JPH0717378B2 - Method for producing stabilized zirconia thin film - Google Patents

Method for producing stabilized zirconia thin film

Info

Publication number
JPH0717378B2
JPH0717378B2 JP63123957A JP12395788A JPH0717378B2 JP H0717378 B2 JPH0717378 B2 JP H0717378B2 JP 63123957 A JP63123957 A JP 63123957A JP 12395788 A JP12395788 A JP 12395788A JP H0717378 B2 JPH0717378 B2 JP H0717378B2
Authority
JP
Japan
Prior art keywords
particles
stabilized zirconia
yttria
particle size
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63123957A
Other languages
Japanese (ja)
Other versions
JPH01294531A (en
Inventor
一剛 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP63123957A priority Critical patent/JPH0717378B2/en
Publication of JPH01294531A publication Critical patent/JPH01294531A/en
Publication of JPH0717378B2 publication Critical patent/JPH0717378B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電極材料、電子材料などとして用いる基板に密
着したイツトリア安定化ジルコニア薄膜の製造方法に関
する。
TECHNICAL FIELD The present invention relates to a method for producing an yttria-stabilized zirconia thin film adhered to a substrate used as an electrode material, an electronic material or the like.

〔従来の技術〕[Conventional technology]

従来、セラミツク薄膜を製造する方法としては、酸化物
粉末と結合剤及び分散媒を混練し、平膜に成形した後乾
燥、焼成する、いわゆるドクターブレード法が著名であ
る。
As a conventional method for producing a ceramic thin film, a so-called doctor blade method, in which an oxide powder, a binder, and a dispersion medium are kneaded, formed into a flat film, and then dried and baked, is well known.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら、従来のドクターブレード法で製造される
イツトリア安定化ジルコニア(完全安定化タイプ)の膜
は薄膜単体では紙のようなものであり、靱性が低いため
脆く、基板の表面に担持させることが困難であり、強度
を高くしようとして膜厚を大にすると膜性能が低下する
という問題点があつた。
However, the film of yttria-stabilized zirconia (completely stabilized type) produced by the conventional doctor blade method is like paper by itself as a thin film, and its toughness is low, so it is brittle and difficult to support on the surface of the substrate. However, when the film thickness is increased to increase the strength, the film performance is deteriorated.

本発明は上記技術水準に鑑み、従来法で得られるイツト
リア安定化ジルコニア膜におけるような不具合がなく、
基板に密着した緻密で均一性の高いイツトリア安定化ジ
ルコニア薄膜の製造法を提供しようとするものである。
In view of the above-mentioned state of the art, the present invention does not have a problem as in the yttria-stabilized zirconia film obtained by the conventional method,
An object of the present invention is to provide a method for producing a dense and highly uniform yttria-stabilized zirconia thin film that is in close contact with a substrate.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明は粒径1〜5μmのイツトリア安定化ジルコニア
粒子と、粒径1μm以下で、かつ異径の2群以上のイツ
トリア安定化ジルコニア粒子と結合剤を混合してスラリ
ーを生成し、該スラリーを基板に塗布し、乾燥焼成する
ことを特徴とする基板に密着したイツトリア安定化ジル
コニア薄膜の製造方法である。
The present invention mixes yttria-stabilized zirconia particles having a particle size of 1 to 5 μm with two or more groups of yttria-stabilized zirconia particles having a particle size of 1 μm or less and having different diameters to form a slurry to form a slurry. It is a method for producing an yttria-stabilized zirconia thin film adhered to a substrate, which is characterized in that it is applied to the substrate and dried and baked.

本発明において、原料イツトリア安定化ジルコニア粒子
の粒径を特定したのは原料イツトリア安定化ジルコニア
粒子の充填状態と焼結性の観点からである。
In the present invention, the particle size of the raw material yttria-stabilized zirconia particles is specified from the viewpoint of the filling state and the sinterability of the raw material yttria-stabilized zirconia particles.

