JPH07174431A - Double effect absorption heat pump - Google Patents

Double effect absorption heat pump

Info

Publication number
JPH07174431A
JPH07174431A JP5319382A JP31938293A JPH07174431A JP H07174431 A JPH07174431 A JP H07174431A JP 5319382 A JP5319382 A JP 5319382A JP 31938293 A JP31938293 A JP 31938293A JP H07174431 A JPH07174431 A JP H07174431A
Authority
JP
Japan
Prior art keywords
condenser
double
heat pump
effect
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5319382A
Other languages
Japanese (ja)
Other versions
JP2921372B2 (en
Inventor
Ryohei Minowa
良平 箕輪
Mitsuyuki Uchimura
満幸 内村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5319382A priority Critical patent/JP2921372B2/en
Publication of JPH07174431A publication Critical patent/JPH07174431A/en
Application granted granted Critical
Publication of JP2921372B2 publication Critical patent/JP2921372B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To provide a double effect absorption heat pump which is constituted to increase a result factor and perform operation even when the temperature of low temperature heat source water is changed. CONSTITUTION:A second condenser 11 is mounted on the hot water outlet side of a double effect absorption type heat pump to form a single and double effect composite cycle. A hot water heating amount allotted to a single effect cycle is controlled by the pressure of a high temperature reproducer 8. A refrigerant at a vaporizer 1 is blown so that low temp heat source water is prevented from being overcooled and a pressure is reduced to a value lower than an atmospheric pressure by a second condenser 11. This constitution increases the result factor of an absorption type heat pump to a value 1.3-1.7 times as large as that of a conventional type and performs operation even when the temperature of low temperature heat source water is reduced, and improves facility of a heat pump.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、二重効用吸収式ヒート
ポンプに関する。
FIELD OF THE INVENTION The present invention relates to a double-effect absorption heat pump.

【0002】[0002]

【従来の技術】従来の二重効用吸収式ヒートポンプは、
低温熱源温度が低く、吸収溶液濃度が比較的濃くなる条
件下に於いて、暖房に必要な温度の温水を取り出そうと
すると、高温再生器圧力が大気圧を越え、圧力容器の適
要を受けるため、温水を暖房に必要な温度まで昇温でき
なかった。
2. Description of the Related Art A conventional double-effect absorption heat pump is
Under conditions where the temperature of the low temperature heat source is low and the concentration of the absorbing solution is relatively high, if hot water of the temperature required for heating is taken out, the pressure of the high temperature regenerator exceeds atmospheric pressure, and the pressure vessel is required to do so. , The hot water could not be heated to the temperature required for heating.

【0003】このため、特開平5−52438号公報記
載又は特開平5−52439号公報記載のように、二重
効用ヒートポンプサイクルで中間温度の熱媒を作り、こ
の中間温度の熱媒を低温熱源として、一重効用ヒートポ
ンプを作動させ、高い温度の温水を取り出す方式がとら
れていた。このように2段で昇温すると、高い温度の温
水を取り出すことができるが、成績係数(COP)が低
い欠点があった。
Therefore, as described in JP-A-5-52438 or JP-A-5-52439, a heat medium having an intermediate temperature is produced by a double-effect heat pump cycle, and the heat medium having the intermediate temperature is used as a low temperature heat source. As a method, a single effect heat pump is operated to take out hot water of high temperature. When the temperature is raised in two stages as described above, hot water of high temperature can be taken out, but there is a drawback that the coefficient of performance (COP) is low.

【0004】例えば、現状で一番高いCOPのものとし
て二重効用吸収式ヒートポンプではCOP=2.2、一
重効用吸収式ヒートポンプではCOP=1.7のものが
あり、これらを組合せても
For example, there are COP = 2.2 in the double-effect absorption heat pump and COP = 1.7 in the double-effect absorption heat pump as the highest COP in the present situation.

【0005】[0005]

【数1】 [Equation 1]

【0006】となり、加熱熱量の29%しか排熱を利用
できなかった。
Therefore, only 29% of the amount of heat for heating can utilize the exhaust heat.

【0007】[0007]

【発明が解決しようとする課題】上記従来の技術は、高
い温度の温水を取出すことができたが、熱効率が低く、
排熱利用率が少いという問題があった。
The above-mentioned prior art was able to take out hot water at a high temperature, but the thermal efficiency was low,
There was a problem that the waste heat utilization rate was low.

【0008】本発明の目的は、比較的低い排熱源より熱
を回収し、暖房に必要な温度の温水を効率よく製造し、
排熱の利用率の高い、二重効用吸収式ヒートポンプを提
供することにある。
An object of the present invention is to recover heat from a relatively low exhaust heat source and efficiently produce hot water at a temperature required for heating,
It is to provide a double-effect absorption heat pump with a high utilization rate of waste heat.

【0009】本発明の他の目的は、排熱源の温度が低下
しても、暖房に必要な一定の温度レベルの温水を取出せ
る二重効用吸収式ヒートポンプを提供することにある。
Another object of the present invention is to provide a double-effect absorption heat pump which can take out hot water having a constant temperature level necessary for heating even if the temperature of the exhaust heat source is lowered.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、二重効用吸収式ヒートポンプの温水出口側に、高温
再生器より発生した冷媒蒸気で温水を直接凝縮加熱する
凝縮器を設け、凝縮液化した冷媒を二重効用吸収式ヒー
トポンプを構成する凝縮器を介して蒸発器に戻すように
したものである。
In order to achieve the above object, a condenser for directly condensing and heating hot water with a refrigerant vapor generated from a high temperature regenerator is provided at the hot water outlet side of a double-effect absorption heat pump to condense and liquefy. This refrigerant is returned to the evaporator via the condenser that constitutes the double-effect absorption heat pump.

