JPH01294531A - Production of thin film of stabilized zirconia - Google Patents

Production of thin film of stabilized zirconia

Info

Publication number
JPH01294531A
JPH01294531A JP63123957A JP12395788A JPH01294531A JP H01294531 A JPH01294531 A JP H01294531A JP 63123957 A JP63123957 A JP 63123957A JP 12395788 A JP12395788 A JP 12395788A JP H01294531 A JPH01294531 A JP H01294531A
Authority
JP
Japan
Prior art keywords
particles
stabilized zirconia
stabilized
yttria
particle diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63123957A
Other languages
Japanese (ja)
Other versions
JPH0717378B2 (en
Inventor
Kazutaka Mori
一剛 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP63123957A priority Critical patent/JPH0717378B2/en
Publication of JPH01294531A publication Critical patent/JPH01294531A/en
Publication of JPH0717378B2 publication Critical patent/JPH0717378B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a dense thin film of zirconia stabilized with yttria fast stuck to a substrate, having high uniformity by coating the substrate with a slurry containing plural kinds of zirconia particles stabilized with yttria having limited particles diameters and a binder, drying and burning. CONSTITUTION:Zirconia particles stabilized with yttria, having 1-5mu particle diameter are blended with zirconia particles stabilized with yttria, having <=1mu particle diameters and two or groups of different diameters and a binder to form a slurry. Then the slurry is applied to a substrate, dried and burnt to give the aimed thin film. In this method, when the raw material particles having the above-mentioned particle diameters are blended and packed, the particles are made into a state wherein a small amount of the particles having <=1mu particle diameter are packed into gaps of a large amount of the particles having 1-5mu particle diameter. When the resulting particles are sintered, since the particles having <=1mu particle diameter are melted at a lower temperature than the particles having 1-5mu particle diameter and act like a binder, melting of mixed particles of raw materials is not required and sintering can be carried out at low temperature.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電極材料、電子材料などとして用いる基板に密
着したイツトリア安定化ジルコニア薄嘆の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing an ittria-stabilized zirconia film in close contact with a substrate for use as an electrode material, electronic material, or the like.

〔従来の技術〕[Conventional technology]

従来、セラミック4嘆を製造する方法としては、酸化物
粉末と結合剤及び分散媒を混練し、平嘆に成形した後乾
燥、焼成する、いわゆるドクターブレード法が著名であ
る。
Conventionally, a well-known method for manufacturing ceramic ceramics is the so-called doctor blade method, in which oxide powder, a binder, and a dispersion medium are kneaded, flatly shaped, dried, and fired.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、従来のドクターブレード法で製造される
イツ(リア安定化ジNコニア(完全安定化タイプ)の膜
は薄膜単体では紙のようなものであシ、靭性が低いため
脆く、基板の表面に担持させることが困難であシ、強度
を高くしようとして嗅厚を大にすると膜性能が低下する
という問題点があった。
However, the membrane of rear-stabilized ziconium (fully stabilized type) manufactured by the conventional doctor blade method is paper-like when used as a thin film alone, and is brittle due to its low toughness, and does not adhere to the surface of the substrate. It is difficult to support the membrane, and if the membrane thickness is increased in an attempt to increase the strength, the membrane performance deteriorates.

本発明は上記技術水準に鑑み、従来法で得られるイツト
リア安定化ジルコニア暎におけるような不具合がなく、
基板に密着した緻密で均一性の高いイツトリア安定化ジ
ルコニア薄膜の製造法を提供しようとするものである。
In view of the above-mentioned state of the art, the present invention does not have the disadvantages of ittria-stabilized zirconia obtained by conventional methods, and
The present invention aims to provide a method for manufacturing a dense and highly uniform ittria-stabilized zirconia thin film that adheres to a substrate.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は粒径1〜5μmのイツトリア安定化ジルコニア
粒子と、粒径1μm以下で、かつ異径の2群以上のイツ
トリア安定化ジルコニア粒子と結合剤を混合してスラリ
ーを生成し、該スラリーを基板に塗布し、乾燥焼成する
ことを特徴とする基板に密着したイツトリア安定化ジル
コニア薄膜の製造方法である。
The present invention produces a slurry by mixing ittria-stabilized zirconia particles with a particle size of 1 to 5 μm, two or more groups of ittria-stabilized zirconia particles with a particle size of 1 μm or less and different diameters, and a binder. This is a method for producing an yttria-stabilized zirconia thin film that is in close contact with a substrate, which is characterized by coating the substrate and drying and baking it.

本発明において、原料イツトリア安定化ジルコニア粒子
の粒径を特定したのは原料イツトリア安定化ジルコニア
粒子の充填状態と焼結性の観点からである。
In the present invention, the particle size of the raw material ittria-stabilized zirconia particles is specified from the viewpoint of the filling state and sinterability of the raw material ittria-stabilized zirconia particles.

イツトリア安定化ジルコニアを含め、−収約にセラミッ
クス原料は同じ組成のものであっても粒子の大きさによ
シ溶けはじめる温度は異なυ、当然のことながら溶融温
度は大きい粒子はど高くなる。通常の粒径のイツトリア
安定化ジμコニウム粒子の焼結温度は1400〜160
0°Cであり、本発明においてもその温度を基準として
粒径1〜5μmのイツトリア安定化ジルコニア粒子(焼
結温度1400〜1600℃)を選定し、この粒子を原
料イツトリア安定化ジルコニ7の大半を占めるように使
用する。そして残部の原料を粒径1μm以下のイツトリ
ア安定化ジルコニア粒子を使用するものである。この両
者の粒径の原料粒子を混合して充填すると、粒径1μm
以下の少量の粒子は大量の粒径1〜5 μmの粒径の粒
子の間隙を埋める状態になる。
Even if the raw materials for ceramics, including yttoria-stabilized zirconia, have the same composition, the melting temperature varies depending on the size of the particles.Of course, the melting temperature will be higher for larger particles. The sintering temperature of ittria-stabilized ziconium particles of normal particle size is 1400-160.
0°C, and in the present invention, ittria-stabilized zirconia particles with a particle size of 1 to 5 μm (sintering temperature of 1400 to 1600°C) are selected based on that temperature, and these particles are used as the majority of the raw material ittria-stabilized zirconia 7. Use it to occupy. The remaining raw material is made of yttria-stabilized zirconia particles having a particle size of 1 μm or less. When raw material particles of both particle sizes are mixed and filled, the particle size is 1 μm.
The following small amount of particles fills the gaps between the large amount of particles having a particle size of 1 to 5 μm.

この状態で焼結すると粒径1 μm以下の粒子は粒径1
〜5μmの粒子よりも低温で溶融し、あたかも糊のよう
にふるまうので、原料混合粒子を焼結させるには全体を
溶融させる必要はなくなり、結局、従来法より低温焼結
が可能となる。
When sintered in this state, particles with a particle size of 1 μm or less will have a particle size of 1 μm or less.
Since it melts at a lower temperature than particles of ~5 μm and behaves like glue, it is no longer necessary to melt the entire raw material mixture particle to sinter it, and as a result, it becomes possible to sinter at a lower temperature than the conventional method.

例えば粒径1〜5μmのイツトリア安定化ジルコニア粒
子は通常1400〜1600℃で焼結するが、これにα
01〜102μmのような超微粒のイツトリア安定化ジ
ルコニア粒子を混合すると、その焼結温度は1200〜
1300°Cとなる。
For example, itria-stabilized zirconia particles with a particle size of 1 to 5 μm are usually sintered at 1400 to 1600°C;
When ultrafine ittria-stabilized zirconia particles of 01 to 102 μm are mixed, the sintering temperature is 1200 to 1200 μm.
It becomes 1300°C.

しかしながら、粒径1〜5μmの粒子と粒径α01〜(
102μmのような超微粒子の混合原料を焼結すると、
中間粒径の粒子がないため、焼結による収縮が大きく、
得られるイツトリア安定ジμコニア薄膜が割れる原因と
なる。そこで本発明においては、粒径1μm以下のイツ
トリア安定化ジルコニア粒子の中よシ、大きめな粒径、
例えば01〜1μm径の粒子と、小さめな粒径、例えば
α01〜actsμm径の粒子の少くとも2種類の異径
の粒子を使用し、焼結時の収縮を防止するようにしたも
のである。勿論、粒径1μm以下の粒子を3種以上配合
することも妨げないが、操業が複雑になって余シ得策と
は云えない。
However, particles with a particle size of 1 to 5 μm and particles with a particle size of α01 to (
When a mixed raw material of ultrafine particles such as 102 μm is sintered,
Because there are no particles of intermediate particle size, the shrinkage due to sintering is large.
This causes the resulting ittria-stable diconia thin film to crack. Therefore, in the present invention, itria-stabilized zirconia particles with a particle size of 1 μm or less, medium to large particle sizes,
For example, at least two types of particles with different diameters, ie, particles with a diameter of 01 to 1 μm and particles with a smaller diameter, such as particles with a diameter of α01 to 1 μm, are used to prevent shrinkage during sintering. Of course, it is possible to mix three or more types of particles with a particle size of 1 μm or less, but this complicates the operation and is not a good idea.

粒径1μm以下のイツトリア安定化ジルコニア粒子のう
ち、比較的粒径の大きい粒子、例えばαf’ 〜1 μ
m 、好ましくは[L1〜α5μm径の粒子を微粒子、
比較的粒径の小さい粒子、例えばCL01〜(LO5、
好ましくはL101〜[1L02μm径の粒子を超微粒
子と牧称し、粒径1〜5μmのイツトリア安定化ジルコ
ニア粒子を粗粒子と載体した場合、粗粒子:饋粒子:超
倣粒子の配合割合は、生成するイツ)IJア安定化ジ〜
コニア薄嘆の密度が最高になるように夫々の原料粒子の
粒度によって決定され、−概には決め痛いが、例えば粒
径1〜5μmの粗粒子に、粒[[11〜a 5 μmの
微粒子とgL径α01〜[102μmの超微粒子を配合
する場合には、直置割合で粗粒子:微粒子:超微粒子=
tO:S:1程度が好ましい。イツトリア安定化ジルコ
ニア粒子をこのように配合し、スラリーにして塗布乾燥
するのみでも、密度は60〜70%となる。
Among ittria-stabilized zirconia particles with a particle size of 1 μm or less, particles with a relatively large particle size, such as αf' ~ 1 μm
m, preferably [particles with a diameter of L1 to α5 μm,
Particles with a relatively small particle size, such as CL01~(LO5,
Preferably, particles with a diameter of L101 to [1L02 μm are referred to as ultrafine particles, and when itria-stabilized zirconia particles with a particle size of 1 to 5 μm are mounted on coarse particles, the blending ratio of coarse particles: feed particles: super-imitation particles is ) IJ stabilization
The density of the Conia flake is determined by the particle size of each raw material particle so that it has the highest density. When blending ultrafine particles with a gL diameter of α01 to [102 μm, the ratio of coarse particles: fine particles: ultrafine particles =
tO:S: about 1 is preferable. Even if the ittria-stabilized zirconia particles are blended in this way, the slurry is formed, the coating is simply applied and dried, the density is 60 to 70%.

これは通常のイツトリア安定化ジルコニア粒子のプレス
成形体の密度が50%以下であるのと比較すると著しく
高い価である。
This value is significantly higher than that of a typical press-molded body of ittria-stabilized zirconia particles, which has a density of 50% or less.

本発明において使用されるイツ)リア安定化ジルコニア
のイツトリア含有緻は、イツトリア(Yg Os )と
してジルコニア(ZrOl)に対し1〜20モル%(2
0モル%以上ではイツトリアは遊4してしまう)である
。イツトリアが8モル%以下では部分安定化ジルコニア
となシ、8モル%以上では完全安定化ジルコニアとなる
。イツトリアはジルコニアに比し高価であるので目的に
応じ必要最低限の蝋とすべきであ夛、導電性を考えた場
合には8モル%程度が最適である。
The yttria-containing density of the yttria-stabilized zirconia used in the present invention is 1 to 20 mol% (2
If it exceeds 0 mol %, ittria will become unstable.) When itria is less than 8 mol %, partially stabilized zirconia is not obtained, and when it is more than 8 mol %, completely stabilized zirconia is obtained. Since itria is more expensive than zirconia, it should be used in the minimum necessary amount depending on the purpose, and when considering conductivity, about 8 mol % is optimal.

イツトリア安定化ジ/I/:rニア原料の入手は粒径が
1〜5μmの粗粒子と粒径α1〜(L5μmのような微
粒子は市販されているイツトリア安定化ジμコニア粉末
を空気分級法などにより分級して用いることができる。
Ittria-stabilized di/I/:rnia raw materials are obtained by air classification using coarse particles with a particle size of 1 to 5 μm and fine particles with a particle size of α1 to (L5 μm), which are commercially available. It can be classified and used.

また、α01〜102μmのような超微粒子のイツトリ
ア安定化ジルコニアはオキシ塩化ジルコニウムと塩化イ
ツトリウムの混合水溶液を200°C程度の温度条件下
において水熱処理することにより得られる。
Further, itria-stabilized zirconia having ultrafine particles of α01 to 102 μm can be obtained by hydrothermally treating a mixed aqueous solution of zirconium oxychloride and yttrium chloride at a temperature of about 200°C.

イツトリア安定化ジルコニアのスラリーは、各粒度のイ
ツトリア安定化ジルコニアを混合した後、ポリビニルア
ルコールなどの結合剤を加え、更に分散媒体として水を
加えた後ボールミyを用いて分散し、分散処理した後、
ロータリーエバポレータを用いて真空脱泡することによ
り得られる。
A slurry of ittria-stabilized zirconia is produced by mixing ittria-stabilized zirconia of various particle sizes, adding a binder such as polyvinyl alcohol, and then adding water as a dispersion medium, followed by dispersion using a ball mill, followed by dispersion treatment. ,
Obtained by vacuum defoaming using a rotary evaporator.

〔実施例〕〔Example〕

市販の平均粒径1.5μmの8モル%イツトリア安定化
ジルコニアを空気分級により1〜5μmの粗粒と(11
〜α5 μmの微粒子に分級した。
Commercially available 8 mol% ittria-stabilized zirconia with an average particle size of 1.5 μm was air classified into coarse particles of 1 to 5 μm (11
It was classified into fine particles of ~α5 μm.

またオキシ塩化ジルコニウム(Zr0C4118/HI
O)五68モA/ / t、塩化イツトリウム(YC7
4−6H,O)0.32−eμ/lとなるように蒸留水
を加えた混合液ヲテフロンフィニングしたステンレス製
耐圧容器の中へ入れて密閉し、密閉後200°Cの恒温
槽内に入れて5日間(120時間)保持した。このよう
にして、粒径約15OA(α015μm)のイツトリア
安定化ジμフェア超微粒子を得た。
Also, zirconium oxychloride (Zr0C4118/HI
O) 568 moA//t, yttrium chloride (YC7
4-6H, O) Add distilled water to give a concentration of 0.32-eμ/l, put the mixture in a Teflon-finished stainless steel pressure-resistant container, seal it, and after sealing, store it in a constant temperature bath at 200°C. The sample was placed in a container and maintained for 5 days (120 hours). In this way, itria-stabilized diμ-fair ultrafine particles having a particle size of about 15 OA (α015 μm) were obtained.

次に、以上の粉体について、重合割合で1〜5μmの粗
粒を10,11〜15μmの微粒子を31粒径α05μ
mの超微粒子を1の割合になるように配合し、結合剤と
してポリビニルアルコールを粉体に対し1 wt%、こ
れに水を加えてスラリー濃度が15wtXとなるように
した後ボールミyを用いて24時間粉砕混合してスラリ
ーを得た。次にスラリーをロータリーエバポレータを用
いて真空脱泡してコーティング用スラリーとした。
Next, regarding the above powder, the polymerization ratio is 10 to 5 μm coarse particles, 11 to 15 μm fine particles to 31 particles with a particle diameter of α05 μm.
m ultrafine particles were blended at a ratio of 1:1, polyvinyl alcohol was added as a binder to the powder at 1 wt%, water was added to this to make the slurry concentration 15 wtX, and then a ball mill was used. A slurry was obtained by grinding and mixing for 24 hours. Next, the slurry was vacuum degassed using a rotary evaporator to obtain a coating slurry.

このスラリーを平均細孔径1.511m 、厚み1■、
多孔度65%のアルミナ質基体管の表面にデイツプコー
ティングした後室内乾燥した。次に、昇温速度2°C/
 minで1250°Cまで昇温し、この温度に4時間
保持した後炬冷した。
This slurry has an average pore diameter of 1.511 m, a thickness of 1 cm,
The surface of an alumina base tube with a porosity of 65% was dip coated and then dried indoors. Next, the heating rate is 2°C/
The temperature was raised to 1250°C at a minimum speed of 1,250°C, maintained at this temperature for 4 hours, and then cooled with an oven.

このようにすることにより、アルミナ質基体管の表面に
は約15μmの厚みの緻密なイツトリア安定化ジルコニ
ウムが形成されていた。
By doing so, dense ittria-stabilized zirconium with a thickness of about 15 μm was formed on the surface of the alumina base tube.

参考として、1〜5μmの粗粒、0.1〜O,Sμmの
微粒子、及び[L015μmの超微粒子、それぞれ単独
の粒子で前記と同様にしてスラリーを形成した後、コー
ティング、乾燥、焼成とも同様の条件で比較用サンプA
/金準備した。
For reference, after forming a slurry in the same manner as above using coarse particles of 1 to 5 μm, fine particles of 0.1 to O.S μm, and ultrafine particles of 15 μm, coating, drying, and baking were performed in the same manner. Sample A for comparison under the conditions of
/I prepared the money.

1莫の均質性を評価する方法として■ガス透過法(N3
)及び■導電率(直流4端子法)の2つの方法を用いた
■Gas permeation method (N3
) and ■Conductivity (DC 4-terminal method) were used.

ガス透過法による評価は、幌の両側に差圧(’f4/、
、”>を与え、このとき漢を透過する窒素の量からガス
透過係数を求めた。試験結果を第1図に示す。第1図に
おいて横軸は差圧(kg/J)であシ、縦軸はガス透過
係数(Nm )でおる。図中■は本発明の5つの異なる
粒径のものを配合して得たものであυ、■及び■はそれ
ぞれ1〜5μmのもの及びα1〜15μmのものである
Evaluation using the gas permeation method is based on the differential pressure ('f4/,
, "> was given, and the gas permeability coefficient was determined from the amount of nitrogen that permeated through the pipe. The test results are shown in Figure 1. In Figure 1, the horizontal axis is the differential pressure (kg/J). The vertical axis is the gas permeability coefficient (Nm). In the figure, ■ is obtained by blending particles of five different particle sizes according to the present invention, and υ, ■, and ■ are those obtained by blending particles of 1 to 5 μm, and α1 to α1, respectively. It is 15 μm.

(1015μ欝のもの単独ではひび割れが生じ透過率は
1〜5μmのものよシ大となった。この試験の結果、ガ
ス透過量がかなυ低下することから本発明の方法が有用
であることが判明した。
(The 1015 μm sample alone caused cracks and the transmittance was higher than that of the 1 to 5 μm sample.As a result of this test, the amount of gas permeation decreased by a small amount υ, indicating that the method of the present invention is useful. found.

導電率の評価はサンプルに1ぼ流4端子法測定用のリー
ド線をとり付けた後、加熱して実施した。導電率の測定
結果を第2図に示す。第2図において、横軸は糖体温度
の逆数を111000倍したもの、縦軸は導電率を示す
。図中■は本発明の3つの異なる粒径のものを配合して
得たものであり、■■■はそれぞれ、1〜5μmのもの
、11〜15μmのもの、1015μmのものである。
The electrical conductivity was evaluated by attaching a lead wire for measurement using the 1-current 4-terminal method to the sample and then heating the sample. The measurement results of electrical conductivity are shown in FIG. In FIG. 2, the horizontal axis shows the reciprocal of the glycoside temperature multiplied by 111,000, and the vertical axis shows the conductivity. In the figure, ■ is obtained by blending three different particle sizes of the present invention, and ■■■ are those of 1 to 5 μm, 11 to 15 μm, and 1015 μm, respectively.

この試験の結果、本発明方法のものは導電率は比較的高
い値を保持しておシ、本発明が有用であることが示され
た。■■では焼結が不足し、■では焼結によるひび割れ
の発生のため導電率が低下する。
As a result of this test, the conductivity of the method of the present invention maintained a relatively high value, indicating that the present invention is useful. In ■■, sintering is insufficient, and in ■, cracks occur due to sintering, resulting in a decrease in electrical conductivity.

以上本発明では、緻密でかつ均一性の高いジルコニア嘆
を得ることが可能であることが明らかとなった。
As described above, it has become clear that according to the present invention, it is possible to obtain a dense and highly uniform zirconia layer.

〔発明の効果〕〔Effect of the invention〕

本発明に従えば、粒子の充填性及び超微粒子の使用とい
う観点から比較的低い温度において基板に密着した緻密
なイツトリア安定化ジルコニア薄膜の製造が可能である
According to the present invention, it is possible to produce a dense ittria-stabilized zirconia thin film that adheres closely to a substrate at a relatively low temperature from the viewpoint of particle filling properties and the use of ultrafine particles.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は試作サンプルの差圧とガス透過係数の関係を示
す図表、石2図は試作サンプμの温度と導電率の関係を
示す図表である。
Figure 1 is a chart showing the relationship between the differential pressure and gas permeability coefficient of the prototype sample, and Figure 2 is a chart showing the relationship between the temperature and electrical conductivity of the prototype sump μ.

Claims (1)

【特許請求の範囲】[Claims]  粒径1〜5μmのイットリア安定化ジルコニア粒子と
、粒径1μm以下で、かつ異径の2群以上のイットリア
安定化ジルコニア粒子と結合剤を混合してスラリーを生
成し、該スラリーを基板に塗布し、乾燥焼成することを
特徴とする基板に密着したイットリア安定化ジルコニア
薄膜の製造方法。
A slurry is produced by mixing yttria-stabilized zirconia particles with a particle size of 1 to 5 μm, two or more groups of yttria-stabilized zirconia particles with a particle size of 1 μm or less and different diameters, and a binder, and the slurry is applied to a substrate. A method for producing an yttria-stabilized zirconia thin film that adheres to a substrate, the method comprising drying and baking the film.
JP63123957A 1988-05-23 1988-05-23 Method for producing stabilized zirconia thin film Expired - Lifetime JPH0717378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63123957A JPH0717378B2 (en) 1988-05-23 1988-05-23 Method for producing stabilized zirconia thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63123957A JPH0717378B2 (en) 1988-05-23 1988-05-23 Method for producing stabilized zirconia thin film

Publications (2)

Publication Number Publication Date
JPH01294531A true JPH01294531A (en) 1989-11-28
JPH0717378B2 JPH0717378B2 (en) 1995-03-01

Family

ID=14873530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63123957A Expired - Lifetime JPH0717378B2 (en) 1988-05-23 1988-05-23 Method for producing stabilized zirconia thin film

Country Status (1)

Country Link
JP (1) JPH0717378B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005056877A1 (en) * 2003-12-10 2005-06-23 Mtu Aero Engines Gmbh Ceramic material and method for repairing thermal insulation layers with local damage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005056877A1 (en) * 2003-12-10 2005-06-23 Mtu Aero Engines Gmbh Ceramic material and method for repairing thermal insulation layers with local damage

Also Published As

Publication number Publication date
JPH0717378B2 (en) 1995-03-01

Similar Documents

Publication Publication Date Title
TWI572579B (en) Refractory object including beta alumina and processes of making and using the same
US8986597B2 (en) Low creep refractory ceramic and method of making
KR101515242B1 (en) Refractory Ceramic Composite and Method of Making
KR20100087338A (en) Low-creep zircon material with nano-additives and method of making same
US20090159853A1 (en) Colloidal templating process for manufacture of highly porous ceramics
WO2008103235A1 (en) Refractory ceramic composite and method of making
WO2008136968A1 (en) Reduced strain refractory ceramic composite and method of making
US4774211A (en) Methods for predicting and controlling the shrinkage of ceramic oxides during sintering
Kim et al. Synthesis and Characterization of Suspension‐Derived, Porous Ion‐Conducting Ceramic Membranes
JPH0859367A (en) Preparation of porous ceramic or porous ceramic laminated body by using hollow spherical polymeric precursor
JP2000053479A (en) Production of ceramic diffusion inhibiting layer and use of the layer
CN106977201A (en) High-purity high-strength high-ductility zirconia composite ceramics ultra thin plate and preparation method thereof
Braun et al. Transparent Polycrystalline Alumina Ceramic with Sub‐Micrometre Microstructure by Means of Electrophoretic Deposition
JPH01294531A (en) Production of thin film of stabilized zirconia
KR20040069263A (en) Cutting tool insert and method for producing the same
JP4383099B2 (en) Manufacturing method of composite ceramics
KR101925215B1 (en) Polycrystal zirconia compounds and preparing method of the same
US20070228622A1 (en) Production process of sheet-like dense cordierite sintered body
JP2006527697A (en) Method for producing metal oxide layer
EP0133509A2 (en) Methods for predicting and controlling the shrinkage of aluminaceramic articles during sintering
JP3057313B2 (en) Ceramic porous membrane and method for producing the same
JP3323923B2 (en) Zirconia polycrystalline thin film and method for producing the same
JP2015140277A (en) Method for producing oxide ceramic having water repellency
JP2680127B2 (en) Si Lower 3 N Lower 4 Sintered body
US20030134737A1 (en) Silicon nitride substances containing sintering additives and sio2, method for producing them and use of the same