JPH07174681A - Method for evaluating damage of high-temperature structural member - Google Patents

Method for evaluating damage of high-temperature structural member

Info

Publication number
JPH07174681A
JPH07174681A JP5322568A JP32256893A JPH07174681A JP H07174681 A JPH07174681 A JP H07174681A JP 5322568 A JP5322568 A JP 5322568A JP 32256893 A JP32256893 A JP 32256893A JP H07174681 A JPH07174681 A JP H07174681A
Authority
JP
Japan
Prior art keywords
damage
creep
fatigue
material state
map
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5322568A
Other languages
Japanese (ja)
Inventor
Takahiro Kubo
貴博 久保
Kazunari Kimura
和成 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5322568A priority Critical patent/JPH07174681A/en
Publication of JPH07174681A publication Critical patent/JPH07174681A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To accurately evaluate the superposed damage of fatigue by forming the database of relationship between the creep damage for each material state and due to accumulated the fatigue damage, and the presence probability in advance and then creating the damage map of presence probability distribution for an actual machine measurement value. CONSTITUTION:The relationship between the creep damage for each material state and the fatigue damage is optimally approximated by a polynomial in advance, the relationship between the approximation coefficient and a material state absolute value is obtained, and then the presence probability near the approximation line is calculated to form a database. Then, the presence probability distribution corresponding to the amount of material state which is measured from an actual machine is obtained for the types of the amount of material state. All presence probabilities on the damage map of the amount of all material states plotting the presence probability distributions are added to obtain an addition damage map. Points with the same presence probability on the map are connected by a contour line, a damage map considering the scattering in data is completed, and then the coordinates at a part with the highest presence probability result in creep and fatigue damages, thus accurately evaluating damage based on the evaluation of a subject.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高温で長時間に亘って使
用される高温構造部材の損傷評価方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a damage evaluation method for high temperature structural members used at high temperature for a long time.

【0002】[0002]

【従来の技術】蒸気タービンのボイラ、ケーシングな
ど、高温で長時間使用される機器の構造部材は、主に定
常運転状態により蓄積されるクリープ損傷と、起動停止
時に蓄積される疲労損傷の双方を受ける。これらの損傷
量を正確に見積もることは、高温機器を安定運用させる
上で非常に重要になっている。
2. Description of the Related Art Structural members of equipment such as steam turbine boilers and casings that are used for a long time at high temperatures are subject to both creep damage accumulated mainly in steady operation and fatigue damage accumulated during start-up and shutdown. receive. Accurate estimation of these damage amounts is very important for stable operation of high temperature equipment.

【0003】従来確立されている損傷評価方法には、機
器の使用状態を表す温度や圧力、起動停止回数など、使
用状態量に基づいて損傷率や余寿命を計算により評価す
るものが特公平1−27377号公報、特公平1−27
378号公報に開示されている。
One of the conventionally established damage evaluation methods is one in which the damage rate and the remaining life are calculated and calculated based on the amount of use condition such as the temperature and pressure indicating the use condition of the equipment and the number of start and stop times. -27377, Japanese Patent Publication No. 1-27
It is disclosed in Japanese Patent No. 378.

【0004】計算により高精度の損傷評価結果を得るに
は、材料データ構造部材の運転履歴、温度、圧力などの
計測データを完備することが必要であるが、使用状態量
の計測精度の問題や計測ポイントに制限があることな
ど、信頼できる計測データを得ることは困難である。ま
た、計算の段階で様々な仮定が存在し、評価が画一的に
なり易く、構造部材特有の損傷特性が得られにくい問題
があり、その上損傷評価に時間と費用がかかり過ぎる。
In order to obtain a highly accurate damage evaluation result by calculation, it is necessary to complete measurement data such as material data structure member operation history, temperature, pressure, etc. It is difficult to obtain reliable measurement data due to the limited number of measurement points. In addition, there are various assumptions at the stage of calculation, the evaluation tends to be uniform, and it is difficult to obtain the damage characteristics peculiar to structural members. Moreover, the damage evaluation takes too much time and cost.

【0005】そこで、近年材料の受けた損傷度を非破壊
的に測定した材料状態量変化から推定する方法が着目さ
れている。例えば、金属組織中の材料状態量変化による
実体評価法は、金属組織を非破壊的に観察するレプリカ
法の技術が向上したことと、画像処理技術の高精度化、
簡素化が図られたことを受けて、信頼性および簡便性が
飛躍的に向上した。
Therefore, in recent years, attention has been focused on a method of estimating the degree of damage to a material from the change in the material state quantity measured nondestructively. For example, the entity evaluation method based on the change in the amount of material state in the metallographic structure is that the technique of the replica method for nondestructively observing the metallographic structure is improved, and the accuracy of the image processing technology is improved.
As a result of the simplification, reliability and simplicity are dramatically improved.