【0011】また、前記、高温再生器より発生した冷媒
蒸気の凝縮熱で温水を加熱する凝縮器の温水系路に該凝
縮器をバイパスする通路を設け、高温再生器の圧力によ
って、該凝縮器をバイパスする温水量を制御するように
したものである。
Further, a passage bypassing the condenser is provided in the hot water system passage of the condenser for heating the warm water with the heat of condensation of the refrigerant vapor generated from the high temperature regenerator, and the condenser is controlled by the pressure of the high temperature regenerator. The amount of hot water that bypasses is controlled.

【0012】さらに、排熱温度が下り、吸収溶液濃度が
濃くなる条件下において、吸収溶液濃度が一定以上濃く
なると、蒸発器の冷媒液が自動的に吸収器側へ入り、吸
収器の溶液が一定以上に濃くならないようにしたもので
ある。
Further, under the condition that the exhaust heat temperature is lowered and the concentration of the absorbing solution is increased, if the concentration of the absorbing solution becomes higher than a certain level, the refrigerant liquid of the evaporator automatically enters the absorber side, and the solution of the absorber becomes It is designed so that it does not become darker than a certain level.

【0013】[0013]

【作用】高温再生器で発生した冷媒蒸気を直接導き、温
水を加熱することで凝縮液化させる凝縮器は、蒸発器、
吸収器と組合さり、一重効用吸収式ヒートポンプサイク
ルを構成する。したがって、排熱源の温度が低く、吸収
溶液濃度が高くなる条件で、低温再生器内の溶液濃度が
高くなり、溶液温度も上る場合、二重効用吸収式ヒート
ポンプサイクルで、高温再生器圧力が大気圧を越えない
範囲で、温水を吸収器、凝縮器で加熱し、温水が所定の
温度に充たない分を前記高温再生器で発生した冷媒蒸気
を凝縮液化させる凝縮器で加熱すれば、一重効用吸収式
ヒートポンプサイクルで加熱したことになり、全体のC
OPが、一重効用吸収式ヒートポンプサイクルと、二重
効用吸収式ヒートポンプサイクルの中間の値になり、排
熱の利用率が高くなる。
[Function] A condenser that directly guides the refrigerant vapor generated in the high temperature regenerator and heats hot water to condense and liquefy it is an evaporator,
Combined with the absorber to form a single-effect absorption heat pump cycle. Therefore, if the solution concentration in the low temperature regenerator becomes high and the solution temperature rises under the condition that the temperature of the exhaust heat source is low and the absorption solution concentration is high, the high temperature regenerator pressure is large in the double-effect absorption heat pump cycle. If the hot water is heated by the absorber and the condenser within the range not exceeding the atmospheric pressure, and if the hot water does not reach the predetermined temperature, it is heated by the condenser that condenses and liquefies the refrigerant vapor generated in the high temperature regenerator, to obtain a single layer. It has been heated by the absorption heat pump cycle, and the total C
OP becomes an intermediate value between the single-effect absorption heat pump cycle and the double-effect absorption heat pump cycle, and the utilization rate of exhaust heat becomes high.

【0014】また、排熱源の温度が比較的高い場合、吸
収器溶液濃度が薄くなるので、二重効用吸収式ヒートポ
ンプサイクルで所定の温度近くまで温水を加熱すること
ができる。この場合、前記高温再生器で発生した冷媒蒸
気を凝縮液化させる凝縮器を通過する温水をバイパスさ
せ、凝縮量を少くすると、二重効用吸収式ヒートポンプ
サイクルで加熱する割合が増加し、全体のCOPが高く
なる。又、前記凝縮器の温水バイパス量を高温再生器の
圧力で制御するため、高温再生器圧力が大気圧を越えな
い範囲で、二重効用吸収式ヒートポンプサイクルで加熱
する割合を最大にすることができ、排熱源温度条件の変
化につれ、その条件下に於ける最も効率の高い運転が行
われる。
Further, when the temperature of the exhaust heat source is relatively high, the concentration of the absorber solution becomes thin, so that the hot water can be heated to a temperature close to a predetermined temperature in the double-effect absorption heat pump cycle. In this case, if the hot water passing through the condenser that condenses and liquefies the refrigerant vapor generated in the high temperature regenerator is bypassed and the amount of condensation is reduced, the rate of heating in the double-effect absorption heat pump cycle increases, and the total COP Becomes higher. Further, since the amount of hot water bypass of the condenser is controlled by the pressure of the high temperature regenerator, it is possible to maximize the rate of heating in the double-effect absorption heat pump cycle within the range where the high temperature regenerator pressure does not exceed atmospheric pressure. As a result, as the exhaust heat source temperature condition changes, the most efficient operation under that condition is performed.

【0015】排熱源の温度が下り、吸収器溶液濃度が一
定以上濃くなった場合、蒸発器から冷媒液が吸収器溶液
に自動的に流入し、溶液濃度が一定以上に濃くならない
状態にしておけば、溶液が結晶することなく、吸収式ヒ
ートポンプは駆動源の熱を全て温水の加熱に使用する熱
交換器として作用し、COP=1となる。排熱源の温度
が上ると、蒸発器で1部蒸発するようになり、COPが
1以上となり、更に排熱源の温度が上るとCOPが高く
なり、最高の2.2 になる。つまり、高温再生器で発生
した冷媒蒸気を直接導き凝縮させる蒸発器を備えた吸収
式ヒートポンプに、吸収器溶液濃度が一定以上濃くなっ
た時、凝縮器から冷媒液が吸収器溶液に自動的に流入す
る装置を設けると、排熱源の温度が大巾に変化しても熱
ロスなく運転できる。
When the temperature of the exhaust heat source decreases and the absorber solution concentration becomes thicker than a certain level, the refrigerant liquid automatically flows into the absorber solution from the evaporator so that the solution concentration does not become thicker than a certain amount. If the solution does not crystallize, the absorption heat pump acts as a heat exchanger that uses all the heat of the driving source to heat the hot water, and COP = 1. When the temperature of the exhaust heat source rises, the evaporator partially evaporates, and the COP becomes 1 or more. When the temperature of the exhaust heat source rises, the COP rises to 2.2, which is the maximum. In other words, in an absorption heat pump equipped with an evaporator that directly guides and condenses the refrigerant vapor generated in the high temperature regenerator, when the concentration of the absorber solution becomes higher than a certain level, the refrigerant liquid from the condenser automatically becomes the absorber solution. Providing an inflow device allows operation without heat loss even if the temperature of the exhaust heat source changes drastically.

