JPH07174350A - Heat conveying device - Google Patents

Heat conveying device

Info

Publication number
JPH07174350A
JPH07174350A JP32167993A JP32167993A JPH07174350A JP H07174350 A JPH07174350 A JP H07174350A JP 32167993 A JP32167993 A JP 32167993A JP 32167993 A JP32167993 A JP 32167993A JP H07174350 A JPH07174350 A JP H07174350A
Authority
JP
Japan
Prior art keywords
liquid
refrigerant
gas
receiver
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32167993A
Other languages
Japanese (ja)
Inventor
Katsuzo Konakawa
勝蔵 粉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP32167993A priority Critical patent/JPH07174350A/en
Publication of JPH07174350A publication Critical patent/JPH07174350A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To shorten the open-close cycle to increase the heat conveying capacity of a heat conveying device where refrigerant is heated with the aim of heating, by arranging plates with perforations close to the interior wall of a liquid receiver at nearly equal intervals. CONSTITUTION:A gas-liquid separator 1 is situate above a refrigerant heater 2 and communicates with the refrigerant heater 2 via an inlet pipe 3 and an outlet pipe 4. A heat carrying device 18 has a liquid receiver 5 that is situated above the gas-liquid separator 1 and communicates with the gas-liquid separator 1 via an on-off valve 8 and a first check valve 6. A ring circulation path 19 connects the gas-liquid separator 1, a radiator 10, a second check valve 12, and the liquid receiver 5 together in turn. A gap 22 is formed by plates 20 that have perforations 21 and are arranged close to the interior wall of the liquid receiver 5 at nearly equal intervals. Therefore, high-temperature gas refrigerant in the liquid receiver 5 is rapidly cooled and condensed by an atomized supercooled refrigerant sprayed toward the center of the liquid receiver 5, so that the liquid refrigerant is sucked fast into the liquid receiver 5 at once when the on-off valve 8 is opened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷媒を加熱する時の圧
力上昇を利用して、熱を暖房などに利用する熱搬送装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat transfer device for utilizing heat for heating or the like by utilizing a pressure increase when heating a refrigerant.

【0002】[0002]

【従来の技術】従来の熱搬送装置は、例えば特開平3−
51631号公報に示されるように、図3のような構成
になっている。
2. Description of the Related Art A conventional heat transfer device is disclosed, for example, in Japanese Patent Laid-Open No.
As shown in Japanese Patent Publication No. 51631, the structure is as shown in FIG.

【0003】すなわち、気液セパレータ1は、冷媒加熱
器2の上方に配置されるとともに冷媒加熱器2の入口管
3と冷媒加熱器2の出口管4とで連結され環状の管路で
接続されている。また、受液器5は気液セパレータ1の
上方に配置され、第1逆止弁6を有する落込み管7で気
液セパレータ1へ接続され、さらに開閉弁8を有する均
圧管9により出口管4を介して気液セパレータ1に接続
されている。気液セパレータ1と利用側として室内側に
配置される放熱器10は、ガス冷媒往き管11で接続さ
れ、放熱器10と受液器5は、第2逆止弁12を有する
液冷媒戻り管13で接続されている。以上のように、気
液セパレータ1、放熱器10、第2逆止弁12、受液器
5、第1逆止弁6は順次配管接続された環状の循環路を
形成している。14は冷媒加熱器2の出口管4に設けた
温度検知器であり、15は温度検知器14の検知する温
度により、開閉弁8の開閉時間を制御する制御装置であ
る。16は冷媒加熱器2に設けたバーナであり、このバ
ーナ16により冷媒を加熱する。17は放熱器10に設
けた送風機である。
That is, the gas-liquid separator 1 is arranged above the refrigerant heater 2 and is connected by an inlet pipe 3 of the refrigerant heater 2 and an outlet pipe 4 of the refrigerant heater 2 and connected by an annular pipe line. ing. Further, the liquid receiver 5 is arranged above the gas-liquid separator 1, is connected to the gas-liquid separator 1 by a drop pipe 7 having a first check valve 6, and further has an outlet pipe by a pressure equalizing pipe 9 having an opening / closing valve 8. It is connected to the gas-liquid separator 1 via 4. The gas-liquid separator 1 and the radiator 10 arranged on the indoor side as the use side are connected by a gas refrigerant forward pipe 11, and the radiator 10 and the liquid receiver 5 are liquid refrigerant return pipes having a second check valve 12. Connected at 13. As described above, the gas-liquid separator 1, the radiator 10, the second check valve 12, the liquid receiver 5, and the first check valve 6 form an annular circulation path sequentially connected by piping. Reference numeral 14 is a temperature detector provided in the outlet pipe 4 of the refrigerant heater 2, and 15 is a control device for controlling the opening / closing time of the opening / closing valve 8 according to the temperature detected by the temperature detector 14. Reference numeral 16 is a burner provided in the refrigerant heater 2, and the burner 16 heats the refrigerant. Reference numeral 17 is a blower provided in the radiator 10.

【0004】上記構成において、その動作を以下に説明
する。冷媒加熱器2において、バーナ16の燃焼熱で加
熱された冷媒は、ガスと液の2相状態で出口管4を通
り、気液セパレータ1へ流入し、液冷媒は入口管3から
再び冷媒加熱器2に流入する。一方、気液セパレータ1
へ流入した2相状態の冷媒のうちガス冷媒は、ガス冷媒
往き管11から放熱器10へ入り、送風機17で送られ
た室内空気と熱交換し、放熱凝縮し過冷却液化する。
The operation of the above structure will be described below. In the refrigerant heater 2, the refrigerant heated by the combustion heat of the burner 16 flows into the gas-liquid separator 1 through the outlet pipe 4 in a two-phase state of gas and liquid, and the liquid refrigerant is heated again from the inlet pipe 3 by the refrigerant heating. Flows into the vessel 2. On the other hand, gas-liquid separator 1
Of the two-phase refrigerant that has flowed into the gas refrigerant, the gas refrigerant enters the radiator 10 through the gas refrigerant outflow pipe 11 and exchanges heat with the indoor air sent by the blower 17, dissipates heat and condenses into supercooled liquid.