【0006】したがって、クリープ損傷評価に硬さある
いはボイドを、疲労損傷評価に数ミクロンから数ミリの
微視き裂の長さをそれぞれ用いる方法などが提案されて
いる。例えば、ビッカース硬さ低下量とクリープ損傷率
との関係を示すクリープ損傷評価線図や、最大き裂長さ
と疲労損傷率との関係を示す疲労損傷評価線図などがあ
り、その他、超音波、電磁波、音響などを用い、構造部
材から非破壊的に得られる情報により損傷度を診断する
方法も提案されている。
Therefore, a method has been proposed in which hardness or void is used for creep damage evaluation and microscopic crack length of several microns to several millimeters is used for fatigue damage evaluation. For example, there is a creep damage evaluation diagram showing the relationship between Vickers hardness decrease amount and creep damage rate, and a fatigue damage evaluation diagram showing the relationship between maximum crack length and fatigue damage rate. There has also been proposed a method of diagnosing the degree of damage by using information obtained non-destructively from a structural member using sound, etc.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記し
た計算による損傷評価法には、材料データ構造部材の運
転履歴、温度、圧力などの計測データを完備することが
必要であるが、使用状態量の計測精度の問題や計測ポイ
ントに制限があることなど、信頼できる計測データを得
ることは困難である。また、計算の段階で様々な仮定が
存在し、構造部材特有の損傷特性が得られにくい問題が
あり、その上損傷評価に時間と費用がかかり過ぎる。
However, the damage evaluation method based on the calculation described above requires complete measurement data such as operation history, temperature, and pressure of the material data structure member. It is difficult to obtain reliable measurement data due to problems such as measurement accuracy and limited measurement points. In addition, there are various assumptions at the stage of calculation, and there is a problem that it is difficult to obtain damage characteristics peculiar to structural members. Moreover, damage evaluation takes too much time and cost.

【0008】しかも、過去の運転履歴、設計状態量など
のデータから大型計算機の計算による損傷評価では、プ
ラントごとの損傷状態が数字に現れにくい問題があり、
また実機実体からサンプルを採り出してないことに対す
るプラント使用者の抵抗感も根強い。
In addition, there is a problem that the damage state of each plant is hard to appear in the figures in the damage evaluation by the calculation of the large-sized computer from the data such as the past operation history and the design state quantity.
In addition, the plant user's resistance to not taking samples from the actual machine entity is strong.

【0009】また、上記した非破壊的に計測したただ一
つの材料状態量をクリープ損傷または疲労損傷と関連づ
けて損傷を診断する方法は、本来クリープと疲労の双方
に依存する指標を一方の損傷量のみに関連づけるので、
他方の損傷量の影響が小さい場合のみに適用が限られ
る。
Further, the above-described method of diagnosing damage by associating only one non-destructively measured material state quantity with creep damage or fatigue damage is an index that originally depends on both creep and fatigue, and one damage amount is used. Because it only relates to
The application is limited only when the effect of the other damage amount is small.

【0010】すなわち、実験的にいずれか一方の損傷の
みを与えた材料の損傷診断、余寿命評価は行えるもの
の、実機におけるように蓄積されたクリープ損傷と疲労
損傷の重畳した損傷を評価するには不十分である。つま
り、実機の高温構造部材の損傷評価では、材料状態量の
変化は捕らえられても、それがクリープによるものか、
疲労によるものかまで確実に評価することが困難である
という問題がある。
In other words, although it is possible to perform damage diagnosis and residual life evaluation of a material that has been experimentally given only one of the damages, it is possible to evaluate accumulated damages such as creep damages and fatigue damages as in the actual machine. Is insufficient. In other words, in the damage evaluation of the high temperature structural member of the actual machine, even if the change in the material state quantity is caught, whether it is due to creep,
There is a problem that it is difficult to surely evaluate whether it is due to fatigue.