イツトリア安定化ジルコニアを含め、一般的にセラミツ
クス原料は同じ組成のものであつても粒子の大きさによ
り溶けはじめる温度は異なり、当然のことながら溶融温
度は大きい粒子ほど高くなる。通常の粒径のイツトリア
安定化ジルコニウム粒子の焼結温度は1400〜1600℃であ
り、本発明においてもその温度を基準として粒径1〜5
μmのイツトリア安定化ジルコニア粒子(焼結温度1400
〜1600℃)を選定し、この粒子を原料イツトリア安定化
ジルコニアの大半を占めるように使用する。そして残部
の原料を粒径1μm以下のイツトリア安定化ジルコニア
粒子を使用するものである。この両者の粒径の原料粒子
を混合して充填すると、粒径1μm以下の少量の粒子は
大量の粒径1〜5μmの粒径の粒子の間隙を埋める状態
になる。この状態で焼結すると粒径1μm以下の粒子は
粒径1〜5μmの粒子よりも低温で溶融し、あたかも糊
のようにふるまうので、原料混合粒子を焼結させるには
全体を溶融させる必要はなくなり、結局、従来法より低
温焼結が可能となる。例えば粒径1〜5μmのイツトリ
ア安定化ジルコニア粒子は通常1400〜1600℃で焼結する
が、これに0.01〜0.02μmのような超微粒のイツトリア
安定化ジルコニア粒子を混合すると、その焼結温度は12
00〜1300℃となる。
In general, even if the ceramics raw materials including the yttria-stabilized zirconia have the same composition, the temperature at which they start to melt differs depending on the size of the particles, and as a matter of course, the larger the melting temperature, the higher the particles. The sintering temperature of the yttria-stabilized zirconium particles having a normal particle size is 1400 to 1600 ° C., and the particle size of 1 to 5 is also used in the present invention as a standard.
μm Yttria-stabilized zirconia particles (sintering temperature 1400
〜1600 ℃), and use the particles so that they make up the majority of the raw material yttria-stabilized zirconia. Then, as the rest of the raw material, yttria-stabilized zirconia particles having a particle diameter of 1 μm or less are used. When the raw material particles having both the particle diameters are mixed and filled, a small amount of particles having a particle diameter of 1 μm or less fills a gap between a large amount of particles having a particle diameter of 1 to 5 μm. When sintered in this state, particles having a particle size of 1 μm or less melt at a lower temperature than particles having a particle size of 1 to 5 μm and behave like glue, so it is necessary to melt the entire raw material mixed particles in order to sinter them. As a result, low temperature sintering is possible as compared with the conventional method. For example, yttria-stabilized zirconia particles having a particle size of 1 to 5 μm are usually sintered at 1400 to 1600 ° C., but if ultrafine yttria-stabilized zirconia particles having a particle size of 0.01 to 0.02 μm are mixed therein, the sintering temperature is 12
It becomes 00-1300 ℃.

しかしながら、粒径1〜5μmの粒子と粒径0.01〜0.02
μmのような超微粒子の混合原料を焼結すると、中間粒
径の粒子がないため、焼結による収縮が大きく、得られ
るイツトリア安定ジルコニア薄膜が割れる原因となる。
そこで本発明においては、粒径1μm以下のイツトリア
安定化ジルコニア粒子の中より、大きめな粒径、例えば
0.1〜1μm径の粒子と、小さめな粒径、例えば0.01〜
0.05μm径の粒子の少くとも2種類の異径の粒子を使用
し、焼結時の収縮を防止するようにしたものである。勿
論、粒径1μm以下の粒子を3種以上配合することも妨
げないが、操業が複雑になつて余り得策とは云えない。
However, the particle size is 1 to 5 μm and the particle size is 0.01 to 0.02.
When a mixed raw material of ultra-fine particles such as μm is sintered, since there are no particles having an intermediate particle diameter, the shrinkage due to sintering is large, which causes the obtained yttria-stabilized zirconia thin film to crack.
Therefore, in the present invention, a larger particle size than the yttria-stabilized zirconia particles having a particle size of 1 μm or less, for example,
Particles with a diameter of 0.1-1 μm and smaller particles, for example 0.01-
At least two kinds of particles having a diameter of 0.05 μm having different diameters are used to prevent shrinkage during sintering. Of course, mixing three or more kinds of particles having a particle size of 1 μm or less is not hindered, but the operation becomes complicated and it cannot be said that this is a very good measure.