【0005】ここで、開閉弁8が閉のときには、放熱器
10で凝縮液化した過冷却液冷媒は、液冷媒戻り管13
から第2逆止弁12を介して、ガス冷媒を凝縮させるこ
とにより受液器5内へ流入する。このとき受液器5内の
圧力は気液セパレータ1内の圧力より低くなっているた
め、第1逆止弁6は閉状態となっている。この状態で、
開閉弁8を開とすると、受液器5と気液セパレータ1と
は均圧管9により連通して均圧状態となり、受液器5内
の液冷媒は重力により第1逆止弁6を通り気液セパレー
タ1内へ流入する。
When the on-off valve 8 is closed, the supercooled liquid refrigerant condensed and liquefied in the radiator 10 is returned to the liquid refrigerant return pipe 13.
Through the second check valve 12 to flow into the liquid receiver 5 by condensing the gas refrigerant. At this time, the pressure inside the liquid receiver 5 is lower than the pressure inside the gas-liquid separator 1, so the first check valve 6 is closed. In this state,
When the opening / closing valve 8 is opened, the liquid receiver 5 and the gas-liquid separator 1 communicate with each other through the pressure equalizing pipe 9 to be in a pressure equalizing state, and the liquid refrigerant in the liquid receiver 5 passes through the first check valve 6 by gravity. It flows into the gas-liquid separator 1.

【0006】次に、開閉弁8を再び閉にすると、第1逆
止弁6は閉状態になり、受液器5内へ放熱器10の凝縮
過冷却した液冷媒が受液器5内の急減圧により吸引さ
れ、受液器5が液冷媒で満たされるサイクルを繰り返
す。このように、気液セパレータ1と冷媒加熱器2間は
蒸発した冷媒圧による自然循環サイクルであり、受液器
5から気液セパレータ1および冷媒加熱器2への液冷媒
の供給は開閉弁8の開閉周期による間欠動作サイクルで
ある。
Next, when the on-off valve 8 is closed again, the first check valve 6 is closed, and the liquid refrigerant condensed and supercooled in the radiator 10 into the liquid receiver 5 is stored in the liquid receiver 5. The cycle in which the liquid is sucked by the sudden pressure reduction and the liquid receiver 5 is filled with the liquid refrigerant is repeated. As described above, the natural circulation cycle between the gas-liquid separator 1 and the refrigerant heater 2 is based on the evaporated refrigerant pressure, and the supply of the liquid refrigerant from the liquid receiver 5 to the gas-liquid separator 1 and the refrigerant heater 2 is performed by the open / close valve 8 It is an intermittent operation cycle according to the open / close cycle of.

【0007】[0007]

【発明が解決しようとする課題】上記従来の構成におい
て、冷媒加熱による熱搬送を行なうため開閉弁8の開閉
動作周期の設定には、図4に示すように受液器5での減
圧開始遅れ時間Tlを考慮する必要があった。即ち、開
閉弁8が開状態から閉状態に切替った時間t1から時間
lだけ遅れて受液器5内の減圧が発生し、減圧時間Tr
で受液器5内が液冷媒で満たされ減圧が完了する。この
減圧開始遅れ時間Tlは主に受液器5の容器の熱容量に
起因するものである。また減圧時間Trは空となった受
液器5内へ液冷媒が流入し終るまでの時間であり、受液
器5の内容積および放熱器10から受液器5までの流路
抵抗により定まる。さらに開時間TONは満液となった受
液器5から気液セパレータ1へ液冷媒が落し込まれるの
に要する時間であり、受液器5の内容積および均圧管9
と落込み管7の流路抵抗により定まる。
In the above-mentioned conventional structure, the heat-transferring by the heating of the refrigerant is carried out. Therefore, the opening / closing operation cycle of the opening / closing valve 8 is set as shown in FIG. It was necessary to consider the time T l . In other words, reduced pressure in the receiver tank 5 is generated from the on-off valve 8 is opened with a delay of time T l from the time t 1 has Tsu switched to the closed state, decompression time T r
Then, the inside of the liquid receiver 5 is filled with the liquid refrigerant, and the pressure reduction is completed. The depressurization start delay time T l is mainly due to the heat capacity of the container of the liquid receiver 5. The depressurization time T r is the time until the liquid refrigerant has finished flowing into the empty receiver 5 and depends on the internal volume of the receiver 5 and the flow path resistance from the radiator 10 to the receiver 5. Determined. Further, the opening time T ON is the time required for the liquid refrigerant to drop from the liquid receiver 5 that is full to the gas-liquid separator 1, and the internal volume of the liquid receiver 5 and the pressure equalizing pipe 9
And the flow path resistance of the drop pipe 7.

【0008】このように開閉弁8の開閉周期TSは開時
間TONと閉時間TOFFの和(TS=TO N+TOFF)であ
り、さらに閉時間TOFFは減圧開始遅れ時間Tlと減圧時
間Trの和(TOFF=Tl+Tr)である。この減圧開始遅
れ時間Tlが比較的大きいために閉時間TOFFの短縮に制
約が生じ、開閉周期TSが長目に設定せざるを得ない状
況となり、熱搬送量(暖房に利用の場合は暖房能力)の
大能力化に制約があった。
[0008] closing period T S of the thus-off valve 8 is the sum of the open time T ON and the closing time T OFF (T S = T O N + T OFF), further closing time T OFF is vacuum start delay time T It is the sum of l and the depressurization time T r (T OFF = T l + T r ). Since this depressurization start delay time T l is relatively large, there is a restriction on the reduction of the closing time T OFF , and there is no choice but to set the opening / closing cycle T S to be long, and the heat transfer amount (when used for heating is used. There was a constraint on increasing the heating capacity).