【0011】ところで最近、広範囲のクリープ損傷、疲
労損傷およびこれら双方が相互作用して負荷されるクリ
ープ重畳損傷を評価する方法として、図5に示すよう
に、表示(I)と表示(II)において、各々非破壊的に
計測される相異なる材料状態量a,bおよびクリープ損
傷量(φc)と疲労損傷量(φf)との関係を予め実験
により求め、予め定めた材料状態量の差ごとにクリープ
損傷量と疲労損傷量との関係を等高線図として表示し、
さらに実構造部材の当該材料状態量a,bの計測値を挟
む等高線a3 ,a4 およびb4 ,b5 で囲むバンドA,
Bを表示し、さらに表示(III )では表示(I)と表示
(II)の内、実構造部材の当該材料状態量a,bのバン
ドA,Bとそれらが交わる領域Rを表示し、この領域R
の座標から実構造部材のクリープ損傷量と疲労損傷量を
評価する構造部材の損傷評価方法が本出願人により特願
平5−106291号明細書として提案されている。
By the way, recently, as a method for evaluating a wide range of creep damage, fatigue damage and creep superimposed damage caused by the interaction of both of them, as shown in FIG. 5, in indication (I) and indication (II), , The different material state quantities a and b measured non-destructively, and the relationship between the creep damage amount (φc) and the fatigue damage amount (φf) are obtained by an experiment in advance, and for each difference of the predetermined material state amount. Display the relationship between creep damage amount and fatigue damage amount as a contour map,
Further, a band A surrounded by contour lines a 3 , a 4 and b 4 , b 5 sandwiching the measured values of the material state quantities a, b of the actual structural member,
B is displayed, and further, in the display (III), among the displays (I) and (II), the bands A and B of the material state quantities a and b of the actual structural member and the region R where they intersect are displayed. Region R
A damage evaluation method for a structural member, which evaluates the amount of creep damage and the amount of fatigue damage of an actual structural member from the coordinates of, has been proposed by the applicant as Japanese Patent Application No. 5-106291.

【0012】この損傷マッピングによるクリープ疲労重
畳損傷評価方法は、領域R内の存在確率が全く同等であ
ると表示されるため、最適な損傷値を求めるときには誤
差を多く含む。領域R内の存在確率が100%、領域R
外の存在確率が0%という評価結果となり、柔軟性のあ
る実用的な評価とはいえない。
[0012] In this creep fatigue superimposed damage evaluation method using damage mapping, since it is displayed that the existence probabilities in the region R are exactly the same, there are many errors in obtaining the optimum damage value. Existence probability in region R is 100%, region R
The existence probability outside is 0%, which is not a flexible and practical evaluation.

【0013】本発明は上述した事情を考慮してなされた
もので、実機直接の非破壊計測に基づいて精度の高いク
リープ疲労重畳損傷を評価することのできる高温構造部
材の損傷評価方法を提供することを目的とする。
The present invention has been made in consideration of the above-mentioned circumstances, and provides a damage evaluation method for a high-temperature structural member capable of highly accurately evaluating creep fatigue superimposed damage based on nondestructive measurement directly on an actual machine. The purpose is to

【0014】[0014]

【課題を解決するための手段】本発明者らは、上記目的
を達成するため、まず予め実験室にてクリープ損傷量φ
cと疲労損傷量φfが既知の試験片を数種類作成し、そ
れぞれの試験片について2種類以上の非破壊的手法によ
り材料状態量αiを計測する。次いで、横軸にクリープ
損傷量φcと疲労損傷量φfとの関係を各材料状態量α
iごとにプロットし、各材料状態量αiの同一の値αij
でのクリープ損傷量φcと疲労損傷量φfの組み合わせ
のプロット点を式1の曲線で近似する。
In order to achieve the above-mentioned object, the inventors of the present invention firstly conducted in advance in a laboratory a creep damage amount φ.
Several kinds of test pieces with known c and fatigue damage amount φf are created, and the material state quantity αi is measured by two or more kinds of nondestructive methods for each test piece. Next, the abscissa represents the relationship between the creep damage amount φc and the fatigue damage amount φf for each material state amount α.
Plotted for each i, and the same value αij of each material state amount αi
The plot point of the combination of the creep damage amount φc and the fatigue damage amount φf in (1) is approximated by the curve of the equation 1.

【0015】[0015]

【数1】 例えば、材料状態量α1のn個の値α11,α12,…,α
1nに対し、h=3とする場合には、クリープ損傷量φc
と疲労損傷量φfの関係は式2のように得られる。
[Equation 1] For example, n values α11, α12, ..., α of the material state amount α1
When h = 3 for 1n, creep damage amount φc
And the amount of fatigue damage φf are obtained as shown in Equation 2.

【0016】[0016]

【数2】 続いて、このようにして得られたKh(αij)とαijか
ら、Kh(αi)とαiの関係を式3で近似する。
[Equation 2] Subsequently, the relationship between Kh (αi) and αi is approximated by Equation 3 from Kh (αij) and αij thus obtained.

【0017】[0017]

【数3】 例えば、上記の材料状態量α1の例では式1の係数Kh
は式4となる。
[Equation 3] For example, in the above example of the material state quantity α1, the coefficient Kh of Equation 1 is
Becomes Equation 4.

【0018】[0018]

【数4】 これらの各材料状態量αiに対してKh(αi)の決定
ファクタ:Kh1,Kh2を求めてデータベース化する。
[Equation 4] The determination factors Kh1 and Kh2 of Kh (αi) are obtained for each of these material state quantities αi and are stored in a database.