粒径1μm以下のイツトリア安定化ジルコニア粒子のう
ち、比較的粒径の大きい粒子、例えば0.1〜1μm、好
ましくは0.1〜0.5μm径の粒子を微粒子、比較的粒径の
小さい粒子、例えば0.01〜0.05、好ましくは0.01〜0.02
μm径の粒子を超微粒子と假称し、粒径1〜5μmのイ
ツトリア安定化ジルコニア粒子を粗粒子と假称した場
合、粗粒子:微粒子:超微粒子の配合割合は、生成する
イツトリア安定化ジルコニア薄膜の密度が最高になるよ
うに夫々の原料粒子の粒度によつて決定され、一概には
決め難いが、例えば粒径1〜5μmの粗粒子に、粒径0.
1〜0.5μmの微粒子と粒径0.01〜0.02μmの超微粒子を
配合する場合には、重量割合で粗粒子:微粒子:超微粒
子=10:3:1程度が好ましい。イツトリア安定化ジルコニ
ア粒子をこのように配合し、スラリーにして塗布乾燥す
るのみでも、密度は60〜70%となる。これは通常のイツ
トリア安定化ジルコニア粒子のプレス成形体の密度が50
%以下であるのと比較すると著しく高い価である。
Among the yttria-stabilized zirconia particles having a particle size of 1 μm or less, particles having a relatively large particle size, for example, 0.1 to 1 μm, preferably particles having a diameter of 0.1 to 0.5 μm are fine particles, and particles having a relatively small particle size, for example, 0.01 to 0.05. , Preferably 0.01 to 0.02
When the particles having a diameter of μm are referred to as ultrafine particles, and the yttria-stabilized zirconia particles having a particle diameter of 1 to 5 μm are referred to as coarse particles, the mixing ratio of coarse particles: fine particles: ultrafine particles is the yttria-stabilized zirconia thin film produced. The density is determined by the particle size of each raw material particle so that the density becomes maximum, but it is difficult to determine in general.For example, coarse particles having a particle size of 1 to 5 μm have a particle size of 0.
When fine particles having a particle size of 1 to 0.5 μm and ultrafine particles having a particle size of 0.01 to 0.02 μm are mixed, coarse particles: fine particles: ultrafine particles = about 10: 3: 1 by weight ratio is preferable. Even if the yttria-stabilized zirconia particles are blended in this way, and the slurry is applied and dried, the density becomes 60 to 70%. This is because the density of a normal compacted body of yttria-stabilized zirconia particles is 50
The value is remarkably higher than that of less than%.

本発明において使用されるイツトリア安定化ジルコニア
のイツトリア含有量は、イツトリア(Y2O3)としてジル
コニア(ZrO2)に対し1〜20モル%(20モル%以上では
イツトリアは遊離してしまう)である。イツトリアが8
モル%以下では部分安定化ジルコニアとなり、8モル%
以上では完全安定化ジルコニアとなる。イツトリアはジ
ルコニアに比し高価であるので目的に応じ必要最低限の
量とすべきであり、導電性を考えた場合には8モル%程
度が最適である。
The yttria content of the yttria-stabilized zirconia used in the present invention is 1 to 20 mol% with respect to zirconia (ZrO 2 ) as yttria (Y 2 O 3 ) (itutria is liberated at 20 mol% or more). is there. Itutria is 8
If it is less than mol%, it becomes partially stabilized zirconia, and it is 8 mol%.
The above results in completely stabilized zirconia. Since itutria is more expensive than zirconia, it should be used in the minimum necessary amount according to the purpose. Considering conductivity, about 8 mol% is optimal.

イツトリア安定化ジルコニア原料の入手は粒径が1〜5
μmの粗粒子と粒径0.1〜0.5μmのような微粒子は市販
されているイツトリア安定化ジルコニア粉末を空気分級
法などにより分級して用いることができる。また、0.01
〜0.02μmのような超微粒子のイツトリア安定化ジルコ
ニアはオキシ塩化ジルコニウムと塩化イツトリウムの混
合水溶液を200℃程度の温度条件下において水熱処理す
ることにより得られる。
The particle size of yttria-stabilized zirconia is 1-5.
Coarse particles of μm and fine particles having a particle size of 0.1 to 0.5 μm can be used by classifying commercially available yttria-stabilized zirconia powder by an air classification method or the like. Also, 0.01
Ultrafine particles of yttria-stabilized zirconia having a particle size of about 0.02 μm can be obtained by hydrothermal treatment of a mixed aqueous solution of zirconium oxychloride and yttrium chloride under a temperature condition of about 200 ° C.