【0009】本発明は上記課題を解決するもので、受液
器内壁にほぼ等間隔に近接して多孔有する板材を設け、
必要減圧時間を短くすることにより開閉周期を短縮し、
熱搬送量の大能力化を目的とする。
The present invention is intended to solve the above-mentioned problems, in which a porous plate material is provided on the inner wall of the liquid receiver in close proximity to each other,
Shortening the required decompression time shortens the open / close cycle,
The purpose is to increase the heat transfer capacity.

【0010】[0010]

【課題を解決するための手段】本発明は上記目的を達成
するために、冷媒加熱器と、この冷媒加熱器の上方に配
置され、入口管と出口管とで前記冷媒加熱器と連通する
気液セパレータ、この気液セパレータの上方に配置さ
れ、開閉弁および第1逆止弁を介して前記気液セパレー
タと連通する受液器を有する熱搬送部と、前記気液セパ
レータ、放熱器、第2逆止弁および前記受液器を順次接
続した環状の循環路と、前記受液器内壁にほぼ等間隔に
近接して多孔を有する板材を設け間隙を構成している。
In order to achieve the above object, the present invention provides a refrigerant heater and a gas which is disposed above the refrigerant heater and which communicates with the refrigerant heater through an inlet pipe and an outlet pipe. A liquid separator, a heat transfer unit having a liquid receiver arranged above the gas-liquid separator and communicating with the gas-liquid separator via an on-off valve and a first check valve; the gas-liquid separator, a radiator, (2) An annular circulation path in which the check valve and the liquid receiver are sequentially connected, and a plate material having porosity are provided near the inner wall of the liquid receiver at substantially equal intervals to form a gap.

【0011】[0011]

【作用】本発明は上記構成によって、受液器が高温冷媒
ガスで充満した後、開閉弁を閉成すると過冷却液冷媒が
受液器に流入し、受液器内壁と多孔を有する板材の間隙
に溜った後、この多孔から受液器の中心へ細粒状に微細
化されて噴出される。そのため、この過冷却冷媒の微粒
により内部のガスは凝縮され受液器内部の冷媒圧力が急
激に低下し、放熱器から低温の液冷媒を吸引するため、
過冷却液冷媒によるガス冷媒の凝縮により受液器内の減
圧が減圧開始遅れ時間なしに発生し、開閉弁の閉成と同
時に液冷媒が受液器内に一気に吸引される。
According to the present invention, the supercooled liquid refrigerant flows into the liquid receiver when the liquid receiver is filled with the high temperature refrigerant gas and then the on-off valve is closed, and the plate member having the inner wall of the liquid receiver and the porous material is formed. After accumulating in the gap, it is jetted from this porosity to the center of the receiver into fine particles. Therefore, the gas inside is condensed by the fine particles of the supercooled refrigerant, the refrigerant pressure inside the receiver sharply drops, and because the low-temperature liquid refrigerant is sucked from the radiator,
Due to the condensation of the gas refrigerant by the supercooled liquid refrigerant, the decompression in the liquid receiver occurs without the decompression start delay time, and the liquid refrigerant is sucked into the liquid receiver at the same time when the on-off valve is closed.

【0012】このように減圧開始遅れ時間を無くすこと
により、開閉弁の閉時間を大幅に短縮して開閉周期を小
さくし、単位時間当りの受液器の吸引・落込み回数を増
大させて冷媒循環量を増大可能とし、冷媒加熱量の増大
させることにより熱搬送量(暖房に利用の場合は暖房能
力)の大能力化を得る。
By eliminating the depressurization start delay time in this way, the closing time of the on-off valve is greatly shortened, the opening / closing cycle is shortened, and the number of times of sucking and dropping of the liquid receiver per unit time is increased to increase the refrigerant. By increasing the circulation amount and increasing the refrigerant heating amount, the heat transfer amount (heating capacity when used for heating) can be increased.

【0013】[0013]

【実施例】以下本発明の一実施例を図1で説明する。図
1において、図3と同一符号は同一部材を示し同一機能
を有しているので詳細な説明は省略し、異なる点を中心
に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. In FIG. 1, the same reference numerals as those in FIG. 3 denote the same members and have the same functions, and therefore detailed description thereof will be omitted and different points will be mainly described.