【0019】また、予め材料状態量の計測量の分布形態
を予備試験により調査し、式3上の点を確率100%と
して、調べた分布状態に従うように損傷マップ上全体に
亘り存在確率を計算し、α損傷マップとしてコンピュー
タ上に格納し、以下同様の手順にて材料状態量β,γ,
…と全ての材料状態量についてβ損傷マップ、γ損傷マ
ップ、…を計算し、コンピュータ上に格納し、格納した
損傷マップをマップ全体に亘り加算して、加算損傷マッ
プを作り、最も確率合計の高い部分を100%として全
体を0〜100の数字で表し、加算損傷マップ上で同じ
存在確率を示す点を滑らかな曲線で結び、存在確率の等
高線表示として、最も高い存在確率を示す座標を被診断
部のクリープ損傷、疲労損傷とすることを特徴とする。
Further, the distribution form of the measured quantity of the material state quantity is investigated in advance by a preliminary test, and the probability on the damage map is calculated over the entire damage map so that the points on the equation 3 are assumed to be 100%. Then, it is stored in the computer as an α damage map, and the material state quantities β, γ, and
... and β damage map, γ damage map, etc. for all material state quantities are calculated, stored on a computer, the stored damage maps are added over the entire map to create an additive damage map, The high part is set as 100% and the whole is represented by a number from 0 to 100. Points showing the same existence probability on the additive damage map are connected by a smooth curve, and the coordinates showing the highest existence probability are covered as a contour line display of the existence probability. It is characterized by creep damage and fatigue damage in the diagnostic department.

【0020】請求項2は、実験室劣化材を作成したとき
に調査した材料状態量のばらつきを、材料ごと暴露温度
ごとに異なる状態量データの分布型を予め調べておき、
その分布データベースにより最適の分布型を選択するこ
とを特徴とする。
According to a second aspect of the present invention, the distribution of the state quantity data, which is different for each material and for each exposure temperature, is checked in advance for the variation of the material state quantity investigated when the laboratory deteriorated material was prepared.
The feature is that the optimum distribution type is selected from the distribution database.

【0021】[0021]

【作用】上記の構成を有する本発明においては、評価対
象材料の材料状態量測定によりクリープと疲労とが重畳
した損傷も考慮した上で、最も確からしいクリープ損傷
量と疲労損傷量を決定でき、しかもその近辺での存在確
率分布も得ることができる。つまり、実体評価をベース
にした高精度の損傷評価が可能で、従来の計算による損
傷評価方法と異なり、高度な計算装置を必要とせず、全
く非破壊的にクリープ疲労重畳損傷負荷部位の損傷評価
を行うことができる。
In the present invention having the above-mentioned structure, the most probable creep damage amount and fatigue damage amount can be determined in consideration of the damage in which creep and fatigue are superimposed by the material state amount measurement of the material to be evaluated, In addition, the existence probability distribution in the vicinity can be obtained. In other words, it is possible to perform highly accurate damage evaluation based on physical evaluation, unlike the conventional damage evaluation method, which does not require a high-level calculation device and is completely nondestructive for damage evaluation of creep fatigue superimposed damage load part. It can be performed.

【0022】[0022]

【実施例】以下、本発明の一実施例を図面に基づいて説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0023】なお、以下の実施例では、過去にクリープ
と疲労の重畳損傷付与の形態が多く認められている蒸気
タービン高圧ケーシング(CrMoV鋳鋼)材の消費寿
命を推定する場合について説明する。
In the following examples, a case will be described in which the consumption life of a steam turbine high pressure casing (CrMoV cast steel) material, in which many forms of superimposed damage of creep and fatigue have been recognized in the past, is estimated.

【0024】図1は本実施例のマスターデータベースの
作成手順を示す図である。図1において、ステップS1
では予め実験室で既知であるクリープ損傷と既知である
疲労損傷を、クリープ疲労重畳試験(引張保持疲労試
験)として付与する。
FIG. 1 is a diagram showing a procedure for creating a master database according to this embodiment. In FIG. 1, step S1
Then, the creep damage known in the laboratory and the fatigue damage known in advance are applied as a creep fatigue superposition test (tensile holding fatigue test).