イツトリア安定化ジルコニアのスラリーは、各粒度のイ
ツトリア安定化ジルコニアを混合した後、ポリビニルア
ルコールなどの結合剤を加え、更に分散媒体として水を
加えた後ボールミルを用いて分散し、分散処理した後、
ロータリーエバポレータを用いて真空脱泡することによ
り得られる。
The slurry of yttria-stabilized zirconia, after mixing the yttria-stabilized zirconia of each particle size, added a binder such as polyvinyl alcohol, further dispersed using a ball mill after adding water as a dispersion medium, after dispersion treatment,
Obtained by vacuum degassing using a rotary evaporator.

〔実施例〕〔Example〕

市販の平均粒径1.5μmの8モル%イツトリア安定化ジ
ルコニアを空気分級により1〜5μmの粗粒と0.1〜0.5
μmの微粒子に分級した。
Commercially available 8 mol% yttria-stabilized zirconia with an average particle size of 1.5 μm was air classified to coarse particles of 1 to 5 μm and 0.1 to 0.5 μm.
The particles were classified into μm fine particles.

またオキシ塩化ジルコニウム(ZrOCl2・8H2O)3.68モル
/l、塩化イツトリウム(YCl3・6H2O)0.32モル/lとなる
ように蒸留水を加えた混合液をテフロンライニングした
ステンレス製耐圧容器の中へ入れて密閉し、密閉後200
℃の恒温槽内に入れて5日間(120時間)保持した。こ
のようにして、粒径約150Å(0.015μm)のイツトリア
安定化ジルコニア超微粒子を得た。
Zirconium oxychloride (ZrOCl 2 · 8H 2 O) 3.68 mol
/ l, yttrium chloride (YCl 3 · 6H 2 O) 0.32 mol / l The mixed solution with distilled water added was placed in a Teflon-lined stainless steel pressure-resistant container and sealed, then sealed 200
It was placed in a constant temperature bath at ℃ and kept for 5 days (120 hours). Thus, yttria-stabilized zirconia ultrafine particles having a particle size of about 150Å (0.015 μm) were obtained.

次に、以上の粉体について、重合割合で1〜5μmの粗
粒を10.0,1〜0.5μmの微粒子を3,粒径0.05μmの超微
粒子を1の割合になるように配合し、結合剤としてポリ
ビニルアルコールを粉体に対し1wt%、これに水を加え
てスラリー濃度が15wt%となるようにした後ボールミル
を用いて24時間粉砕混合してスラリーを得た。次にスラ
リーをロータリーエバポレータを用いて真空脱泡してコ
ーテイング用スラリーとした。
Next, the above powders were blended in such a manner that coarse particles having a polymerization ratio of 1 to 5 μm were 10.0, fine particles having a particle size of 1 to 0.5 μm was 3, and ultrafine particles having a particle diameter of 0.05 μm were 1 to give a binder. As a result, polyvinyl alcohol was added to the powder in an amount of 1 wt% and water was added to adjust the slurry concentration to 15 wt%, and the mixture was pulverized and mixed for 24 hours using a ball mill to obtain a slurry. Next, the slurry was vacuum degassed using a rotary evaporator to obtain a coating slurry.

このスラリーを平均細孔径1.5μm、厚み1mm、多孔度65
%のアルミナ質基体管の表面にデイツプコーテイングし
た後室内乾燥した。次に、昇温速度2℃/minで1250℃ま
で昇温し、この温度に4時間保持した後炉冷した。
This slurry has an average pore size of 1.5 μm, a thickness of 1 mm and a porosity of 65.
% Of the alumina-based substrate was deep-coated on the surface and then dried indoors. Next, the temperature was raised to 1250 ° C. at a rate of temperature increase of 2 ° C./min, and this temperature was maintained for 4 hours, followed by furnace cooling.

このようにすることにより、アルミナ質基体管の表面に
は約15μmの厚みの緻密なイツトリア安定化ジルコニア
膜が形成されていた。
By doing so, a dense yttria-stabilized zirconia film having a thickness of about 15 μm was formed on the surface of the alumina substrate tube.

参考として、1〜5μmの粗粒、0.1〜0.5μmの微粒
子、及び0.015μmの超微粒子、それぞれ単独の粒子で
前記と同様にしてスラリーを形成した後、コーテイン
グ、乾燥、焼成とも同様の条件で比較用サンプルを準備
した。
For reference, coarse particles of 1 to 5 μm, fine particles of 0.1 to 0.5 μm, and ultrafine particles of 0.015 μm, each of which is a single particle, is used to form a slurry in the same manner as described above, and then coating, drying and firing are performed under the same conditions. A comparative sample was prepared.

膜の均質性を評価する方法として ガス透過法(N2
及び 導電率(直流4端子法)の2つの方法を用い
た。
Gas permeation method (N 2 ) as a method to evaluate the homogeneity of the membrane
And two methods of electrical conductivity (DC 4-terminal method) were used.

ガス透過法による評価は、膜の両側に差圧(kg/cm2)を
与え、このとき膜を透過する窒素の量からガス透過係数
を求めた。試験結果を第1図に示す。第1図において横
軸は差圧(kg/cm2)であり、縦軸はガス透過係数(N2
である。図中は本発明の3つの異なる粒径のものを配
合して得たものであり、及びはそれぞれ1〜5μm
のもの及び0.1〜0.5μmのものである。0.015μmのも
の単独ではひび割れが生じ透過率は1〜5μmのものよ
り大となつた。この試験の結果、ガス透過量がかなり低
下することから本発明の方法が有用であることが判明し
た。
In the evaluation by the gas permeation method, a pressure difference (kg / cm 2 ) was applied to both sides of the membrane, and the gas permeation coefficient was obtained from the amount of nitrogen permeating through the membrane at this time. The test results are shown in FIG. In Fig. 1, the horizontal axis is the differential pressure (kg / cm 2 ) and the vertical axis is the gas permeation coefficient (N 2 ).
Is. The figure is obtained by blending three different particle sizes of the present invention, and and are each 1 to 5 μm.
And 0.1 to 0.5 μm. When the thickness of 0.015 μm was used alone, cracking occurred and the transmittance was higher than that of 1 to 5 μm. As a result of this test, it was found that the method of the present invention is useful because the amount of gas permeation is considerably reduced.

導電率の評価はサンプルに直流4端子法測定用のリード
線をとり付けた後、加熱して実施した。導電率の測定結
果を第2図に示す。第2図において、横軸は絶体温度の
逆数を10,000倍したもの、縦軸は導電率を示す。図中
は本発明の3つの異なる粒径のものを配合して得たもの
であり、はそれぞれ、1〜5μmのもの、0.1〜
0.5μmのもの、0.015μmのものである。この試験の結
果、本発明方法のものは導電率は比較的高い値を保持し
ており、本発明が有用であることが示された。では
焼結が不足し、では焼結によるひび割れの発生のため
導電率が低下する。
The conductivity was evaluated by attaching a lead wire for measurement of a direct current four-terminal method to the sample and then heating it. The measurement result of the electric conductivity is shown in FIG. In FIG. 2, the horizontal axis represents the reciprocal of absolute temperature multiplied by 10,000, and the vertical axis represents the conductivity. The figures are obtained by blending three different particle sizes according to the present invention.
Those of 0.5 μm and 0.015 μm. As a result of this test, the method of the present invention has a relatively high electric conductivity, indicating that the present invention is useful. Results in insufficient sintering, and results in cracking due to sintering, resulting in a decrease in conductivity.

以上本発明では、緻密でかつ均一性の高いジルコニア膜
を得ることが可能であることが明らかとなつた。
As described above, in the present invention, it is clear that it is possible to obtain a dense and highly uniform zirconia film.

〔発明の効果〕〔The invention's effect〕

本発明に従えば、粒子の充填性及び超微粒子の使用とい
う観点から比較的低い温度において基板に密着した緻密
なイツトリア安定化ジルコニア薄膜の製造が可能であ
る。
According to the present invention, it is possible to produce a dense yttria-stabilized zirconia thin film adhered to a substrate at a relatively low temperature from the viewpoint of particle filling property and use of ultrafine particles.

【図面の簡単な説明】[Brief description of drawings]

第1図は試作サンプルの差圧とガス透過係数の関係を示
す図表、第2図は試作サンプルの温度と導電率の関係を
示す図表である。
FIG. 1 is a chart showing the relationship between the differential pressure and gas permeation coefficient of the prototype sample, and FIG. 2 is a chart showing the relationship between temperature and conductivity of the prototype sample.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】粒径1〜5μmのイツトリア安定化ジルコ
ニア粒子と、粒径1μm以下で、かつ異径の2群以上の
イツトリア安定化ジルコニア粒子と結合剤を混合してス
ラリーを生成し、該スラリーを基板に塗布し、乾燥焼成
することを特徴とする基板に密着したイツトリア安定化
ジルコニア薄膜の製造方法。
1. A slurry is formed by mixing yttria-stabilized zirconia particles having a particle size of 1 to 5 μm, and two or more groups of yttria-stabilized zirconia particles having a particle size of 1 μm or less and having different diameters with a binder. A method for producing an yttria-stabilized zirconia thin film adhered to a substrate, which comprises applying the slurry to the substrate, followed by drying and baking.
JP63123957A 1988-05-23 1988-05-23 Method for producing stabilized zirconia thin film Expired - Lifetime JPH0717378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63123957A JPH0717378B2 (en) 1988-05-23 1988-05-23 Method for producing stabilized zirconia thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63123957A JPH0717378B2 (en) 1988-05-23 1988-05-23 Method for producing stabilized zirconia thin film

Publications (2)

Publication Number Publication Date
JPH01294531A JPH01294531A (en) 1989-11-28
JPH0717378B2 true JPH0717378B2 (en) 1995-03-01

Family

ID=14873530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63123957A Expired - Lifetime JPH0717378B2 (en) 1988-05-23 1988-05-23 Method for producing stabilized zirconia thin film

Country Status (1)

Country Link
JP (1) JPH0717378B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10357535A1 (en) * 2003-12-10 2005-07-07 Mtu Aero Engines Gmbh Ceramic material and method for repairing thermal barrier coatings with local damage

Also Published As

Publication number Publication date
JPH01294531A (en) 1989-11-28

Similar Documents

Publication Publication Date Title
Mukherjee et al. Correlation between slurry rheology, green density and sintered density of tape cast yttria stabilised zirconia
US4735666A (en) Method of producing ceramics
US4365011A (en) Process for preparing pieces composed of solid electrolyte based on stabilized zircon and to pieces obtained by this process
JP2617204B2 (en) Method for producing solid electrolyte
Antolini et al. Preparation of porous nickel electrodes for molten carbonate fuel cells by non-aqueous tape casting
US4774211A (en) Methods for predicting and controlling the shrinkage of ceramic oxides during sintering
JP3997365B2 (en) Oxide ion conductive single crystal and method for producing the same
JP2003173801A (en) Solid electrolyte fuel cell and its manufacturing method
Yang et al. Ionic conductivity and microstructure of solid electrolyte La2Mo2O9 prepared by spark-plasma sintering
JP2000053479A (en) Production of ceramic diffusion inhibiting layer and use of the layer
JPH0717378B2 (en) Method for producing stabilized zirconia thin film
Lee et al. Effect of Alumina Addition on the Distribution of Intergranular‐Liquid Phase during Sintering of 15‐mol%‐Calcia‐Stabilized Zirconia
EP0133509A2 (en) Methods for predicting and controlling the shrinkage of aluminaceramic articles during sintering
JPH1072250A (en) Production of aluminum oxide ceramic compact, aluminum oxide ceramic compact and ion conductor made of same
JPH0437646A (en) Production of zirconia ceramics film and its calcination method as well as zirconia conductive ceramics produced by this method and solid electrolyte fuel battery utilizing this ceramics
KR101925215B1 (en) Polycrystal zirconia compounds and preparing method of the same
JP2000044245A (en) Production of lscm/ysz composite powder and production of solid electrolyte type fuel cell using the powder
JP4811776B2 (en) SOLID ELECTROLYTE FUEL CELL FUEL ELECTRODE AND METHOD FOR PRODUCING THE SAME
JP3323923B2 (en) Zirconia polycrystalline thin film and method for producing the same
JP2001118590A (en) High conductivity solid electrolyte film and method for manufacturing the same
JP4038628B2 (en) Oxide ion conductor, method for producing the same, and solid oxide fuel cell
JPH05170444A (en) Stabilized zirconia-alumina powder for solid electrolyte fuel cell
JP3137128B2 (en) Manufacturing method of ceramic coating
JPH05844A (en) Heat resistant conductive sintered body
JPH09302438A (en) Nickel/ysz cermet and its manufacture