【0016】[0016]

【実施例】以下、本発明の一実施例を第1図および第2
図により説明する。蒸発器1を通る伝熱管中には低温熱
源である低温熱源水2が流れており、管外の冷媒は冷媒
ポンプ3によって、伝熱管上に散布され、管内を流れる
低温熱源水2から熱を奪って蒸発する。蒸発した冷媒は
吸収器4に至り、管内を流れる温水5により適当な温
度、濃度に保たれた溶液に吸収され、溶液は希釈され
る。希釈された溶液は、溶液ポンプ6により低温再生器
7及び高温再生器8に送られ、高温再生器8においては
外部の熱源9により加熱濃縮される。この時発生する冷
媒蒸気は低温再生器7の管内に到り、管外にある希溶液
を加熱濃縮すると共に自らは液化して凝縮器10に流入
する。高温再生器8、低温再生器7において濃縮された
液は、合流して吸収器に戻り4、伝熱管上にスプレーさ
れる。凝縮器10及び低温再生器7で凝縮した冷媒液は
凝縮器10から蒸発器1に戻り、サイクルは一巡する。
吸収器4と凝縮器10を通過する温水は、吸収熱及び凝
縮熱を得て加熱され、暖房用または加熱用に利用され
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will now be described with reference to FIGS.
It will be described with reference to the drawings. The low temperature heat source water 2 which is a low temperature heat source flows in the heat transfer tube passing through the evaporator 1, and the refrigerant outside the tube is dispersed by the refrigerant pump 3 onto the heat transfer tube, so that the heat is supplied from the low temperature heat source water 2 flowing in the tube. Take away and evaporate. The evaporated refrigerant reaches the absorber 4, and is absorbed by the warm water 5 flowing in the pipe into a solution kept at an appropriate temperature and concentration, and the solution is diluted. The diluted solution is sent to the low temperature regenerator 7 and the high temperature regenerator 8 by the solution pump 6, and is heated and concentrated in the high temperature regenerator 8 by the external heat source 9. The refrigerant vapor generated at this time reaches the inside of the tube of the low temperature regenerator 7, heats and concentrates the dilute solution outside the tube, and liquefies itself into the condenser 10. The liquids concentrated in the high temperature regenerator 8 and the low temperature regenerator 7 are merged and returned to the absorber 4, and sprayed on the heat transfer tube. The refrigerant liquid condensed in the condenser 10 and the low temperature regenerator 7 returns from the condenser 10 to the evaporator 1, and the cycle completes.
The hot water passing through the absorber 4 and the condenser 10 is heated by obtaining absorption heat and condensation heat, and is used for heating or heating.

【0017】第2の凝縮器11は、凝縮器10で加熱さ
れた温水を伝熱管内に通水し、管外に高温再生器8より
発生した冷媒蒸気を導入して凝縮させることにより更に
加熱昇温する。高温再生器8で発生した冷媒蒸気は、低
温再生器7で希溶液を加熱濃縮することができる高い飽
和温度を有しているため、温水を90℃程度まで加熱で
きるポテンシャルを持っている。調節弁17は第2の凝
縮器11を通過する温水量を調整し、第2の凝縮器11
の加熱量を調節する。
The second condenser 11 passes the hot water heated by the condenser 10 through the heat transfer tube, and introduces the refrigerant vapor generated from the high temperature regenerator 8 to the outside of the tube to condense it for further heating. Raise the temperature. The refrigerant vapor generated in the high temperature regenerator 8 has a high saturation temperature at which the dilute solution can be heated and concentrated in the low temperature regenerator 7, and thus has the potential to heat the hot water up to about 90 ° C. The control valve 17 adjusts the amount of hot water passing through the second condenser 11,
Adjust the heating amount of.

【0018】高温再生器8の圧力検出器15の信号を受
けて圧力調節器16は、高温再生器8の圧力が大気圧に
近くなったら第2の凝縮器11を通過する温水量を増や
し、加熱量を増加させ、反対に圧力が低い場合、通過す
る温水量を減らして加熱量を減少させるように制御す
る。
In response to the signal from the pressure detector 15 of the high temperature regenerator 8, the pressure regulator 16 increases the amount of hot water passing through the second condenser 11 when the pressure of the high temperature regenerator 8 becomes close to the atmospheric pressure, On the contrary, when the heating amount is increased and the pressure is low, the amount of hot water passing through is reduced to control the heating amount.

【0019】加熱源の入力を制御する制御弁14は、温
水出口の温度センサ12の信号を受けて調節する温度調
節器13の信号で動作し、温水出口温度を一定に制御す
る。
The control valve 14 for controlling the input of the heating source operates according to the signal from the temperature controller 13 which receives and adjusts the signal from the temperature sensor 12 at the hot water outlet to control the hot water outlet temperature at a constant level.

【0020】このような構成から成るヒートポンプにお
いて、温水の出口温度は、一般的な暖房用途に用いる場
合、50℃前後にとる事が多く、また高ければ高い程、
空調器類の伝熱面積を小さくしても、必要な加熱量が得
られることや、温水の搬送動力を少くできるなどの利点
があるため、取り出し温水温度の高いことが望まれる。
In a heat pump having such a structure, the outlet temperature of hot water is often around 50 ° C. when used for general heating applications, and the higher the temperature, the higher
Even if the heat transfer area of the air conditioners is reduced, the required heating amount can be obtained, and the hot water transport power can be reduced.