【0025】次いで、ステップS2では試験片の材料組
織をレプリカを用いた非破壊調査により採取し、この採
取組織からクリープ単独の損傷蓄積状態を反映するボイ
ドの定量化指標の一つであるAパラメータ(損傷粒界数
/全粒界数)値αを計測する。上記重畳試験条件を変化
させることにより、種々のクリープ損傷、疲労損傷を付
与して、それぞれAパラメータ値を計測する。
Next, in step S2, the material structure of the test piece is sampled by a nondestructive investigation using a replica, and the A parameter, which is one of the quantified indexes of voids that reflects the damage accumulation state of creep alone, from this sampled structure. (Number of damaged grain boundaries / total number of grain boundaries) The value α is measured. Various creep damages and fatigue damages are given by changing the above-mentioned superposition test conditions, and the A parameter values are measured respectively.

【0026】ステップS3ではこの計測結果を横軸:ク
リープ損傷、縦軸:疲労損傷の損傷マップ上にプロット
し、同じAパラメータ値を示す全点を2次式で最適近似
して式5を求める(ステップS4)。
In step S3, this measurement result is plotted on a damage map of abscissa: creep damage, ordinate: fatigue damage, and all points showing the same A parameter value are optimally approximated by a quadratic expression to obtain expression 5. (Step S4).

【0027】[0027]

【数5】 [Equation 5]

【0028】本実施例では、多次式として2次式を採用
したが、一般的には式1の形で表される。
In the present embodiment, a quadratic equation is adopted as a polynomial equation, but it is generally expressed in the form of equation 1.

【0029】次に、ステップS5ではAパラメータα値
と、式5に示した2次式近似係数A,B,Cとの関係を
1次式にて近似し、式6を求める。
Next, in step S5, the relationship between the A parameter α value and the quadratic approximation coefficients A, B, and C shown in equation 5 is approximated by a linear equation to obtain equation 6.

【数6】 [Equation 6]

【0030】また、この作業と並行して、ステップS6
では実験室劣化材より計測データのばらつきを調査して
分布データベースを構築し、統計学的理論を適用して、
データの分布状態を特定しておく。以上ステップS1〜
S6までが1つのデータベース構築手順である。
In parallel with this work, step S6
Then, we investigated the dispersion of measurement data from the deteriorated materials in the laboratory, constructed a distribution database, applied statistical theory,
Identify the distribution of data. Above steps S1
Up to S6 is one database construction procedure.

【0031】同様の手順にてステップS7およびステッ
プS8では、他の材料状態量最大き裂長さ(β)、ビッ
カース硬さ低下量比(γ)についてもデータベースを構
築する。
In step S7 and step S8 in the same procedure, a database is constructed for other material state amount maximum crack length (β) and Vickers hardness reduction amount ratio (γ).

【0032】図2は図1で構築したマスターデータベー
スを利用して実機被診断部の損傷を評価する方法の手順
を示すフローチャートである。
FIG. 2 is a flow chart showing the procedure of a method for evaluating damage to the actual machine diagnosed portion using the master database constructed in FIG.

【0033】まず、ステップS11では被診断部の材料
状態量αβγを計測する。なお、下線を付記して表
した文字は、被診断部からの計測値であることを意味す
る。この計測値αβγを式5に代入し、φcとφf
との相関係数A,B,Cを3種の材料状態量について全
て計算する(ステップS12)。
First, in step S11, the material state quantities α , β , γ of the portion to be diagnosed are measured. The letters underlined mean that they are measured values from the part to be diagnosed. Substituting the measured values α 1 , β 2 , and γ into Equation 5, φc and φf
The correlation coefficients A, B, and C with and are calculated for all three types of material state quantities (step S12).

【0034】続いて、ステップS12により計算された
相関係数から、φcとφfとの関係を描画する(ステッ
プS13)。この計算されたφcとφfとの関係式を表
す線は、図中太線で表している。また、予め調査したデ
ータの分布形態を加味した存在確率を図中に示してい
る。つまり、ある材料状態量が被計測部から計測された
とき、その絶対値を入力すると、被計測部の損傷状態を
示す図が存在確率分布とともに描画される。
Then, the relationship between φc and φf is drawn from the correlation coefficient calculated in step S12 (step S13). The thick line in the figure represents the calculated relational expression between φc and φf. In addition, the existence probability in consideration of the distribution form of the data investigated in advance is shown in the figure. That is, when a certain material state quantity is measured from the measured portion, if the absolute value is input, a diagram showing the damaged state of the measured portion is drawn together with the existence probability distribution.

【0035】最後に、材料状態量ごとの損傷マップに表
された存在確率をコンピュータ上で加算すれば、1枚の
加算損傷マップが得られる(ステップS14)。この加
算損傷マップ上で最も高い存在確率を有する点を100
%として、マップ全体を0〜100までの数値で表示
し、さらに同じ存在確率を有する点を等高線状に滑らか
な曲線で結べば、データのばらつきまで考慮した損傷マ
ップが完成する。最も高い存在確率を有する部分の座標
が実機被計測部のクリープ損傷(φc)、疲労損傷(φ
f)になる(ステップS15)。
Finally, if the existence probabilities represented in the damage map for each material state quantity are added on the computer, one added damage map is obtained (step S14). The point with the highest existence probability on this additive damage map is 100
%, The entire map is displayed as a numerical value from 0 to 100, and points having the same existence probability are connected by a smooth curve in a contour line to complete a damage map in consideration of data variations. The coordinates of the part with the highest existence probability are the creep damage (φc) and fatigue damage (φ) of the measured part of the actual machine.
f) (step S15).

