JPH07172825A - Production of highly reactive quick lime by hydration-redehydration treatment of quick lime - Google Patents

Production of highly reactive quick lime by hydration-redehydration treatment of quick lime

Info

Publication number
JPH07172825A
JPH07172825A JP28225791A JP28225791A JPH07172825A JP H07172825 A JPH07172825 A JP H07172825A JP 28225791 A JP28225791 A JP 28225791A JP 28225791 A JP28225791 A JP 28225791A JP H07172825 A JPH07172825 A JP H07172825A
Authority
JP
Japan
Prior art keywords
quick lime
quicklime
highly reactive
lime
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28225791A
Other languages
Japanese (ja)
Inventor
Norifumi Gotou
規文 後藤
Tetsushi Iwashita
哲志 岩下
Masanobu Katani
昌信 架谷
Hitoki Matsuda
仁樹 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yahashi Kogyo KK
Original Assignee
Yahashi Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yahashi Kogyo KK filed Critical Yahashi Kogyo KK
Priority to JP28225791A priority Critical patent/JPH07172825A/en
Publication of JPH07172825A publication Critical patent/JPH07172825A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To obtain highly reactive quick lime by hydrating quick lime and redehydrating the resulting slaked lime by heating. CONSTITUTION:Quick lime obtd. by heating calcium carbonate such as limestone to >=700 deg.C is hydrated by the action of water in an atmosphere at 100-400 deg.C to obtain slaked lime. This slaked lime is redehydrated by heating to 450-900 deg.C to produce the objective highly reactive quick lime.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、生石灰系の反応吸着剤
等に利用される、安定した能力の高反応性生石灰を製造
する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing highly reactive quicklime having a stable capacity, which is used as a quicklime-based reactive adsorbent or the like.

【0002】[0002]

【従来の技術】従来、石灰石を焼成して反応性の高い生
石灰を得るには、なるべく低温で炭酸カルシウムの脱炭
酸反応を行なわせることに依っていた。
2. Description of the Related Art Conventionally, in order to obtain quick-reacting lime by firing limestone, it has been necessary to carry out a decarboxylation reaction of calcium carbonate at a temperature as low as possible.

【0003】炭酸カルシウムの脱炭酸温度(分解温度)
はCO2 分圧で変化する。脱炭酸反応は分圧0で約60
0℃で始まるが、大気圧下で普通に石灰石を焼成するに
は900℃程度の温度を必要とする。工業生産上は、生
産性等の関係でさらに高い焼成温度を用いている。
Decarbonation temperature (decomposition temperature) of calcium carbonate
Changes with CO 2 partial pressure. Decarboxylation reaction is about 60 at 0 partial pressure
Although it starts at 0 ° C, a temperature of about 900 ° C is required to normally calcine limestone under atmospheric pressure. In industrial production, a higher firing temperature is used because of the productivity.

【0004】脱炭酸後に生石灰の結晶が残るが、分解温
度を上げていくと、次第に結晶同志が癒着して大きな結
晶へと成長する。このために、石灰石の焼成温度を上げ
るに連れて、得られる生石灰の反応性は低下してしま
う。
Crystals of quick lime remain after decarboxylation, but when the decomposition temperature is raised, the crystals gradually adhere to each other and grow into large crystals. Therefore, as the firing temperature of limestone is increased, the reactivity of the quicklime obtained is reduced.

【0005】なるべく低い温度で石灰石を焼成するに
は、減圧容器内で石灰石を焼成する「減圧焼成法」も考
えられる。しかし、減圧容器内のCO2 分圧をより下げ
ようとする程、気密をしっかりとする必要が生じ、製造
コストの上昇等を招く。
In order to calcine limestone at a temperature as low as possible, a "reduced pressure calcining method" in which limestone is calcined in a decompression container is also conceivable. However, as the partial pressure of CO 2 in the decompression container is further reduced, it becomes necessary to secure the airtightness, resulting in an increase in manufacturing cost.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、高反
応性の生石灰を製造する事にある。
SUMMARY OF THE INVENTION An object of the present invention is to produce highly reactive quicklime.