【0021】一方、吸収式ヒートポンプ側から考える
と、二重効用サイクルにおいては、凝縮器11の温水出
口温度が凝縮器11の冷媒凝縮圧力を左右し、冷媒の凝
縮圧力が高くなると、凝縮器11と連通している低温再
生器7で発生する冷媒蒸発圧力が高くなる。冷媒蒸発圧
力が高くなると、冷媒蒸発と平衡関係にある溶液温度が
高くなるため、この溶液を加熱する管内の冷媒蒸気の凝
縮温度が高くなり、この凝縮温度に対する飽和圧力が高
温再生器の圧力となるので、高温再生器8の圧力が高く
なることになる。
On the other hand, considering from the side of the absorption heat pump, in the double-effect cycle, when the hot water outlet temperature of the condenser 11 influences the refrigerant condensing pressure of the condenser 11 and the condensing pressure of the refrigerant becomes high, the condenser 11 The refrigerant evaporating pressure generated in the low temperature regenerator 7 communicating with is increased. When the refrigerant evaporation pressure increases, the solution temperature in equilibrium with the refrigerant evaporation increases, so the condensation temperature of the refrigerant vapor in the tube that heats this solution increases, and the saturation pressure for this condensation temperature becomes the pressure of the high temperature regenerator. Therefore, the pressure of the high temperature regenerator 8 is increased.

【0022】以上をまとめると、温水出口温度の高い
程、高温再生器8の圧力が高くなるという関係が成立す
る。
In summary, the relationship that the higher the hot water outlet temperature, the higher the pressure of the high temperature regenerator 8 is established.

【0023】これらの関係を第2図に示すデューリング
線図で説明すると、例えば低温熱源水の出口温度(te
o)が10℃、温水出口温度(thc)が47℃の場合、
吸収器4の溶液濃度が約58%となり、凝縮器11の冷
媒凝縮温度(Tc)が48.5℃、飽和圧力(Pc)が8
6mmHgabsとなり、低温再生器出口溶液温度が97
℃、管内の冷媒凝縮温度(Tgc)が100℃となって、
高温再生器圧力(PHG)は大気圧となる。低温熱源水の
温度レベルが高くなり、低温熱源水出口温度(teo)が
15℃程度になると蒸発圧力(Pe) が上るため吸収器
4の溶液濃度が約56%になり、温水出口47℃におい
ても低温再生器出口溶液温度が93℃に下り、高温再生
器圧力も大気圧以下になる。
These relationships will be described with reference to the Duhring diagram shown in FIG. 2. For example, the outlet temperature of the low temperature heat source water (te
o) is 10 ° C and the hot water outlet temperature (thc) is 47 ° C,
The solution concentration of the absorber 4 becomes about 58%, the refrigerant condensation temperature (Tc) of the condenser 11 is 48.5 ° C, and the saturation pressure (Pc) is 8
6mmHgabs and the solution temperature at the outlet of the low temperature regenerator is 97
℃, the refrigerant condensation temperature in the tube (Tgc) is 100 ℃,
The high temperature regenerator pressure (PHG) becomes atmospheric pressure. When the temperature level of the low temperature heat source water rises and the low temperature heat source water outlet temperature (teo) reaches about 15 ° C, the evaporation pressure (Pe) rises and the solution concentration of the absorber 4 becomes about 56%. At the hot water outlet 47 ° C. The temperature of the solution at the outlet of the low temperature regenerator drops to 93 ° C, and the pressure of the high temperature regenerator also becomes lower than atmospheric pressure.

【0024】以上に説明したように、下水処理水など低
温の排水を低温熱源として使用する場合、二重効用サイ
クルでは暖房に必要な高温の温水温度を得ようとすると
高温再生器圧力が大気圧以上になる。
As described above, when low-temperature wastewater such as sewage treated water is used as a low-temperature heat source, the high-temperature regenerator pressure is atmospheric when the high-temperature hot water required for heating is obtained in the double-effect cycle. That's all.

【0025】機内が大気圧を越えると、吸収式ヒートポ
ンプ全体が圧力容器となり、安全上の配慮が厳しく必要
となり、高価なヒートポンプとなると共に、これを運転
する運転者に対する特別な資格が必要とされるなどの安
全上の問題点が生ずる。従って、現実のヒートポンプに
おいては、運転圧力が大気圧を越えないように、安全ス
イッチを設けて機械を止めてしまったり、温水出口温度
を、負荷を制限して低くしているのが実情である。
When the inside of the machine exceeds the atmospheric pressure, the entire absorption heat pump becomes a pressure vessel, which requires strict safety consideration, becomes an expensive heat pump, and requires special qualification for the driver who operates the heat pump. There are safety issues such as Therefore, in the actual heat pump, in order to prevent the operating pressure from exceeding the atmospheric pressure, a safety switch is provided to stop the machine or the hot water outlet temperature is lowered by limiting the load. .

【0026】本発明においては、高温再生器8で発生し
た冷媒蒸気の一部を、第2の凝縮器11に導き、凝縮器
10から出た温水を、第2の凝縮器11の伝熱管外で冷
媒蒸気の凝縮熱で加熱するように構成している。
In the present invention, a part of the refrigerant vapor generated in the high temperature regenerator 8 is guided to the second condenser 11, and the hot water discharged from the condenser 10 is transferred to the outside of the heat transfer tube of the second condenser 11. Is configured to be heated by the heat of condensation of the refrigerant vapor.

【0027】このようにすれば、第2の凝縮器11の出
口に於ける温水温度を47℃に設定した場合、凝縮器1
0の出口温水温度が45℃程度になり、高温再生器内圧
力を、大気圧に比較して十分低くすることができる。
In this way, when the hot water temperature at the outlet of the second condenser 11 is set to 47 ° C., the condenser 1
The outlet hot water temperature of 0 becomes about 45 ° C., and the internal pressure of the high temperature regenerator can be made sufficiently lower than the atmospheric pressure.