【0036】この材料にクリープの単独損傷を付与した
とき、クリープ損傷は粒界に蓄積され、結晶粒界に微小
なボイドが発生した組織となり、そのボイドが連結、成
長してき裂となり、最終的には破断する。したがって、
クリープ単独損傷の場合は、粒界損傷の評価指標である
Aパラメータで整理できる。しかし、クリープ単独損傷
に疲労が加わった場合、疲労の影響でクリープ単独損傷
の場合以上にAパラメータの上昇度合いが大きい。
When a single creep damage is imparted to this material, the creep damage is accumulated in the grain boundaries to form a structure in which minute voids are generated in the crystal grain boundaries, and the voids are connected and grow into a crack, which finally becomes a crack. Breaks. Therefore,
In the case of creep independent damage, it can be arranged by the A parameter which is an evaluation index of grain boundary damage. However, when fatigue is added to the creep independent damage, the degree of increase in the A parameter is larger than that in the case of the creep independent damage due to the influence of fatigue.

【0037】図3は横軸にクリープ損傷量(φc)、縦
軸に疲労損傷量(φf)をとって、負荷する損傷形態に
よる両者の相関カーブの相違を示したものである。すな
わち、クリープあるいは疲労の単独損傷と相関がある材
料状態量でも、クリープ疲労重畳損傷までも的確に評価
できるとはいえない。この例に代表されるように、クリ
ープ疲労重畳損傷を評価する単独の材料状態量は存在し
ない。
In FIG. 3, the horizontal axis represents the amount of creep damage (φc) and the vertical axis represents the amount of fatigue damage (φf), showing the difference between the correlation curves of the two depending on the type of damage applied. In other words, it cannot be said that even a material state quantity that correlates with a single damage of creep or fatigue, or even creep fatigue superimposed damage, can be accurately evaluated. As typified by this example, there is no single material state metric for assessing creep fatigue superimposed damage.

【0038】実際、本実施例で用いた材料状態量をAパ
ラメータ、最大き裂長さ、ビッカース硬さ低下比のいず
れも単独でクリープ損傷と疲労損傷とを的確に評価する
ことはできなかった。
In fact, it was not possible to accurately evaluate the creep damage and the fatigue damage by using the material state quantity used in this example as the A parameter, the maximum crack length, and the Vickers hardness reduction ratio alone.

【0039】図4は本実施例の損傷評価方法にてCrM
oV鋳鋼材の実機劣化材を評価した結果である。また、
機器の使用状態を表す温度や圧力、起動停止回数などの
使用状態量を基にして、損傷を計算により求めた結果を
黒丸にて図4中に示している。この図から綿密な計算に
よる損傷評価結果と本実施例の損傷評価結果は一致して
おり、本実施例の方法によれば、クリープと疲労の重畳
損傷を精度よく推定できる。また、今後の運転予定を考
慮すれば、余寿命診断も非破壊計測だけで可能である。
FIG. 4 shows CrM according to the damage evaluation method of this embodiment.
It is a result of evaluating an actual deterioration material of oV cast steel. Also,
The results obtained by calculating the damage based on the usage state quantities such as the temperature and pressure indicating the usage state of the equipment and the number of times of starting and stopping are shown by black circles in FIG. From this figure, the damage evaluation result by careful calculation and the damage evaluation result of this embodiment are in agreement, and the method of this embodiment can accurately estimate the superimposed damage of creep and fatigue. Moreover, if future operation schedules are taken into consideration, remaining life diagnosis can be performed only by nondestructive measurement.