【0014】18は、バーナ16を有する冷媒加熱器2
と気液セパレータ1を環状管路に接続し、前記気液セパ
レータ1の上方に設けた受液器5を、第1逆止弁6を有
する落込み管7と、開閉弁8を有する均圧管9とで前記
環状管路に接続した熱搬送部である。19は気液セパレ
ータ1、放熱器10、第2逆止弁12、受液器5を順次
配管接続した環状の循環路である。20は受液器5の内
壁にほぼ等間隔に近接して多孔21を有する板材で、間
隙22を構成してある。板材20は金属、セラミック、
樹脂等を材料にパンチング、網加工を行って作成する。
また、受液器5には前記第2逆止弁12を介して循環路
19を接続している。23はバーナ16の燃焼量を可変
する燃焼量可変装置、24は開閉弁8、温度検知器1
4、燃焼量可変装置23に電気的に接続された制御装置
である。
Reference numeral 18 is a refrigerant heater 2 having a burner 16.
And a gas-liquid separator 1 are connected to an annular conduit, and a liquid receiver 5 provided above the gas-liquid separator 1 is provided with a drop pipe 7 having a first check valve 6 and a pressure equalizing pipe having an opening / closing valve 8. 9 is a heat transfer unit connected to the annular pipe line. Reference numeral 19 is an annular circulation path in which the gas-liquid separator 1, the radiator 10, the second check valve 12, and the liquid receiver 5 are sequentially connected by piping. Reference numeral 20 denotes a plate material having pores 21 close to the inner wall of the liquid receiver 5 at substantially equal intervals, and forms a gap 22. The plate member 20 is made of metal, ceramic,
It is made by punching and netting resin and other materials.
A circulation path 19 is connected to the liquid receiver 5 via the second check valve 12. Reference numeral 23 is a combustion amount varying device for varying the combustion amount of the burner 16, 24 is an on-off valve 8, a temperature detector 1
4. A control device electrically connected to the combustion amount varying device 23.

【0015】上記構成において、開閉弁8の開閉動作と
バーナ16での燃焼、送風機17の運転により冷媒加熱
による熱搬送の暖房を行なう。
In the above-mentioned structure, the heat transfer is performed by heating the refrigerant by the opening / closing operation of the opening / closing valve 8, the combustion in the burner 16 and the operation of the blower 17.

【0016】ここで、開閉弁8が閉状態の時には、放熱
器10で凝縮液化した過冷却液冷媒が、液冷媒戻り管1
3から第2逆止弁12を介して、受液器5のガス冷媒を
凝縮させることにより受液器5内へ流入する。この時、
受液器5内の圧力は気液セパレータ1内の圧力より低く
なっているため、第1逆止弁6は閉状態となっている。
そして、受液器5には循環路19より過冷却液冷媒が流
入し、この受液器5内が液冷媒で満液の状態で開閉弁8
を開とすると、受液器5と気液セパレータ1とは均圧管
9により連通しているため均圧状態となり、受液器5内
の液冷媒は重力により第1逆止弁6を通り気液セパレー
タ1内へ流入する。この時、受液器5の液冷媒と置換す
る気液セパレータ1のガス冷媒は、均圧管9から開閉弁
8を通り受液器5へと流れる。
Here, when the on-off valve 8 is closed, the supercooled liquid refrigerant condensed and liquefied in the radiator 10 is returned to the liquid refrigerant return pipe 1.
From 3 through the second check valve 12, the gas refrigerant in the liquid receiver 5 is condensed to flow into the liquid receiver 5. This time,
Since the pressure inside the liquid receiver 5 is lower than the pressure inside the gas-liquid separator 1, the first check valve 6 is closed.
Then, the supercooled liquid refrigerant flows into the liquid receiver 5 from the circulation path 19, and when the liquid receiver 5 is filled with the liquid refrigerant, the on-off valve 8 is opened.
When is opened, the liquid receiver 5 and the gas-liquid separator 1 communicate with each other through the pressure equalizing pipe 9, so that the liquid refrigerant in the liquid receiver 5 flows through the first check valve 6 due to gravity. It flows into the liquid separator 1. At this time, the gas refrigerant of the gas-liquid separator 1 that replaces the liquid refrigerant of the liquid receiver 5 flows from the pressure equalizing pipe 9 through the opening / closing valve 8 to the liquid receiver 5.

【0017】受液器5が高温冷媒ガスで充満した後、開
閉弁8を閉成すると第2逆止弁12から過冷却液冷媒が
受液器5に流入し、受液器5の内壁と多孔を有する板材
20の間隙22に溜った後、この多孔21から低圧であ
る受液器5の中心へ細粒状に微細化されて噴出される。
そのため、この過冷却冷媒の微粒により内部の高温ガス
冷媒は冷却されて凝縮しさらに受液器5内部の冷媒圧力
が急激に低下し、放熱器10から低温の液冷媒を吸引す
るため、過冷却液冷媒によるガス冷媒の凝縮により受液
器5内の減圧が減圧開始遅れ時間なしに発生し、開閉弁
8の閉成と同時に液冷媒が受液器5内に一気に吸引さ
れ、受液器5が液冷媒で満たされるサイクルを繰り返
す。
After the liquid receiver 5 is filled with the high temperature refrigerant gas, when the on-off valve 8 is closed, the supercooled liquid refrigerant flows into the liquid receiver 5 from the second check valve 12 and the inner wall of the liquid receiver 5 After accumulating in the gap 22 of the plate member 20 having porosity, it is ejected from this porosity 21 to the center of the low-pressure receiver 5 in the form of fine particles.
Therefore, the high-temperature gas refrigerant inside is cooled and condensed by the fine particles of the supercooling refrigerant, and the refrigerant pressure inside the liquid receiver 5 is drastically reduced, so that the low-temperature liquid refrigerant is sucked from the radiator 10, so that the supercooling refrigerant is cooled. Due to the condensation of the gas refrigerant by the liquid refrigerant, the decompression in the liquid receiver 5 occurs without the decompression start delay time, and the liquid refrigerant is sucked into the liquid receiver 5 at the same time as the opening / closing valve 8 is closed. Is repeated with the liquid refrigerant.

