバータ2は、一定時間ご
とに演算制御装置5からスタート信号を受け、磁気セン
サ1の検出出力Hx ,Hy ,Hz をデジタルデータに変
換して演算制御装置5に出力する。そして、演算制御装
置5は、このデジタルデータを時間順次にメモリに記憶
してゆく。
The operation of the magnetic measuring device of FIG. 1 will be described below. The multiplexer 2 detects the detection output H of the magnetic sensor 1.
Sample-and-hold circuit 3 for x , Hy and Hz in time sequence
Supply to. Further, the A / D converter 2 receives a start signal from the arithmetic and control unit 5 at regular intervals, converts the detection outputs H x , H y and H z of the magnetic sensor 1 into digital data and outputs the digital data to the arithmetic and control unit 5. To do. Then, the arithmetic and control unit 5 stores the digital data in the memory in time sequence.

【0020】このようにして、一定時間毎の磁界強度デ
ータHx ,Hy ,Hz が得られので、演算制御装置5
は、〔数1〕の計算に必要となる磁界強度の時間微分値
dHx/dt……dHz /dtや、2回時間微分値d2
x /dt2 ……d2 z /dt2 を計算する。なお、
時間間隔が短いので移動速度vx ,vy ,vz の時間微
分値は0とする。そして、〔数1〕における磁性物体の
移動速度vx ,vy に関する連立非線形方程式〔数8〕
を解いて、vx ,vy の各値を算出する。
In this way, the magnetic field strength data H x , H y , H z at constant time intervals are obtained, so the arithmetic and control unit 5
It is calculated time differential value or dH x / dt ...... dH z / dt of the magnetic field strength required for the equation (1), twice time-differentiated value d 2
Computing the H x / dt 2 ...... d 2 H z / dt 2. In addition,
Since the time intervals are short, the time differential values of the moving speeds v x , v y , and v z are set to 0. Then, the simultaneous nonlinear equations [Equation 8] regarding the moving speeds v x and v y of the magnetic object in [Equation 1]
Is solved to calculate each value of v x and v y .

【0021】次に、演算制御装置5は、いま算出した磁
性物体の移動速度vx ,vy を〔数6〕に代入して行列
Bの各要素を求め、その値に基づいて逆行列B-1の各要
素の値を決定する。以上の処理によって、r=B-1Hの
右辺の各値が決定されるので上式の行列計算B-1Hによ
って磁性物体の存在位置r=(x,y,z)を求める。
後は、行列Aの各要素を〔数3〕から求めて逆行列A-1
の要素を特定し、M=A-1Hの関係式に基づいて磁気双
極子の磁気モーメントM=(Mx ,My ,Mz)を求め
る。
Next, the arithmetic and control unit 5 substitutes the moving velocities v x and v y of the magnetic object just calculated into [Equation 6] to find each element of the matrix B, and based on the value, the inverse matrix B Determine the value of each element of -1 . Since the respective values on the right side of r = B −1 H are determined by the above processing, the existence position r = (x, y, z) of the magnetic object is obtained by the matrix calculation B −1 H in the above formula.
After that, each element of the matrix A is calculated from [Equation 3] and the inverse matrix A -1
Of the magnetic dipole M = (M x , M y , M z ) based on the relational expression of M = A −1 H.

【0022】[0022]

【発明の効果】以上説明したように、この発明に係る磁
気測定装置では、たった1個の3軸磁気センサを用いる
だけで、磁性物体(磁気双極子)の位置と磁気モーメン
トを測定することができるので、装置の小型簡素化を図
ることが可能となる。
As described above, the magnetic measuring device according to the present invention can measure the position and magnetic moment of a magnetic object (magnetic dipole) by using only one triaxial magnetic sensor. Therefore, the device can be made compact and simple.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例である磁気測定装置のブロ
ック図である。
FIG. 1 is a block diagram of a magnetic measurement apparatus that is an embodiment of the present invention.

【図2】図1の装置における3軸磁気センサと磁性物体
の位置関係を図示したものである。
FIG. 2 is a diagram showing a positional relationship between a triaxial magnetic sensor and a magnetic object in the apparatus shown in FIG.

【図3】従来の磁気測定装置における磁気センサの配置
位置を図示したものである。
FIG. 3 illustrates an arrangement position of a magnetic sensor in a conventional magnetic measurement device.