【0040】[0040]

【発明の効果】以上説明したように、本発明に係る高温
構造部材の損傷評価方法によれば、予め材料状態量ごと
のクリープ損傷と疲労損傷との関係を多次式で最適近似
し、その近似係数と材料状態量絶対値との関係を求めて
おき、さらにその近似線の近傍の存在確率をそれぞれ計
算してデータベース化し、実機から計測した材料状態量
に対応する存在確率分布を材料状態量の種類数だけ求
め、それらの存在確率分布を描いた全材料状態量の損傷
マップ上の存在確率を全て加算し、加算損傷マップ上の
存在確率合計の同じ点を滑らかな等高線で結び、最も確
率の高い座標を被診断部のクリープ損傷、疲労損傷とす
ることにより、計算による評価を行うまでもなく、評価
対象材料の被診断部より測定した2種類以上の材料状態
量により、クリープ損傷と疲労損傷が重畳した損傷をそ
れぞれ分離して評価することが可能で、同時に的確な余
寿命の診断もできる。しかも、存在確率を考慮した評価
を行うので、計算による評価に比べて柔軟性のある評価
ができる。
As described above, according to the damage evaluation method for a high temperature structural member according to the present invention, the relationship between creep damage and fatigue damage for each material state quantity is optimally approximated in advance by a multi-dimensional equation, and The relationship between the approximation coefficient and the absolute value of the material state quantity is calculated, and the existence probabilities in the vicinity of the approximation line are calculated and stored in a database, and the existence probability distribution corresponding to the material state quantity measured from the actual machine is calculated. Number of types, the existence probabilities of all material states on the damage map are added, and the same points of the total existence probabilities on the additive damage map are connected by smooth contour lines. By setting the coordinates with high coordinates as the creep damage and fatigue damage of the part to be diagnosed, it is possible to evaluate the creep by the two or more kinds of material state quantities measured from the part to be evaluated of the material to be evaluated without needing to perform evaluation by calculation. Can be evaluated by separating the damage scratches and fatigue damage is superimposed respectively, it can also diagnose simultaneously accurate remaining life. Moreover, since the evaluation is performed in consideration of the existence probability, it is possible to make the evaluation more flexible than the evaluation by calculation.

【0041】また、本発明は非破壊計測手法を改良し、
データベースを構築することにより、あらゆる構造材料
への適用が可能である。さらに、本発明の損傷評価方法
は従来の1次元の損傷評価による部品管理から多次元の
損傷評価による部品管理への方向付けを示した。
The present invention also improves the nondestructive measurement method,
By constructing a database, it can be applied to all structural materials. Furthermore, the damage evaluation method of the present invention has shown a direction from conventional component management by one-dimensional damage evaluation to component management by multi-dimensional damage evaluation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る高温構造部材の損傷評価方法の一
実施例におけるマスターデータベースの作成手順を示す
図。
FIG. 1 is a diagram showing a procedure for creating a master database in an example of a damage evaluation method for a high temperature structural member according to the present invention.

【図2】図1で構築したマスターデータベースを利用し
て実機被診断部の損傷を評価する方法の手順を示すフロ
ーチャート図。
FIG. 2 is a flowchart showing a procedure of a method for evaluating damage to a real machine diagnosed portion using the master database constructed in FIG.

【図3】クリープ単独損傷、クリープ疲労重畳損傷、材
料状態量(Aパラメータ)との関係を示す図。
FIG. 3 is a diagram showing the relationship between creep independent damage, creep fatigue superimposed damage, and material state quantity (A parameter).

【図4】同一の実機の損傷を本実施例による損傷評価結
果と計算による損傷評価結果とを比較して示す図。
FIG. 4 is a diagram showing damage of the same actual machine by comparing the damage evaluation result according to the present embodiment and the damage evaluation result by calculation.

【図5】損傷マップ領域分け法にて実機被診断部のクリ
ープ疲労重畳損傷を評価する方法を示す説明図。
FIG. 5 is an explanatory diagram showing a method for evaluating creep fatigue superimposed damage of an actual machine diagnosed portion by a damage map area division method.

【符号の説明】[Explanation of symbols]