【0018】以上の熱搬送運転において、開閉弁8が閉
状態から開成する様に作動させる場合について図2で説
明する。図2において、開閉弁8が開状態から閉状態に
切換った時間tOと同時に、受液器5内で過冷却冷媒の
微粒により内部の高温ガス冷媒は冷却されて凝縮するこ
とにより瞬時に受液器内の減圧が開始でき、減圧開始遅
れ時間Tl'は実用上無くする(Tl'=0)ことができ
る。従って、開閉弁8の閉時間TOFF'は正味の減圧時間
rだけで良く(TOFF'=Tr)、開閉周期TS'は大幅に
短縮(TS'=Tr+TON)できる。このため、受液器5
での液冷媒の吸引・落込み回数の増加により冷媒循環能
力が増大し、冷媒加熱器2での燃焼量を増大させ熱搬送
量(暖房に利用の場合は暖房能力)の大能力化ができ
る。そして、駆動入力は必要無く、熱搬送だけの入力と
しては開閉弁8の入力のみであり経済性は失なわれな
い。
A case where the on-off valve 8 is operated so as to open from the closed state in the above heat transfer operation will be described with reference to FIG. 2, the on-off valve 8 at the same time as time t O was Tsu switching is in the closed state from the open state, the hot gas refrigerant inside the fine subcooling refrigerant receiver within 5 instantaneously by condensing been cooled The depressurization in the liquid receiver can be started, and the depressurization start delay time T l 'can be practically eliminated (T l ' = 0). Therefore, the closing time T OFF 'of the on- off valve 8 need only be the net decompression time Tr (T OFF ' = T r ), and the opening / closing cycle T S 'can be significantly shortened (T S ' = T r + T ON ). . Therefore, the receiver 5
The refrigerant circulation capacity is increased by increasing the number of times the liquid refrigerant is sucked in and dropped in, and the combustion amount in the refrigerant heater 2 is increased to increase the heat transfer amount (heating capacity when used for heating). . The drive input is not required, and the input of the on-off valve 8 is the only input of heat transfer, and the economical efficiency is not lost.

【0019】また、図5に本発明の他の実施例を示す。
多孔を有する板材20は、受液器5の全内面を覆う様
に、パンチング板、金網等で円筒状に構成し受液器5の
内壁にほぼ等間隔に近接して設け、その一部を受液器5
と第1逆止弁7との連通部の外周に当接させた構成とし
てある。このため、冷媒の流れは、一度多孔を有する板
材20内に入った後再び多孔21を通過して第1逆止弁
6に流れ出る。冷媒中の異物等はこの板材20に引っか
かり第1逆止弁6に流れるのを防止できる。板材20の
多孔21の受液器5と第1逆止弁7との連通部の外周に
当接させた部分を十分に細かい穴とすれば、第1逆止弁
6の減圧時の気密性が保たれ簡単な構成で高信頼性が確
保できるものであり、受液器5の内壁と多孔を有する板
材20を等間隔に近接して簡単に設けることができる。
FIG. 5 shows another embodiment of the present invention.
The porous plate member 20 is formed in a cylindrical shape with a punching plate, a wire mesh, or the like so as to cover the entire inner surface of the liquid receiver 5, and is provided in the inner wall of the liquid receiver 5 at substantially equal intervals, and a part thereof is provided. Receiver 5
And the first check valve 7 are brought into contact with the outer circumference of the communicating portion. Therefore, the flow of the refrigerant once enters the plate member 20 having the porosity, then passes through the porosity 21 again, and flows out to the first check valve 6. It is possible to prevent foreign substances and the like in the refrigerant from being caught by the plate member 20 and flowing into the first check valve 6. If the portion of the perforated plate 21 of the plate member 20 in contact with the outer periphery of the communication portion between the liquid receiver 5 and the first check valve 7 is made into a sufficiently fine hole, the air tightness of the first check valve 6 during depressurization Therefore, high reliability can be ensured with a simple structure, and the inner wall of the liquid receiver 5 and the plate material 20 having porosity can be easily provided in close proximity to each other.

【0020】そして、図6に本発明の他の実施例を示
す。図6において、25は、冷媒加熱器2の上方に配置
された容器であり、この容器25を上部の受液部26と
下部の気液セパレート液溜部27に仕切り板28により
仕切っている。冷媒加熱器2と気液セパレート液溜部2
7は入口管3と出口管4で連通してある。18は、バー
ナ16を有する冷媒加熱器2と気液セパレート液溜部2
7を環状管路に接続し、受液部26と気液セパレート液
溜部27の間に開閉弁29を設けた管路と前記環状管路
に接続した熱搬送部である。19は気液セパレータ液溜
部27、放熱器10、第2逆止弁12、受液部26を順
次配管接続した環状の循環路である。容器25は、鉄ア
ルミ等金属を成型した後ブレージング、溶接等で仕切り
板28と一体に形成し、開閉弁8は仕切り板28と接合
または、一体構成とする。本実施例では、仕切り板28
と一体に弁座部32を構成し、この弁座部32に接して
周動する弁体33を電磁コイル34で動かし、開閉弁8
を開閉する。
FIG. 6 shows another embodiment of the present invention. In FIG. 6, reference numeral 25 denotes a container arranged above the refrigerant heater 2, and the container 25 is partitioned by a partition plate 28 into an upper liquid receiving portion 26 and a lower gas-liquid separate liquid storage portion 27. Refrigerant heater 2 and gas-liquid separate liquid reservoir 2
7 communicates with an inlet pipe 3 and an outlet pipe 4. Reference numeral 18 denotes a refrigerant heater 2 having a burner 16 and a gas-liquid separate liquid reservoir 2
7 is connected to an annular pipe line, and a pipe line is provided with an opening / closing valve 29 between the liquid receiving part 26 and the gas-liquid separate liquid reservoir part 27 and a heat transfer part connected to the annular pipe line. Reference numeral 19 denotes an annular circulation path in which the gas-liquid separator liquid reservoir 27, the radiator 10, the second check valve 12, and the liquid receiver 26 are sequentially connected by piping. The container 25 is formed integrally with a partition plate 28 by molding a metal such as iron aluminum and then brazing, welding, etc., and the on-off valve 8 is joined to the partition plate 28 or is integrally configured. In this embodiment, the partition plate 28
The valve seat portion 32 is integrally formed with the valve seat portion 32, and the valve element 33 that rotates in contact with the valve seat portion 32 is moved by the electromagnetic coil 34.
Open and close.