【0028】なお、第2の凝縮器11で温水を加熱する
ことで凝縮液化した冷媒液を、凝縮器10を経由して、
蒸発器1に戻しているため、蒸発器1で低温熱源から熱
を汲み上げる作用に活用される。つまり、第2の凝縮器
11で温水加熱に使用された凝縮熱は、一重効用サイク
ルとして作用し、低温熱源からの熱回収に有効利用され
る。一重効用サイクルのヒートポンプの成績係数は前述
の通り、約1.7 である。
The refrigerant liquid condensed and liquefied by heating the warm water in the second condenser 11 is passed through the condenser 10 to
Since it is returned to the evaporator 1, the evaporator 1 is utilized for pumping heat from the low temperature heat source. That is, the heat of condensation used for heating the hot water in the second condenser 11 acts as a single-effect cycle and is effectively used for heat recovery from the low-temperature heat source. As mentioned above, the coefficient of performance of the heat pump of the single-effect cycle is about 1.7.

【0029】一方、凝縮器10で温水加熱に使用された
凝縮熱は、二重効用サイクルとして作用し、低温熱源か
らの熱回収効率が高くなり、ヒートポンプとしての成績
係数は約2.2 となる。従って、第2の凝縮器11での
温水加熱量を減らし、凝縮器10での温水加熱量を増や
した方が、全体の成績係数が高くなる。例えば、前述の
通り低温熱源の温度が高く、吸収器4の溶液濃度が薄く
なる場合、凝縮器10で温水を所定の温度まで昇温でき
るので、第2の凝縮器での加熱量を0にでき、成績係数
が最も高い、2.2 となる。反対に低温熱源の温度が低
い時は、吸収器の溶液濃度が高くなるので、凝縮器10
での加熱量を高温再生器が大気圧を越えない範囲にとど
め、第2の凝縮器での加熱量を増やさなければならな
い。この場合、ヒートポンプの成績係数は低くなり、凝
縮器10の加熱量が0で最低の1.7になる。つまり、
第2の凝縮器11での加熱量によって成績係数が1.7
〜2.2の間で変化することになる。
On the other hand, the heat of condensation used for heating the hot water in the condenser 10 acts as a double-effect cycle, the efficiency of heat recovery from the low-temperature heat source is increased, and the coefficient of performance as a heat pump is about 2.2. . Therefore, the overall coefficient of performance is higher when the amount of heated hot water in the second condenser 11 is reduced and the amount of heated warm water in the condenser 10 is increased. For example, when the temperature of the low-temperature heat source is high and the solution concentration of the absorber 4 is low as described above, the warm water can be heated to a predetermined temperature in the condenser 10, so the heating amount in the second condenser is set to 0. Yes, the highest coefficient of performance is 2.2. On the contrary, when the temperature of the low temperature heat source is low, the solution concentration in the absorber becomes high, so that the condenser 10
The heating amount in the second condenser must be increased by keeping the heating amount in the second high temperature regenerator within a range not exceeding the atmospheric pressure. In this case, the coefficient of performance of the heat pump becomes low, and the minimum heating amount of the condenser 10 is 1.7, which is 1.7. That is,
The coefficient of performance is 1.7 depending on the amount of heat in the second condenser 11.
It will change between ~ 2.2.

【0030】第2の凝縮器11における温水加熱量の調
節は、第2の凝縮器11をバイパスする温水量を調節す
る制御弁17を制御することによって行うことができ
る。制御弁17の制御は、高温再生器8の圧力検出器1
5の信号を調節器16に供給し、高温再生器圧力が高い
時、バイパス量を減らし、高温再生器圧力が低い時、バ
イパス量を増すように制御する。
The amount of hot water heated in the second condenser 11 can be adjusted by controlling the control valve 17 that adjusts the amount of hot water that bypasses the second condenser 11. The control of the control valve 17 is performed by the pressure detector 1 of the high temperature regenerator 8.
The signal of No. 5 is supplied to the regulator 16 so that the bypass amount is reduced when the high temperature regenerator pressure is high, and the bypass amount is increased when the high temperature regenerator pressure is low.

【0031】上記制御により、吸収式ヒートポンプの高
温再生器8の圧力を大気圧以下にし、かつ、低温熱源の
温度レベルに合せ、一番成績係数の高いポイントで運転
することができる。
By the above control, the pressure of the high temperature regenerator 8 of the absorption heat pump can be set to the atmospheric pressure or less, and the operation can be performed at the highest coefficient of performance in accordance with the temperature level of the low temperature heat source.

【0032】第3図は、他の実施例を示す。高温再生器
8で発生した冷媒蒸気は、全量低温再生器7に流入し、
低温再生器7内の溶液を加熱して1部は凝縮し、冷媒液
となって凝縮器10に流入すると共に、凝縮しなかった
冷媒蒸気は、分離器19で冷媒液と分離され、第2の凝
縮器11に流入し、温水を直接加熱して凝縮液化してガ
ス吹き抜け防止用フロート弁18を介して凝縮器10に
流入する。このように構成することにより、高温再生器
8で発生した冷媒蒸気のスーパーヒート分の熱(約5
%)が低温再生器7の溶液加熱に利用でき、低温熱源温
度が低い場合でも高い成績係数を得ることができる。
FIG. 3 shows another embodiment. All the refrigerant vapor generated in the high temperature regenerator 8 flows into the low temperature regenerator 7,
The solution in the low temperature regenerator 7 is heated and a part thereof is condensed to become a refrigerant liquid and flows into the condenser 10, while the uncondensed refrigerant vapor is separated from the refrigerant liquid in the separator 19, In the condenser 11, the hot water is directly heated to be condensed and liquefied, and then flows into the condenser 10 through the gas blow-through prevention float valve 18. With this configuration, the heat of the superheat of the refrigerant vapor generated in the high temperature regenerator 8 (about 5
%) Can be used for heating the solution of the low temperature regenerator 7, and a high coefficient of performance can be obtained even when the low temperature heat source temperature is low.