【符号の説明】[Explanation of symbols]

1 磁気センサ 2 マルチプレクサ 3 サンプル&ホールド回路 4 A/Dコンバータ 5 演算制御装置 1 magnetic sensor 2 multiplexer 3 sample & hold circuit 4 A / D converter 5 arithmetic and control unit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】磁界Hの3軸方向成分Hx ,Hy ,Hz
検出する磁気センサと、この磁気センサの出力を一定時
間ごとに取り込む入力手段と、この入力手段が取り込ん
だ磁界の3軸方向成分データに基づいて測定対象である
磁性物体の位置r及び磁気モーメントMを求める演算手
段とを備える磁気測定装置であって、 前記演算手段は、 【数1】 に基づいて、前記磁性物体の移動速度vx ,vy を算出
し、 この算出結果vx ,vy に基づいて磁界傾度∂Hx /∂
x、∂Hy /∂x、∂Hz /∂x、∂Hy /∂y、∂H
z /∂yを算出し、 この算出結果により逆行列B-1を特定して、r=B-1
より前記磁性物体の位置rを求め、M=A-1Hより前記
磁性体の磁気モーメントMを求めることを特徴とする磁
気測定装置。但し、 【数2】 【数3】
1. A magnetic sensor for detecting triaxial components H x , H y , H z of a magnetic field H, an input means for taking in the output of the magnetic sensor at regular time intervals, and a magnetic field for taking in the magnetic field taken in by the input means. A magnetic measuring device comprising: a calculating unit for obtaining a position r and a magnetic moment M of a magnetic object to be measured based on the three-axis direction component data, wherein the calculating unit is The moving speeds v x and v y of the magnetic object are calculated based on the above, and the magnetic field gradient ∂H x / ∂ is calculated based on the calculation results v x and v y.
x, ∂H y / ∂x, ∂H z / ∂x, ∂H y / ∂y, ∂H
z / ∂y is calculated, the inverse matrix B -1 is specified by the calculation result, and r = B -1 H
A magnetic measuring device characterized in that the position r of the magnetic body is obtained from the above, and the magnetic moment M of the magnetic body is obtained from M = A -1 H. However, [Equation 3]
JP13737892A 1992-05-29 1992-05-29 Magnetism measuring apparatus Pending JPH07174831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13737892A JPH07174831A (en) 1992-05-29 1992-05-29 Magnetism measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13737892A JPH07174831A (en) 1992-05-29 1992-05-29 Magnetism measuring apparatus

Publications (1)

Publication Number Publication Date
JPH07174831A true JPH07174831A (en) 1995-07-14

Family

ID=15197291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13737892A Pending JPH07174831A (en) 1992-05-29 1992-05-29 Magnetism measuring apparatus

Country Status (1)

Country Link
JP (1) JPH07174831A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006098309A (en) * 2004-09-30 2006-04-13 Yamaha Corp Magnetic measuring apparatus
JP2009198289A (en) * 2008-02-21 2009-09-03 Shimadzu Corp Target searching device
JP2009229443A (en) * 2008-02-29 2009-10-08 Shimadzu Corp Target survey system
US7985952B2 (en) 2007-03-05 2011-07-26 Hitachi, Ltd. Charged particle spin polarimeter, microscope, and photoelectron spectroscope

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006098309A (en) * 2004-09-30 2006-04-13 Yamaha Corp Magnetic measuring apparatus
US7985952B2 (en) 2007-03-05 2011-07-26 Hitachi, Ltd. Charged particle spin polarimeter, microscope, and photoelectron spectroscope
JP2009198289A (en) * 2008-02-21 2009-09-03 Shimadzu Corp Target searching device
JP2009229443A (en) * 2008-02-29 2009-10-08 Shimadzu Corp Target survey system

Similar Documents

Publication Publication Date Title
US5453686A (en) Pulsed-DC position and orientation measurement system
EP2060875B1 (en) Physical quantity measuring instrument and signal processing method thereof
JPH08512125A (en) Method and apparatus for measuring the position and orientation of an object in the presence of interfering metals
US3840726A (en) Position locator
CA2220346A1 (en) Method for determining the direction of the earth&#39;s magnetic field
JPH06221805A (en) Device and method for determining position and direction of separated body
CN103969700A (en) Method of estimating offset of magnetic sensor
US4763268A (en) Direction display apparatus
US4675606A (en) Magnetometers for detecting metallic objects in earth&#39;s magnetic field
JP2751544B2 (en) Magnetic detector
JPH07174831A (en) Magnetism measuring apparatus
CN113710997B (en) Magnetic sensing system, detection device and magnetic interference biasing method
JP2000292111A (en) Apparatus and method for measuring attitude and position
CN107110919B (en) Apparatus and method for surface shape analysis spatial localization based on magnetic sensors
JP3032776B2 (en) Passage position detection method and passage position detection device
JPH033190B2 (en)
US3697869A (en) System for generating compensating signals for magnetic effects of aircraft on mad system
JPH07198407A (en) Magnetism measuring instrument
JPH061224B2 (en) Surface pressure distribution detector
JPS5562308A (en) Direction indicating device
RU2219497C1 (en) Device determining coordinates of source of magnetic field from mobile object
JP2542673Y2 (en) Simulated magnetic field signal generator for adjustment and inspection of object detector
JP2961945B2 (en) Magnetometer
Kolen et al. Absolute angle measurement using the earth-field-referenced Hall effect sensors
Mitev et al. Ten dimension of freedom sensor module