【0021】受液部26の内壁にほぼ等間隔に近接して
多孔21を有する板材20を間隙22を設けて構成し、
板材20の下部は拡大し受液部の内壁に等接して保持し
てある。23はバーナ16の燃焼量を可変する燃焼量可
変装置、24は開閉弁8、温度検知器14、燃焼量可変
装置23に電気的に接続された制御装置である。
A plate member 20 having perforations 21 is formed on the inner wall of the liquid receiving section 26 at substantially equal intervals, with a gap 22 provided therebetween.
The lower portion of the plate member 20 is enlarged and held in constant contact with the inner wall of the liquid receiving portion. Reference numeral 23 is a combustion amount varying device for varying the combustion amount of the burner 16, and 24 is a control device electrically connected to the on-off valve 8, the temperature detector 14, and the combustion amount varying device 23.

【0022】上記構成において、開閉弁8を開とする
と、受液部26と気液セパレート液溜部27とは連通し
て均圧状態となり、受液部26内の液冷媒は重力により
開閉弁8を通り気液セパレート液溜部27内へ流入す
る。この時、同時に受液部26の液冷媒と置換する気液
セパレータ液溜部27のガス冷媒は、開閉弁8を通り受
液部26へと流れる。次に、受液部26内の液冷媒が全
て流れた時、開閉弁8を再び閉にすると、受液部26が
瞬時に減圧され低圧となり、受液部26内に放熱器10
の凝縮過冷却した液冷媒が吸引され、受液部26が液冷
媒で満たされるサイクルを繰り返す。ここで、従来例に
ある均圧管9は無くし、開閉弁8から液冷媒の落下と同
時にガス冷媒が置換する様に開閉弁8の口径を大きくす
ることにより最短の長さとなり、落込み管7は仕切り板
28に直接開閉弁8を取付けたことにより最短となる。
そのため、この開閉弁8を流れるガス冷媒と液冷媒の流
路抵抗は小さくなり、開閉弁8が開成と同時に満液とな
った受液部26の液冷媒はガス冷媒と置換し気液セパレ
ート液溜部27へ大量に落し込まれる。
In the above structure, when the on-off valve 8 is opened, the liquid receiving portion 26 and the gas-liquid separate liquid storage portion 27 communicate with each other to equalize the pressure, and the liquid refrigerant in the liquid receiving portion 26 is opened and closed by gravity. 8 and flows into the gas-liquid separate liquid reservoir 27. At this time, the gas refrigerant in the gas-liquid separator liquid reservoir 27, which replaces the liquid refrigerant in the liquid receiving section 26 at the same time, flows to the liquid receiving section 26 through the opening / closing valve 8. Next, when the on-off valve 8 is closed again when all the liquid refrigerant in the liquid receiving section 26 has flowed, the liquid receiving section 26 is instantly depressurized to a low pressure, and the radiator 10 is placed in the liquid receiving section 26.
The cycle in which the condensed and subcooled liquid refrigerant is sucked and the liquid receiving section 26 is filled with the liquid refrigerant is repeated. Here, the pressure equalizing pipe 9 in the conventional example is eliminated, and the diameter of the on-off valve 8 is increased so that the gas refrigerant is replaced at the same time as the liquid refrigerant drops from the on-off valve 8. Is shortest because the opening / closing valve 8 is directly attached to the partition plate 28.
Therefore, the flow path resistances of the gas refrigerant and the liquid refrigerant flowing through the opening / closing valve 8 become small, and the liquid refrigerant of the liquid receiving section 26 which becomes full at the same time as the opening / closing valve 8 is opened is replaced with the gas refrigerant to replace the gas-liquid separate liquid. A large amount is dropped into the reservoir 27.

【0023】従って、流路抵抗を小さくすることがで
き、開閉弁8の開時間TONを大幅に短縮できる。また、
開閉弁8が閉状態の時には、開閉弁8を閉成すると第2
逆止弁12から過冷却液冷媒が受液部26に流入し、受
液部26の内壁と多孔を有する板材20の間隙22に溜
った後、この多孔21から低圧である受液部26の中心
へ細粒状に微細化されて噴出される。そのため、この過
冷却冷媒の微粒により内部の高温ガス冷媒は冷却されて
凝縮しさらに受液部26内部の冷媒圧力が急激に低下
し、放熱器10から低温の液冷媒を吸引するため、過冷
却液冷媒によるガス冷媒の凝縮により受液部26内の減
圧が減圧開始遅れ時間なしに発生し、開閉弁8の閉成と
同時に液冷媒が受液部26内に一気に吸引され、受液器
5が液冷媒で満たされるサイクルを繰り返す。このた
め、減圧遅れが無く開閉弁8の閉時間T OFFを大幅に短
縮できる。
Therefore, the flow path resistance can be reduced.
Opening time T of open / close valve 8ONCan be significantly shortened. Also,
If the on-off valve 8 is closed when the on-off valve 8 is closed, the second
From the check valve 12, the supercooled liquid refrigerant flows into the liquid receiving section 26,
The liquid is accumulated in the gap 22 between the inner wall of the liquid portion 26 and the porous plate member 20.
After this, the center of the liquid receiving portion 26, which has a low pressure from the porous 21
It is atomized into fine particles and ejected. Therefore, this
The high temperature gas refrigerant inside is cooled by the fine particles of the cooling refrigerant.
After condensation, the refrigerant pressure inside the liquid receiving section 26 drops sharply.
However, since the low-temperature liquid refrigerant is sucked from the radiator 10, it is overcooled.
Condensation of the gas refrigerant by the effluent refrigerant reduces the inside of the liquid receiving section 26.
The pressure is generated without a delay time for the start of decompression, and the on-off valve 8 is closed.
At the same time, the liquid refrigerant is sucked into the liquid receiving section 26 at once, and
The cycle in which 5 is filled with the liquid refrigerant is repeated. others
Therefore, there is no delay in decompression and the closing time T of the on-off valve 8 OFFSignificantly shorter
Can be shortened.

【0024】よって、受液部26での液冷媒の吸引・落
込み回数の増加により冷媒循環能力が増大し、冷媒加熱
器2での燃焼量増大させ熱搬送量(暖房に利用の場合は
暖房能力)の大能力化ができる。
Therefore, the refrigerant circulation capacity is increased by increasing the number of times the liquid refrigerant is sucked / dropped in the liquid receiving section 26, and the combustion amount in the refrigerant heater 2 is increased to increase the heat transfer amount (heating for heating). Ability can be increased.

【0025】[0025]

【発明の効果】以上のように本発明の熱搬送装置は、冷
媒加熱器と、この冷媒加熱器の上方に配置され、入口管
と出口管とで前記冷媒加熱器と連通する気液セパレー
タ、この気液セパレータの上方に配置され、開閉弁およ
び第1逆止弁を介して前記気液セパレータと連通する受
液器を有する熱搬送部と、前記気液セパレータ、放熱
器、第2逆止弁および前記受液器を順次接続した環状の
循環路と、前記受液器内壁にほぼ等間隔に近接して多孔
を有する板材を設け間隙を構成としているので以下の効
果がある。
As described above, the heat transfer device of the present invention includes a refrigerant heater and a gas-liquid separator which is disposed above the refrigerant heater and which communicates with the refrigerant heater through an inlet pipe and an outlet pipe. A heat transfer unit arranged above the gas-liquid separator and having a liquid receiver communicating with the gas-liquid separator via an on-off valve and a first check valve; a gas-liquid separator, a radiator, and a second check. Since an annular circulation path in which the valve and the liquid receiver are sequentially connected and a plate material having porosity are provided at the inner wall of the liquid receiver in close proximity to each other to form a gap, the following effects are obtained.

【0026】(1)受液器の中心へ細粒状に微細化され
て噴出される過冷却冷媒の微粒により内部の高温ガス冷
媒は冷却されて凝縮し、開閉周期を大幅に短縮による冷
媒循環量の増加により熱搬送量の大能力化ができる。
(1) The high-temperature gas refrigerant inside is cooled and condensed by the fine particles of the supercooled refrigerant which are atomized into fine particles and ejected toward the center of the receiver, and the refrigerant circulation amount by greatly shortening the opening / closing cycle. It is possible to increase the heat transfer capacity by increasing the number.

【0027】(2)また、熱搬送だけの入力としては開
閉弁の入力のみであり経済性は失なわれない。
(2) Further, the input of the heat transfer is only the input of the on-off valve, and the economical efficiency is not lost.

【0028】(3)多孔を有する板材を受液器の全内面
を覆う様に設け、その一部を連通部の外周に当接させた
構成としたため、冷媒中の異物等の第1逆止弁に流れる
のを防止でき、第1逆止弁6の減圧時の気密性が保たれ
簡単な構成で高信頼性が確保できるものである。
(3) Since the plate member having the porosity is provided so as to cover the entire inner surface of the liquid receiver and a part of the plate member is brought into contact with the outer circumference of the communicating portion, the first non-return of foreign matters in the refrigerant is prevented. The first check valve 6 can be prevented from flowing into the valve, the airtightness of the first check valve 6 at the time of depressurization is maintained, and high reliability can be secured with a simple configuration.

【0029】(4)上部の受液部と下部の気液セパレー
タ液溜部に仕切る仕切り板を設けた容器と、この受液部
内壁にほぼ等間隔に近接して多孔を有する板材を設け間
隙を設けることにより、流路抵抗を小さくすることがで
き、開閉弁の開時間TONを大幅に短縮でき、減圧遅れが
無くすることが可能となり開閉弁の閉時間TOFFを大幅
に短縮できる。このため、受液部での液冷媒の吸引・落
込み回数の増加により冷媒循環能力が増大し、冷媒加熱
器での燃焼量増大させ熱搬送量(暖房に利用の場合は暖
房能力)のさらなる大能力化ができる。
(4) A container provided with a partition plate for partitioning the upper liquid receiving portion and the lower gas-liquid separator liquid storing portion, and a plate material having a porous material is provided on the inner wall of the liquid receiving portion at substantially equal intervals to form a gap. By providing the above, the flow path resistance can be reduced, the opening time T ON of the on-off valve can be greatly shortened, and the decompression delay can be eliminated, and the closing time T OFF of the on- off valve can be greatly shortened. Therefore, the refrigerant circulation capacity increases due to an increase in the number of times the liquid refrigerant is sucked / dropped in the liquid receiving unit, which increases the combustion amount in the refrigerant heater and further increases the heat transfer amount (heating capacity when used for heating). Greater ability can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の熱搬送装置のシステム構成
FIG. 1 is a system configuration diagram of a heat transfer device according to an embodiment of the present invention.

【図2】同受液器の減圧特性図[Fig. 2] Decompression characteristic diagram of the liquid receiver

【図3】従来の熱搬送装置のシステム構成図FIG. 3 is a system configuration diagram of a conventional heat transfer device.