【0033】第4図は、さらに他の実施例を示す。低温
熱源の温度が下ると蒸発温度(TE)が下り、蒸発圧力
(PE)が下るため、吸収溶液濃度が濃くなる。低温熱
源温度が極度に下ると、吸収能力がなくなり、吸収溶液
中の冷媒が分離して溶液濃度が高くなると同時に量が減
るため、吸収器4の液面が下る。一方、蒸発器1では溶
液中より分離された冷媒が増加し、液面が高くなる。冷
媒戻し装置20は、蒸発器1の冷媒液面が一定のレベル
以上になったら冷媒液を吸収器4に戻す装置で、取付レ
ベルの調節により、溶液を任意の濃度以上に濃くならな
いようにすることができる。例えば、低温熱源温度が低
く、冷媒液面が冷媒戻し装置20のレベル以上になる
と、冷媒が蒸発器1より吸収器4に流入し、溶液濃度が
一定以上に濃くならず、結晶も発生しないため、溶液の
循環が連続し、溶液は温水5と熱交換し、一定の温度に
保たれる。低温再生器7に於いて、高温再生器8で発生
した冷媒蒸気で溶液を加熱するが冷媒の再生をほとんど
行わない。高温再生器8で発生した冷媒蒸気の大部分
は、第2の凝縮器11で温水を加熱し、自身は凝縮液化
し、凝縮器10に流入する。この際、高温再生器圧力に
よって調節弁17を制御し、第2の凝縮器11を通過す
る温水量を増すため、高温再生器圧力は大気圧以下に保
たれる。なお、熱源9よりヒートポンプに入った熱は全
て温水5に伝わり、外部に逃れてゆくことはない。
FIG. 4 shows still another embodiment. When the temperature of the low temperature heat source decreases, the evaporation temperature (TE) decreases, and the evaporation pressure (PE) decreases, so that the concentration of the absorbing solution becomes thick. When the temperature of the low temperature heat source is extremely decreased, the absorption capacity is lost, the refrigerant in the absorbing solution is separated, the solution concentration is increased, and the amount is decreased at the same time, so that the liquid level of the absorber 4 is decreased. On the other hand, in the evaporator 1, the amount of the refrigerant separated from the solution increases, and the liquid level rises. The refrigerant return device 20 is a device that returns the refrigerant liquid to the absorber 4 when the refrigerant liquid level of the evaporator 1 reaches a certain level or more, and adjusts the attachment level so that the solution does not become thicker than an arbitrary concentration. be able to. For example, when the low temperature heat source temperature is low and the liquid level of the refrigerant becomes equal to or higher than the level of the refrigerant return device 20, the refrigerant flows from the evaporator 1 into the absorber 4, the solution concentration does not become thicker than a certain level, and crystals do not occur. The circulation of the solution is continued, and the solution exchanges heat with the warm water 5 and is kept at a constant temperature. In the low temperature regenerator 7, the solution is heated by the refrigerant vapor generated in the high temperature regenerator 8, but the refrigerant is hardly regenerated. Most of the refrigerant vapor generated in the high temperature regenerator 8 heats hot water in the second condenser 11, condenses itself into liquid, and flows into the condenser 10. At this time, the control valve 17 is controlled by the high temperature regenerator pressure to increase the amount of hot water passing through the second condenser 11, so that the high temperature regenerator pressure is maintained below atmospheric pressure. All the heat that has entered the heat pump from the heat source 9 is transferred to the hot water 5 and does not escape to the outside.

【0034】第5図は、さらに他の実施例を示す。低温
熱源水出口温度検出器21の信号を受け、温度調節器2
2は、冷媒ブロー弁23を制御する。動作は、低温熱源
水温度が下りすぎた時、冷媒ブロー弁23を開き、冷媒
を吸収器4にブローさせ、吸収能力を減じて低温熱源水
の過冷却を防止するように働く。これは、低温熱源水温
度が低く、かつ、温水5の入口温度が下った場合に、低
温熱源水の過冷却防止に役立つ。
FIG. 5 shows still another embodiment. The temperature controller 2 receives the signal from the low temperature heat source water outlet temperature detector 21.
2 controls the refrigerant blow valve 23. When the temperature of the low temperature heat source water falls too low, the refrigerant blow valve 23 is opened to blow the refrigerant into the absorber 4 to reduce the absorption capacity and prevent the low temperature heat source water from being overcooled. This helps prevent the supercooling of the low temperature heat source water when the temperature of the low temperature heat source water is low and the inlet temperature of the hot water 5 drops.

【0035】[0035]

【発明の効果】本発明によれば、低温熱源の温度レベル
が変化しても一定の温度の温水が取出せ、負荷や低温熱
源温度レベルに合せて成績係数を一番高い状態で運転で
きる。
According to the present invention, even if the temperature level of the low temperature heat source changes, hot water of a constant temperature can be taken out, and the operation can be performed in the state where the coefficient of performance is the highest according to the load and the low temperature heat source temperature level.

【0036】低温熱源の温度が一定以上であれば、CO
Pが1.7から2.2の範囲になり、従来方式比1.3〜
1.7倍になる。
If the temperature of the low temperature heat source is above a certain level, CO
P is in the range of 1.7 to 2.2, 1.3 ~
It will be 1.7 times.

【0037】また、ヒートポンプは排熱を低温熱源とし
て使用するため、温度条件が一定せず、広い温度範囲で
運転できることが必要であるが、本発明によれば、従来
方式で一重効用サイクルでも運転できなかった範囲まで
運転できる。
Further, since the heat pump uses the exhaust heat as a low temperature heat source, it is necessary that the temperature conditions are not constant and that the heat pump can be operated in a wide temperature range. You can drive to a range you could not.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すサイクルフロー図。FIG. 1 is a cycle flow chart showing an embodiment of the present invention.