φc クリープ損傷量 φf 疲労損傷量 φc Creep damage amount φf Fatigue damage amount

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高温で使用される構造部材のクリープと
疲労の双方の損傷が重畳して蓄積する損傷評価部位の損
傷を非破壊計測手法にて行う高温構造部材の損傷評価方
法において、予め材料状態量ごとのクリープ損傷と疲労
損傷との関係を多次式で最適近似し、その近似係数と材
料状態量絶対値との関係を求めておき、さらにその近似
線の近傍の存在確率をそれぞれ計算してデータベース化
し、実機から計測した材料状態量に対応する存在確率分
布を材料状態量の種類数だけ求め、それらの存在確率分
布を描いた全材料状態量の損傷マップ上の存在確率を全
て加算し、加算損傷マップ上の存在確率合計の同じ点を
滑らかな等高線で結び、最も確率の高い座標を被診断部
のクリープ損傷、疲労損傷とすることを特徴とする高温
構造部材の損傷評価方法。
1. A damage evaluation method for a high-temperature structural member, comprising: a non-destructive measuring method for damage to a damage evaluation site where damages due to both creep and fatigue of a structural member used at high temperature are accumulated and accumulated. The relationship between creep damage and fatigue damage for each state quantity is optimally approximated by a multi-dimensional formula, the relationship between the approximation coefficient and the absolute value of the material state quantity is determined, and the existence probabilities near the approximation line are calculated respectively. Then, the existence probability distribution corresponding to the material state quantity measured from the actual machine is obtained by the number of types of material state quantity, and all the existence probabilities on the damage map of all material state quantities that describe those existence probability distributions are added. Then, the points with the same total existence probabilities on the additive damage map are connected by smooth contour lines, and the coordinates with the highest probability are the creep damage and fatigue damage of the part to be diagnosed. Method.
【請求項2】 上記存在確率分布の決定は、材料ごとお
よび暴露温度ごとに異なる状態量データの分布型を予め
調べておき、その分布データベースにより最適の分布型
を選択することを特徴とする請求項1記載の高温構造部
材の損傷評価方法。
2. The determination of the existence probability distribution is characterized in that the distribution type of state quantity data that differs for each material and each exposure temperature is investigated in advance, and the optimum distribution type is selected from the distribution database. Item 1. A method for evaluating damage to a high temperature structural member according to item 1.
JP5322568A 1993-12-21 1993-12-21 Method for evaluating damage of high-temperature structural member Pending JPH07174681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5322568A JPH07174681A (en) 1993-12-21 1993-12-21 Method for evaluating damage of high-temperature structural member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5322568A JPH07174681A (en) 1993-12-21 1993-12-21 Method for evaluating damage of high-temperature structural member

Publications (1)

Publication Number Publication Date
JPH07174681A true JPH07174681A (en) 1995-07-14

Family

ID=18145143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5322568A Pending JPH07174681A (en) 1993-12-21 1993-12-21 Method for evaluating damage of high-temperature structural member

Country Status (1)

Country Link
JP (1) JPH07174681A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106525968A (en) * 2016-10-19 2017-03-22 中国人民解放军空军勤务学院 Damage probability imaging and positioning method based on subareas
CN115931532A (en) * 2022-12-30 2023-04-07 南京工业大学 Electric power high-temperature component damage state judgment method based on modified time fraction method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106525968A (en) * 2016-10-19 2017-03-22 中国人民解放军空军勤务学院 Damage probability imaging and positioning method based on subareas
CN106525968B (en) * 2016-10-19 2019-06-18 中国人民解放军空军勤务学院 Localization method is imaged in damage probability based on subregion
CN115931532A (en) * 2022-12-30 2023-04-07 南京工业大学 Electric power high-temperature component damage state judgment method based on modified time fraction method
CN115931532B (en) * 2022-12-30 2023-10-13 南京工业大学 Electric power high-temperature part damage state judging method based on correction time fractional method

Similar Documents

Publication Publication Date Title
RU2497173C2 (en) Flaw detection for aircraft engine
JP4649497B2 (en) Method for diagnosing lifetime of member and method and apparatus for diagnosing the lifetime
US5140264A (en) Method for non-destructively assessing the condition of a turbine blade using eddy current probes inserted within cooling holes
Ohba Inflection S-shaped software reliability growth model
US6512982B2 (en) Methods and systems for evaluating defects in metals
US5140528A (en) Method for evaluating relationship between the size of discontinuity indications from non-destructive examination of a turbine rotor, stress applied to the rotor and remaining life of the rotor
JP3392526B2 (en) Equipment maintenance management support equipment
JPH07174681A (en) Method for evaluating damage of high-temperature structural member
JP3332971B2 (en) Diagnosis method for deterioration of ferritic heat-resistant steel
JPH075086A (en) Method for estimating superposed damage of creep and fatigue of high-temperature structure material
Knowles et al. Implementing evaluation of the measurement process in an automotive manufacturer: a case study
JP2007225333A (en) Damage evaluation method by metal texture as to creep fatigue damage
RU2139515C1 (en) Method determining susceptibility of loaded material to injury and its service life
JPH06317500A (en) Method and equipment for evaluating damage on high temperature structural member
JP2013057546A (en) Life diagnosis method and life diagnosis device for high-temperature member
JP2609309B2 (en) Remaining life diagnosis device by non-destructive inspection
US6564156B2 (en) Method for determining joint stiffness degradation
JPH02103602A (en) Diagnosis supporting device
JPH07128328A (en) Method for predicting deterioration and residual life of metallic material
JPH0635971B2 (en) Method for predicting remaining life of metallic materials
KR100716902B1 (en) The damage evaluation system of metal and The damage evaluation method of metal using the same
JPH0142381B2 (en)
Miller Results using trend analysis for predicting automotive maintenance needs
Webster et al. The prediction of stress rupture life of notched specimens in the beta-processed titanium alloy Ti5331s
JPH03242528A (en) Method and system for diagnosing residual life