【図4】従来の熱搬送装置での受液器の減圧特性図FIG. 4 is a decompression characteristic diagram of a liquid receiver in a conventional heat transfer device.

【図5】本発明の他の実施例の熱搬送装置のシステム構
成図
FIG. 5 is a system configuration diagram of a heat transfer device according to another embodiment of the present invention.

【図6】本発明の他の実施例の熱搬送装置のシステム構
成図
FIG. 6 is a system configuration diagram of a heat transfer device according to another embodiment of the present invention.

【符号の説明】 1 気液セパレータ 2 冷媒加熱器 5 受液器 6 第1逆止弁 8 開閉弁 10 放熱器 12 第2逆止弁 18 熱搬送部 19 循環路 20 多孔を有する板材 21 多孔 22 間隙 24 制御装置 25 容器 26 受液器 27 気液セパレータ液溜部 28 仕切り板[Explanation of symbols] 1 gas-liquid separator 2 refrigerant heater 5 liquid receiver 6 first check valve 8 on-off valve 10 radiator 12 second check valve 18 heat transfer section 19 circulation path 20 porous plate material 21 porous 22 Gap 24 Control device 25 Container 26 Liquid receiver 27 Gas-liquid separator Liquid reservoir 28 Partition plate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】冷媒加熱器と、この冷媒加熱器の上方に配
設され、入口管と出口管とで前記冷媒加熱器と連通する
気液セパレータ、この気液セパレータの上方に配置さ
れ、開閉弁および第1逆止弁を介して前記気液セパレー
タと連通する受液器を有する熱搬送部と、前記気液セパ
レータ、放熱器、第2逆止弁および前記受液器を順次接
続した環状の循環路と、前記受液器内壁にほぼ等間隔に
近接して多孔を有する板材を設け間隙を構成した熱搬送
装置。
1. A refrigerant heater, a gas-liquid separator which is arranged above the refrigerant heater and which communicates with the refrigerant heater through an inlet pipe and an outlet pipe, and which is arranged above the gas-liquid separator and is opened and closed. A heat transfer part having a liquid receiver communicating with the gas-liquid separator via a valve and a first check valve, and an annular shape in which the gas-liquid separator, a radiator, a second check valve and the liquid receiver are sequentially connected. The heat transfer device in which the circulation path and the inner wall of the liquid receiver are provided with porous plate members in close proximity to each other at substantially equal intervals to form a gap.
【請求項2】受液器の全内面を多孔を有した板で覆うと
ともに、受液器の第1逆止弁の連通部外周に当接させた
構成とした請求項1記載の熱搬送装置。
2. The heat transfer device according to claim 1, wherein the entire inner surface of the liquid receiver is covered with a plate having porosity and is brought into contact with the outer periphery of the communication portion of the first check valve of the liquid receiver. .
【請求項3】冷媒加熱器の上方に配置された上部の受液
部と下部の気液セパレータ液溜部に仕切る仕切り板を設
けた容器と、前記冷媒加熱器と前記気液セパレータ液溜
部を連通する入口管と出口管と、前記仕切り板に開閉弁
を有する熱搬送部と、前記気液セパレータ液溜部、放熱
器および前記受液部を順次接続した環状の循環路と、前
記受液部内壁にほぼ等間隔に近接して多孔を有する板材
を設け間隙を構成した熱搬送装置。
3. A container provided with a partition plate for partitioning an upper liquid receiving part and a lower gas-liquid separator liquid reservoir located above the refrigerant heater, the refrigerant heater and the gas-liquid separator liquid reservoir. An inlet pipe and an outlet pipe communicating with each other, a heat transfer unit having an opening / closing valve on the partition plate, an annular circulation path sequentially connecting the gas-liquid separator liquid reservoir, the radiator and the liquid receiving unit, and the receiving unit. A heat transfer device in which a gap is formed by providing plate members having porosity close to the inner wall of the liquid portion at substantially equal intervals.
JP32167993A 1993-12-21 1993-12-21 Heat conveying device Pending JPH07174350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32167993A JPH07174350A (en) 1993-12-21 1993-12-21 Heat conveying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32167993A JPH07174350A (en) 1993-12-21 1993-12-21 Heat conveying device

Publications (1)

Publication Number Publication Date
JPH07174350A true JPH07174350A (en) 1995-07-14

Family

ID=18135215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32167993A Pending JPH07174350A (en) 1993-12-21 1993-12-21 Heat conveying device

Country Status (1)

Country Link
JP (1) JPH07174350A (en)

Similar Documents

Publication Publication Date Title
US5233842A (en) Accumulator for refrigeration system
US4100762A (en) Integrated controls assembly
JPH06147698A (en) Accumulator for air-conditioning system and manufacture thereof
JPS603433Y2 (en) Refrigerant accumulator
JP3887227B2 (en) Refrigerant storage device
JPH07174350A (en) Heat conveying device
JPH0763355A (en) Heat carrier device
JP3252530B2 (en) Heat transfer device
JPH0712360A (en) Heat conveyor
JP3252529B2 (en) Heat transfer device
JP3252577B2 (en) Heat transfer device
JPH07174354A (en) Heat conveying device
JPH07174351A (en) Heat conveying device
JP2827809B2 (en) Heat transfer device
KR102140223B1 (en) A condenser
JPH07174352A (en) Heat conveying device
US3396548A (en) Vacuum device
US5799504A (en) Refrigerator system with float valve flow control
JPH07174353A (en) Heat conveying device
JPH06117651A (en) Heat transfer device
JPH06117652A (en) Heat transfer device
JPH05157264A (en) Heat transferring apparatus
JP4022011B2 (en) Engine heat pump
JPH0791679A (en) Heat transfer device
JPH07158872A (en) Heat transfer device