【図2】温水出口温度、低温熱源温度と高温再生器圧力
との関係を示すデューリング線図。
FIG. 2 is a Dühring diagram showing the relationship between the hot water outlet temperature, the low temperature heat source temperature, and the high temperature regenerator pressure.

【図3】本発明の他の実施例を示す図。FIG. 3 is a diagram showing another embodiment of the present invention.

【図4】本発明のさらに他の実施例を示す図。FIG. 4 is a diagram showing still another embodiment of the present invention.

【図5】本発明のさらに他の実施例を示す図。FIG. 5 is a diagram showing still another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…蒸発器,2…低温熱源水,3…冷媒ポンプ,4…吸
収器,5…温水,6…溶液ポンプ,7…低温再生器,8
…高温再生器,9…熱源,10…凝縮器,11…第2の
凝縮器,12…温水出口温度検出器,13…温水出口温
調計,14…熱減制御弁,15…高温再生器圧力検出
器,16…圧力調節計,17…温水制御弁,18…フロ
ート弁,19…分離器,20…冷媒戻し装置,21…低
温熱源水出口温度検出器,22…低温熱源水出口温度調
節計,23…冷媒ブロー弁。
1 ... Evaporator, 2 ... Low temperature heat source water, 3 ... Refrigerant pump, 4 ... Absorber, 5 ... Hot water, 6 ... Solution pump, 7 ... Low temperature regenerator, 8
High temperature regenerator, 9 ... Heat source, 10 ... Condenser, 11 ... Second condenser, 12 ... Hot water outlet temperature detector, 13 ... Hot water outlet temperature controller, 14 ... Heat reduction control valve, 15 ... High temperature regenerator Pressure detector, 16 ... Pressure controller, 17 ... Hot water control valve, 18 ... Float valve, 19 ... Separator, 20 ... Refrigerant return device, 21 ... Low temperature heat source water outlet temperature detector, 22 ... Low temperature heat source water outlet temperature adjustment Total, 23 ... Refrigerant blow valve.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】蒸発器、吸収器、低温再生器、二重効用サ
イクルを構成する凝縮器、高温再生器、溶液ポンプ、冷
媒ポンプならびにこれらを連結する配管類を備える二重
効用吸収式ヒートポンプにおいて、前記高温再生器より
発生した冷媒蒸気を直接導入して凝縮液化させる第2の
凝縮器を前記二重効用サイクルを構成する凝縮器の下流
に設けて、温水を前記吸収器および二重効用サイクルを
構成する凝縮器で加熱した後にこの第2の凝縮器で加熱
し、この第2の凝縮器で凝縮した冷媒液を前記二重効用
サイクルを構成する凝縮器へ導入する通路を設けること
を特徴とする二重効用吸収式ヒートポンプ。
1. A double-effect absorption heat pump comprising an evaporator, an absorber, a low-temperature regenerator, a condenser constituting a double-effect cycle, a high-temperature regenerator, a solution pump, a refrigerant pump, and pipes connecting these. A second condenser that directly introduces the refrigerant vapor generated from the high temperature regenerator to condense and liquefy is provided downstream of the condenser that constitutes the double effect cycle, and hot water is added to the absorber and the double effect cycle. Is provided with a passage for introducing the refrigerant liquid heated by the second condenser and then condensed by the second condenser to the condenser constituting the double effect cycle. Double-effect absorption heat pump.
【請求項2】請求項1記載の二重効用吸収式ヒートポン
プにおいて、第2の凝縮器に入る温水の一部をバイパス
させる通路を設け、このバイパス通路を第2の凝縮器の
出口側で合流させ、高温再生器の圧力によって温水のバ
イパス量を増減する制御手段を設けることを特徴とする
二重効用吸収式ヒートポンプ。
2. The double-effect absorption heat pump according to claim 1, wherein a passage for bypassing a part of the hot water entering the second condenser is provided, and the bypass passage is joined at the outlet side of the second condenser. The double-effect absorption heat pump is provided with control means for increasing or decreasing the bypass amount of hot water according to the pressure of the high temperature regenerator.
【請求項3】蒸発器、吸収器、低温再生器、二重効用サ
イクルを構成する凝縮器、高温再生器、溶液ポンプ、冷
媒ポンプならびにこれらを連結する通路を備える二重効
用吸収式ヒートポンプにおいて、前記高温再生器で発生
した冷媒蒸気を前記低温再生器に導入し、この低温再生
器を出た蒸気を導入して凝縮液化させる第2の凝縮器を
前記二重効用サイクルを構成する凝縮器の下流に設け
て、温水を前記吸収器および二重効用サイクルを構成す
る凝縮器で加熱した後にこの第2の凝縮器で加熱し、こ
の第2の凝縮器で凝縮した冷媒液を前記二重効用サイク
ルを構成する凝縮器へ導入する通路を設けることを特徴
とする二重効用吸収式ヒートポンプ。
3. An evaporator, an absorber, a low temperature regenerator, a condenser constituting a double effect cycle, a high temperature regenerator, a solution pump, a refrigerant pump, and a double effect absorption heat pump having a passage connecting them, The refrigerant vapor generated in the high-temperature regenerator is introduced into the low-temperature regenerator, and the second condenser for introducing and liquefying the vapor exiting the low-temperature regenerator is condensed into the double-effect cycle. Provided downstream, the hot water is heated by the absorber and the condenser constituting the double-effect cycle, and then heated by the second condenser, and the refrigerant liquid condensed by the second condenser is used by the double-effect. A double-effect absorption heat pump, characterized in that it is provided with a passage to be introduced into a condenser forming a cycle.
【請求項4】請求項3記載の二重効用吸収式ヒートポン
プにおいて、第2の凝縮器に入る温水の一部をバイパス
させる通路を設け、このバイパス通路を第2の凝縮器の
出口側で合流させ、高温再生器の圧力によって温水のバ
イパス量を増減する制御手段を設けたことを特徴とする
二重効用吸収式ヒートポンプ。
4. The double-effect absorption heat pump according to claim 3, wherein a passage for bypassing a part of the hot water entering the second condenser is provided, and the bypass passage is joined on the outlet side of the second condenser. The double-effect absorption heat pump is provided with control means for increasing or decreasing the bypass amount of hot water according to the pressure of the high temperature regenerator.
【請求項5】請求項3記載の二重効用吸収式ヒートポン
プにおいて、第2の凝縮器で凝縮した冷媒液を二重効用
サイクルを構成する凝縮器へ導入する通路の途中にフロ
ート弁を設けることを特徴とする二重効用吸収式ヒート
ポンプ。
5. The double-effect absorption heat pump according to claim 3, wherein a float valve is provided in the middle of a passage for introducing the refrigerant liquid condensed in the second condenser into the condenser constituting the double-effect cycle. Double-effect absorption heat pump characterized by.
【請求項6】蒸発器、吸収器、低温再生器、二重効用サ
イクルを構成する凝縮器、高温再生器、溶液ポンプ、冷
媒ポンプならびにこれらを連結する配管類を備える二重
効用吸収式ヒートポンプにおいて、前記高温再生器より
発生した冷媒蒸気を直接導入して凝縮液化させる第2の
凝縮器を前記二重効用サイクルを構成する凝縮器の下流
に設けて温水を前記吸収器および二重効用サイクルを構
成する凝縮器で加熱した後にこの第2の凝縮器で加熱
し、この第2の凝縮器で凝縮した冷媒液を前記二重効用
サイクルを構成する凝縮器へ導入する通路を設け、前記
蒸発器の冷媒量が一定以上になった時に蒸発器の冷媒液
を前記吸収器の吸収溶液に混合する手段を設けることを
特徴とする二重効用吸収式ヒートポンプ。
6. A double-effect absorption heat pump comprising an evaporator, an absorber, a low-temperature regenerator, a condenser constituting a double-effect cycle, a high-temperature regenerator, a solution pump, a refrigerant pump, and pipes connecting these. A second condenser that directly introduces the refrigerant vapor generated from the high temperature regenerator to condense and liquefy is provided downstream of the condenser that constitutes the double effect cycle to supply hot water to the absorber and the double effect cycle. The evaporator is provided with a passage for introducing the refrigerant liquid heated by the second condenser and then heated by the second condenser and condensed by the second condenser into the condenser constituting the double-effect cycle. A double-effect absorption heat pump is provided with means for mixing the refrigerant liquid in the evaporator with the absorption solution in the absorber when the amount of the refrigerant in (1) exceeds a certain level.
【請求項7】請求項6記載の二重効用吸収式ヒートポン
プにおいて、低温熱源の温度によって蒸発器の冷媒液を
吸収器の吸収溶液に混合する量を増減する制御手段を設
けることを特徴とする二重効用吸収式ヒートポンプ。
7. The double-effect absorption heat pump according to claim 6, further comprising control means for increasing or decreasing the amount of the refrigerant liquid in the evaporator mixed with the absorption solution in the absorber depending on the temperature of the low-temperature heat source. Double-effect absorption heat pump.
JP5319382A 1993-12-20 1993-12-20 Double-effect absorption heat pump Expired - Fee Related JP2921372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5319382A JP2921372B2 (en) 1993-12-20 1993-12-20 Double-effect absorption heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5319382A JP2921372B2 (en) 1993-12-20 1993-12-20 Double-effect absorption heat pump