【0007】[0007]

【課題を解決するための手段】本発明者らが鋭意検討し
た結果、通常の条件で焼成して得られた生石灰を、いっ
たん水和させて消石灰にした後、この消石灰を再脱水し
て生石灰とすることにより、高反応性の生石灰の得られ
ることが見い出された。
Means for Solving the Problems As a result of intensive studies by the present inventors, quick lime obtained by firing under normal conditions is once hydrated to obtain slaked lime, and then this slaked lime is re-dehydrated to obtain quick lime. It was found that highly reactive quick lime can be obtained by

【0008】すなわち、本発明の高反応性生石灰の製造
方法は、生石灰を、100〜400℃の雰囲気下で水和
させた後、450〜900℃で再脱水させることを特徴
とする。
That is, the method for producing highly reactive quicklime of the present invention is characterized in that quicklime is hydrated in an atmosphere of 100 to 400 ° C. and then dehydrated at 450 to 900 ° C.

【0009】[0009]

【作用】炭酸カルシウムを焼成して得られた生石灰の反
応性は、焼成温度によって変化し、焼成温度が高くなる
ほど、反応性が悪くなる。
The reactivity of quicklime obtained by calcining calcium carbonate changes depending on the calcining temperature, and the higher the calcining temperature, the worse the reactivity.

【0010】焼成により得られた生石灰を水和させると
消石灰となる。この消石灰を水酸化カルシウムの分解温
度で脱水させて、再度生石灰とすると、反応性が高く、
しかも、もとの生石灰の焼成温度による反応性の程度に
もかかわらず、ほぼ一定した高い反応性の生石灰が得ら
れる。
When quicklime obtained by firing is hydrated, it becomes slaked lime. When this slaked lime is dehydrated at the decomposition temperature of calcium hydroxide and made into quick lime again, the reactivity is high,
In addition, regardless of the degree of reactivity of the original quicklime with the firing temperature, it is possible to obtain quicklime having a substantially constant reactivity.

【0011】[0011]

【発明の実施態様】生石灰は、例えば、石灰石等の炭酸
カルシウムを700℃以上で加熱することにより得られ
る。
BEST MODE FOR CARRYING OUT THE INVENTION Quicklime is obtained, for example, by heating calcium carbonate such as limestone at 700 ° C. or higher.

【0012】石灰石の脱炭酸温度は約600℃なので、
700℃より低い温度では生石灰を得ることは事実上不
可能である。高温側は特に制限は無いが、1300℃以
上で焼成することは、通常操作で生石灰を得ようとする
場合において無意味である。また、石灰石を焼成する温
度を上げて行くと、焼成温度の上昇に連れて、得られる
生石灰の反応性が低下してくる。
Since the decarboxylation temperature of limestone is about 600 ° C,
It is virtually impossible to obtain quicklime at temperatures below 700 ° C. There is no particular limitation on the high temperature side, but calcination at 1300 ° C. or higher is meaningless in the case of obtaining quick lime by a normal operation. Further, when the temperature for firing limestone is increased, the reactivity of the obtained quick lime decreases as the firing temperature rises.

【0013】次に、生石灰を100〜400℃下の雰囲
気下に置き、水を作用させて水和し、消石灰とする。1
00℃より低い温度では水蒸気が結露し易く、石灰の消
化がきれいにできない。400℃より高くなると、消石
灰の脱水の可逆反応が発生してくる。水による水和処理
は、生石灰に水を噴霧したり、水蒸気を当てることによ
り行なうことができる。
Next, quick lime is placed in an atmosphere at 100 to 400 ° C. and hydrated by making water act on it to obtain slaked lime. 1
If the temperature is lower than 00 ° C, water vapor is likely to be condensed and lime cannot be digested cleanly. When the temperature is higher than 400 ° C, a reversible reaction of dehydration of slaked lime occurs. The hydration treatment with water can be performed by spraying quick lime with water or by applying steam.

【0014】さらに、この消石灰を今度は450〜90
0℃、好ましくは450〜600℃に加熱して再脱水を
し、生石灰に戻す。450℃より低温では、消石灰の脱
水が上記可逆反応のため難しくなる。600℃より高く
すると、通常の脱炭酸反応の場合と同様に、残った生石
灰の結晶が分解温度を上げていくことにより、次第に結
晶同志が癒着して大きな結晶へと成長する。そのため、
温度の上昇に連れて得られる生石灰の反応性が悪くな
り、900℃が限度である。また、900℃を超える温
度は、通常の製造温度でもある。この再脱水処理によ
り、本発明の高反応性生石灰が得られる。
Further, this slaked lime is added to 450-90 this time.
It is re-dehydrated by heating to 0 ° C, preferably 450 to 600 ° C, and returned to quicklime. At temperatures lower than 450 ° C, dehydration of slaked lime becomes difficult due to the above reversible reaction. When the temperature is higher than 600 ° C., as in the case of a normal decarboxylation reaction, the remaining quicklime crystals raise the decomposition temperature, so that the crystallites gradually adhere to each other and grow into large crystals. for that reason,
As the temperature rises, the reactivity of quicklime obtained becomes worse, and the limit is 900 ° C. Moreover, the temperature exceeding 900 ° C. is also a normal manufacturing temperature. By this re-dehydration treatment, the highly reactive quicklime of the present invention is obtained.

【0015】[0015]

【発明の効果】本発明により得られた高反応性生石灰
は、水和・再脱水処理以前の原料生石灰に比べて高い反
応性を有する。しかも、原料生石灰は、焼成条件により
反応性に大きな差異(反応性の高低)があるが、水和・
再脱水処理後の高反応性生石灰は、原料生石灰の焼成温
度にかかわらず、いずれの生石灰を用いた場合でも、ほ
ぼ一定の高い反応性を有する。
The highly reactive quicklime obtained according to the present invention has higher reactivity than the raw quicklime before the hydration / redehydration treatment. Moreover, although the raw material quicklime has a large difference in reactivity (high or low reactivity) depending on the firing conditions,
The highly reactive quicklime after the re-dehydration treatment has a substantially constant high reactivity regardless of which quicklime is used regardless of the firing temperature of the raw quicklime.

【0016】[0016]

【実施例】以下の各実施例では、石灰石を所定温度(7
00〜1200℃)で焼成して原料生石灰を得、これを
水和・再脱水して高反応生石灰を得た。
EXAMPLES In each of the following examples, limestone was heated to a predetermined temperature (7
The raw material quick lime was obtained by firing at 0 to 1200 ° C.) and hydrated and re-dehydrated to obtain high reaction quick lime.

【0017】原料生石灰および高反応性生石灰につい
て、再炭酸化を行ない、反応時間に対する反応率(再炭
酸化速度)を測定し、その結果を図1(原料生石灰)お
よび図2(高反応性生石灰)に示した。
Recalcification was carried out for the raw material quicklime and highly reactive quicklime, and the reaction rate (recarbonation rate) with respect to the reaction time was measured. The results are shown in FIG. 1 (raw material quicklime) and FIG. 2 (highly reactive quicklime). )Pointing out toungue.

【0018】再炭酸化速度は、700℃の一定下にN2
−CO2混合ガス(CO2 濃度:72.4mmHg)を
流し、反応時間毎に反応率を測定した。
The re-carbonation rate is N 2 at a constant temperature of 700 ° C.
-CO 2 mixed gas (CO 2 concentration: 72.4mmHg) flowed to measure the reaction rate for each reaction time.

【0019】図1から、石灰石の焼成においては、焼成
温度によって、得られる生石灰の反応性に差があり、焼
成温度が高いほど生石灰の反応性が低下することが判
る。
From FIG. 1, it can be seen that in calcination of limestone, the reactivity of the quicklime obtained differs depending on the firing temperature, and the higher the firing temperature, the lower the reactivity of quicklime.

【0020】図2から、水和・再脱水処理により生石灰
の反応性が高められることが判る。しかも、低い反応性
の原料生石灰の場合は大幅に反応性が向上し、原料生石
灰の焼成温度に基づく反応性の大きさに関係なく、ほぼ
一定して高い反応性の生石灰が得られる。
It can be seen from FIG. 2 that the reactivity of quicklime is enhanced by the hydration / redehydration treatment. Moreover, in the case of the raw quicklime having a low reactivity, the reactivity is significantly improved, and regardless of the degree of the reactivity based on the firing temperature of the raw quicklime, the quicklime having a constant high reactivity is obtained.

【0021】実施例1 石灰石を700℃で焼成して原料生石灰とした、この生
石灰の反応性を測定し、図1に示した。
Example 1 Limestone was calcined at 700 ° C. to obtain raw quicklime, and the reactivity of this quicklime was measured and shown in FIG.

【0022】ついで、この生石灰に160℃の条件下で
水を噴霧し、生石灰を水和させて消石灰とした。
Next, this quicklime was sprayed with water at 160 ° C. to hydrate the quicklime to obtain slaked lime.

【0023】その後、さらにこの消石灰を500℃で加
熱、再脱水して生石灰に戻した。再脱水後の高反応性生
石灰の反応性を測定し、図2に示した。
Thereafter, the slaked lime was further heated at 500 ° C. and re-dehydrated to return to quick lime. The reactivity of highly reactive quicklime after re-dehydration was measured and is shown in FIG.

【0024】実施例2〜6 石灰石の焼成温度を下記表1のように変化させる以外
は、実施例1と同様にして原料生石灰および高反応性生
石灰の反応性を測定し、それぞれ、図1および図2に、
実施例1の結果に重ねて示した。
Examples 2 to 6 The reactivities of raw quicklime and highly reactive quicklime were measured in the same manner as in Example 1 except that the firing temperature of limestone was changed as shown in Table 1 below. In Figure 2,
The results are shown in FIG.

【0025】[0025]

【表1】 [Table 1]

【図面の簡単な説明】 【図1】石灰石焼成後の生石灰(原料生石灰)について
の、反応性を示すグラフである。 【図2】水和・再脱水後の生石灰(高反応性生石灰)に
ついての、反応性を示すグラフである。
[Brief description of the drawings] [Fig. 1] Quick lime after burning limestone (quick lime raw material)
2 is a graph showing the reactivity of [Fig. 2] Quick lime after hydration and re-dehydration (quickly reactive lime)
It is a graph which shows the reactivity regarding.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松田 仁樹 愛知県名古屋市天白区天白町植田一本松94 −3 ─────────────────────────────────────────────────── --- Continued from the front page (72) Inventor Hitoki Matsuda 94-3 Ueda Ipponmatsu, Tenpaku-cho, Tenpaku-ku, Nagoya, Aichi Prefecture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 生石灰を、100〜400℃の雰囲気下
で水和させた後、450〜900℃で再脱水することを
特徴とする、高反応性生石灰の製造方法。
1. A method for producing highly reactive quicklime, which comprises hydrating quicklime in an atmosphere of 100 to 400 ° C. and then re-dehydrating at 450 to 900 ° C.
JP28225791A 1991-10-01 1991-10-01 Production of highly reactive quick lime by hydration-redehydration treatment of quick lime Pending JPH07172825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28225791A JPH07172825A (en) 1991-10-01 1991-10-01 Production of highly reactive quick lime by hydration-redehydration treatment of quick lime

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28225791A JPH07172825A (en) 1991-10-01 1991-10-01 Production of highly reactive quick lime by hydration-redehydration treatment of quick lime

Publications (1)

Publication Number Publication Date
JPH07172825A true JPH07172825A (en) 1995-07-11

Family

ID=17650098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28225791A Pending JPH07172825A (en) 1991-10-01 1991-10-01 Production of highly reactive quick lime by hydration-redehydration treatment of quick lime

Country Status (1)

Country Link
JP (1) JPH07172825A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001354414A (en) * 2000-06-09 2001-12-25 Okayama Prefecture Kyodo Sekkai Kk Method for manufacturing highly reactive alkaline earth metal oxide
JP2008069136A (en) * 2006-09-15 2008-03-27 Yoshizawa Lime Industry Hygienic treatment agent with quicklime as active ingredient, and sterilizing/bactericidal method using the same
JP2009057254A (en) * 2007-08-31 2009-03-19 Sekitan Energy Center Method for producing particulate ca(oh)2, and gas absorption method or gas recovery method using the same
JP2009189056A (en) * 2009-05-25 2009-08-20 Seiko Epson Corp Gamma curve adjusting device and adjustment point setting method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001354414A (en) * 2000-06-09 2001-12-25 Okayama Prefecture Kyodo Sekkai Kk Method for manufacturing highly reactive alkaline earth metal oxide
JP2008069136A (en) * 2006-09-15 2008-03-27 Yoshizawa Lime Industry Hygienic treatment agent with quicklime as active ingredient, and sterilizing/bactericidal method using the same
JP2009057254A (en) * 2007-08-31 2009-03-19 Sekitan Energy Center Method for producing particulate ca(oh)2, and gas absorption method or gas recovery method using the same
JP2009189056A (en) * 2009-05-25 2009-08-20 Seiko Epson Corp Gamma curve adjusting device and adjustment point setting method

Similar Documents

Publication Publication Date Title
AU2010228846B2 (en) Process for simultaneous production of potassium sulphate, ammonium sulfate, magnesium hydroxide and/or magnesium oxide from kainite mixed salt and ammonia
Bhatti et al. Magnesia from seawater: a review
KR890004634B1 (en) Method for producing hydraulic cements
NO138318B (en) INSECTICIDES.
EP0038891A1 (en) Process for the production of magnesium oxide from brine or bittern
Aphane et al. Influence of hydration time on the hydration of MgO in water and in a magnesium acetate solution
US3839551A (en) Super reactive recalcined lime product and process
JPH07172825A (en) Production of highly reactive quick lime by hydration-redehydration treatment of quick lime
JP3440299B2 (en) Manufacturing method of transparent spinel sintered body
KR102141315B1 (en) Manufacturing method of gypsum anhydrite from desulfurization gypsum formed in the petroleum refining
KR101297989B1 (en) A method of powdered calcium hydroxide with high specific surface area
US4035469A (en) Pretreatment of brine for boron removal
Stewart et al. Microstructural studies of the hydration products of three tricalcium silicate polymorphs
US2386389A (en) Production of calcium and magnesium compounds from dolomite
CN111606582A (en) Method for preparing active magnesium oxide and magnesium cement by extracting lithium magnesium slag through membrane separation method
CN110963719A (en) Method and device for preparing quicklime
KR101155104B1 (en) Preparation method of quicklime and hydrated lime for removing sulfur oxides using residual wastes of ground limestone for paper manufacture
Matousek et al. Contribution to the hydration of expansive cement on the basis of metakaolinite
SU1102780A1 (en) Method for producing lime
WO2002081409A1 (en) Method for manufacturing a light, strong and heat-insulating clay-based ceramic
Mikhail Activation and sintering behavior of calcium oxide—the effect of hydration on the surface area of the oxide produced by thermal Decomposition
JP6946070B2 (en) Carbon dioxide scavenger, its production method and method of capturing carbon dioxide using it
KR100277254B1 (en) Method for preparing quicklime from seawater decarbonate sludge
DATA Kinetics of hydration of magnesium oxide in aqueous suspension
CN115043419A (en) Production process of novel calcium hydroxide blender