Publications (2)

Publication Number Publication Date
JPH07174431A true JPH07174431A (en) 1995-07-14
JP2921372B2 JP2921372B2 (en) 1999-07-19

Family

ID=18109537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5319382A Expired - Fee Related JP2921372B2 (en) 1993-12-20 1993-12-20 Double-effect absorption heat pump

Country Status (1)

Country Link
JP (1) JP2921372B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113188108A (en) * 2021-04-26 2021-07-30 松下制冷(大连)有限公司 Efficient heat pump and control use method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113188108A (en) * 2021-04-26 2021-07-30 松下制冷(大连)有限公司 Efficient heat pump and control use method

Also Published As

Publication number Publication date
JP2921372B2 (en) 1999-07-19

Similar Documents

Publication Publication Date Title
US6748762B2 (en) Absorption-refrigerator
US6487874B2 (en) Absorption refrigerator
JP4287705B2 (en) Single double effect absorption refrigerator and operation control method thereof
JP2008025915A (en) Absorption refrigerator system
JPH07174431A (en) Double effect absorption heat pump
JP3444203B2 (en) Absorption refrigerator
JP2003287314A (en) Absorption refrigerating machine
JP3381094B2 (en) Absorption type heating and cooling water heater
JPH0621736B2 (en) Absorption refrigerator
US5315839A (en) Control system for absorption heat transfer plants
JP2895974B2 (en) Absorption refrigerator
WO2004046622A1 (en) Absorption refrigerating machine
JPH04313652A (en) Absorption refrigerating machine
JP3081490B2 (en) Absorption refrigerator
JP3735745B2 (en) Cooling operation control method for absorption air conditioner
JPH07849Y2 (en) Air-cooled absorption chiller / heater
JP3811632B2 (en) Waste heat input type absorption refrigerator
JP2520974Y2 (en) Proportional control absorption chiller / heater
JPH0275865A (en) Controlling method for absorption refrigerator
JP2592014B2 (en) Absorption chiller / heater
JPS5857667B2 (en) Dual effect absorption refrigeration device and its control method
JPS6314292Y2 (en)
JPH0868572A (en) Dual-effect absorption refrigerator
JP2507583Y2 (en) Absorption chiller / heater solution circulation control device
JPH03105171A (en) Absorption type water cooling and heating machine

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees