JPH0716968A - Manufacture of three-dimensional structure strength high in and small in weight - Google Patents

Manufacture of three-dimensional structure strength high in and small in weight

Info

Publication number
JPH0716968A
JPH0716968A JP20550493A JP20550493A JPH0716968A JP H0716968 A JPH0716968 A JP H0716968A JP 20550493 A JP20550493 A JP 20550493A JP 20550493 A JP20550493 A JP 20550493A JP H0716968 A JPH0716968 A JP H0716968A
Authority
JP
Japan
Prior art keywords
plate
dimensional structure
strength
bottom plate
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20550493A
Other languages
Japanese (ja)
Inventor
Akiya Ozeki
昭矢 尾関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP20550493A priority Critical patent/JPH0716968A/en
Publication of JPH0716968A publication Critical patent/JPH0716968A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain strength and a secondary moment of inertia higher than those of honeycomb structure by a sheet of a plate, by a method wherein processing such as bending. curving of a plate is perfomed by a die roll, corner parts are deformed into acute angles, different positions of the plates are brought into contact directly with each other or indirectly with each other by pinching the plate and a two-dimensional closed space is formed. CONSTITUTION:A sheet of plate is bent or deep-drawn, a continuous primary molded boby is made and plastic deformation is imparted further to its nook part or corner part 1 respectively by a processing jig 6 such as a roll or a die so that the nook part or the corner part 1 becomes an acute angle. On the one hand, plastic deformation is imparted to neither a top plate 3 nor a bottom plate 4 and bend processing is performed at the larger radius of curvature so as to be limited to elastic deformation. When the processing jig is removed after that, the nook part or the corner part 1 keeps an imparted form of the acute angle given by plastic deformation, the top plate 3 and bottom plate 4 are spling-backed horizontally and becomed a three- dimensional body. The three-dimensional structural body whose strength in a longitudional direction is extremely high and weight is small is obtained by two stage processing through the sheet of the plate like this.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は建築、輸送機器用の床、
壁、天井、屋根、扉等の構造材、および簡易橋梁、足場
板、コンクリート型枠等の軽量で高強度の構造材、なら
びに高強度軽量の制振材、遮音材の製造方法に関する。
FIELD OF THE INVENTION The present invention relates to floors for construction and transportation equipment,
The present invention relates to structural materials such as walls, ceilings, roofs and doors, lightweight and high-strength structural materials such as simple bridges, scaffolding boards and concrete formwork, and high-strength and lightweight vibration damping materials and sound insulation materials.

【0002】[0002]

【従来の技術】従来の高強度で軽量の構造材としてはハ
ニカム構造が知られているが製法が複雑なため高価であ
り航空機などに用途が限られている。またキーストンプ
レート、形鋼、その他軽量形鋼、あるいは接着構成木材
等が建築用に用いられている。最近ではアルミ、チタン
など軽金属でハニカム構造材を造ることも行われてい
る。
2. Description of the Related Art A honeycomb structure is known as a conventional high-strength and lightweight structural material, but it is expensive because of a complicated manufacturing method and its application is limited to aircrafts. Also, keystone plates, shaped steel, other lightweight shaped steels, or bonded timbers are used for construction. Recently, it has been practiced to make honeycomb structure materials from light metals such as aluminum and titanium.

【0003】[0003]

【発明が解決しようとする課題】従来のハニカム構造で
は二枚の板の間に蜂の巣状に組んだ板を挟み接着してい
る。その強度は蜂の巣板と接着剤の強度に左右され、上
下二枚の板そのものの強度には勝てず、製法も複雑であ
りコストも高い。またキーストンプレートはそれ単味で
は表面が凹凸でそのままでは使えず、上または下をもう
一枚の板で覆う必要がある。本発明では一枚の板を弾塑
性成形加工してハニカム構造以上の強度と断面二次モー
メントを持ち、それ単味でも使える立体構造を安価に製
造することを目的としている。この方法では複雑な曲面
形状をもつ立体構造体を製造することも目的としてい
る。
In the conventional honeycomb structure, a honeycomb-shaped plate is sandwiched and adhered between two plates. Its strength depends on the strength of the honeycomb board and the adhesive, and it cannot beat the strength of the upper and lower boards themselves, and the manufacturing method is complicated and the cost is high. Also, the keystone plate itself cannot be used as it is because the surface is uneven, so it is necessary to cover the top or bottom with another plate. It is an object of the present invention to inexpensively manufacture a three-dimensional structure which has a strength and a second moment of inertia higher than that of a honeycomb structure by elastically forming one plate and can be used alone. This method also aims to manufacture a three-dimensional structure having a complicated curved surface shape.

【0004】[0004]

【課題を解決するための手段】ロールあるいはプレスに
より一枚の板を曲げ加工し、または深絞り加工して図1
に示す様な連続した一次成形体を作る。この一次成形体
の隅部または角部分(1,2)にそれぞれ図2に示すロ
ールあるいはダイス等の加工治具(6)で隅部全体で鋭
角になるように更なる塑性変形をあたえ、一方水平部分
の天板(3)と底板(4)には塑性変形をあたえず弾性
変形のみに止める様に板厚に比して曲率半径を大きく曲
げ加工する。図2の太線は加工終了時の板の断面形状を
示している。その後加工治具を取り去ると、隅部または
角部分(1,2)は塑性変形された鋭角の形状を保ち、
水平部分の天板(3)と底板(4)は塑性変形していな
いので元の水平状態に弾性回復すなはちスプリングバッ
クして図3のような立体構造が形成される。この様に一
枚の板から2段階の加工で立体構造が出来上がり、縦方
向の強度が非常に大きく軽い構造体が得られる。勿論一
枚の板をそのまま加工治具(6)を用いて一段階で加工
しても良い。また図3に示す様に板の合わせ目を溶接な
どで連続して接着(7)あるいは部分的に接着(8)す
ることによって縦横双方の強度を高めることができる。
[Means for Solving the Problems] One plate is bent or deep-drawn by a roll or a press, and FIG.
A continuous primary molded body as shown in is made. The corners or corners (1, 2) of this primary molded body are further plastically deformed by a processing jig (6) such as a roll or a die shown in FIG. The top plate (3) and the bottom plate (4) in the horizontal portion are bent with a large radius of curvature compared to the plate thickness so that plastic deformation is not given and only elastic deformation is stopped. The thick line in FIG. 2 shows the sectional shape of the plate at the end of processing. After that, when the processing jig is removed, the corners or corners (1, 2) maintain the plastically deformed acute angle shape,
Since the top plate (3) and the bottom plate (4) in the horizontal portion are not plastically deformed, the three-dimensional structure as shown in FIG. 3 is formed by elastically recovering to the original horizontal state or by springing back. In this way, a three-dimensional structure is completed from one plate in two steps, and a structural body having a very large strength in the longitudinal direction and a light weight can be obtained. Of course, one plate may be processed as it is in one step using the processing jig (6). Further, as shown in FIG. 3, by continuously adhering (7) or partially adhering (8) the joints of the plates by welding or the like, the strength in both the vertical and horizontal directions can be increased.

【0005】一方ロールあるいはプレスにより曲げ加
工、または深絞り加工して図4に示す様な連続した一次
成形体を作る。この一次成形体はその隅部全体が既に鋭
角になるように塑性変形を与えられており、天板(3)
と底板(4)の一部分も曲げ塑性加工されていることが
特徴である。この折り曲げられた天板(3)と底板
(4)の部分だけを、図5に示すロール、ダイス等の加
工治具(9)を用いて再塑性加工し平にし、一方隅部
(1,2)と側板(5)は加工治具(9)に強く当たら
ない様にして弾性変形に止める。その後加工治具(9)
を取り去ると、天板(3)と底板(4)は塑性加工され
て元の水平状態に戻り、隅部(角部分)(1,2)と側
板(5)は弾性回復すなはちスプリングバックして鋭角
の形状が保たれるので、図3のような立体構造が形成さ
れる。通常の塑性加工法ではいかにスプリングバックを
抑えるかに苦慮しているのに反して、本発明は積極的に
弾性回復する部分を残し、スプリングバックを利用した
弾性変形と、塑性加工とを複合した弾塑性加工法とも呼
ぶべきユニークな加工方法である。
On the other hand, bending or deep drawing is carried out by a roll or a press to form a continuous primary compact as shown in FIG. This primary molded body has been plastically deformed so that the entire corners thereof have already become acute angles, and the top plate (3)
Also, a part of the bottom plate (4) is bent and plastically worked. Only the bent top plate (3) and bottom plate (4) are re-plasticized and flattened using a processing jig (9) such as a roll or a die shown in FIG. 5, and one corner (1, 2) and the side plate (5) are elastically deformed so as not to hit the processing jig (9) strongly. Then processing jig (9)
When removed, the top plate (3) and the bottom plate (4) are plastically worked and returned to the original horizontal state, and the corners (corners) (1, 2) and the side plates (5) are elastically restored, that is, spring back. As a result, the acute-angled shape is maintained, so that a three-dimensional structure as shown in FIG. 3 is formed. Contrary to the difficulty of suppressing springback in the usual plastic working method, the present invention leaves a portion for elastic recovery positively, and combines elastic deformation utilizing springback and plastic working. This is a unique processing method that should also be called an elasto-plastic processing method.

【0006】図5に示した加工治具(9)の代りに、例
えば図6に示す加工治具(10)を用いて天板(3)と
底板(4)に縦方向にリブ(11)を設けると図7のよ
うな立体構造が得られる。図4(b).(c)に示す連
続一次成形体を、図8のロール、ダイス等の加工治具
(12).(13)を用いて天板(3)と底板(4)を
塑性加工すると図9のような高剛性の立体構造を造るこ
とができる。また天板(3)と底板(4)に横方向ある
いは斜め方向のリブ(14)を設けると図10のような
高剛性の立体構造を作ることができる。このように天板
(3)あるいは底板(4)にリブ(11).(14)を
設けると天板(3)と底板(4)の剛性が増し、耐凹み
特性が向上するので薄い板を使うことができ軽量化に効
果が大きいほか、模様付けや滑り止めの効果も生ずる。
これら曲げ、絞りの一次成形過程、あるいは最終の弾塑
性加工過程で図11に示すように側板(5)に補強用の
リブ(15)をつけるように加工すると、これが側板
(5)の剛性を高め座屈に強い立体構造にすることがで
きる。これら天板(3)底板(4)側板(5)に設けた
補強用リブ(11).(14).(15)の間の板を予
め打ち抜き、機械切削などで部分的に切抜き、窓(1
6)を形作ることにより一層の軽量化を計ることができ
る。またこのリブ(15)を天板(3)と底板(4)に
迄達するように加工すると図12に示すように隣り合う
天板(3)同志、隣り合う底板(4)同志がお互いに噛
み合い、板のずれ防止にもなり溶接しなくとも高強度の
立体構造体が得られる。
Instead of the processing jig (9) shown in FIG. 5, a processing jig (10) shown in FIG. 6, for example, is used to form ribs (11) on the top plate (3) and the bottom plate (4) in the longitudinal direction. Is provided, a three-dimensional structure as shown in FIG. 7 is obtained. FIG. 4 (b). The continuous primary molded body shown in (c) is processed into a processing jig (12). When the top plate (3) and the bottom plate (4) are plastically processed using (13), a highly rigid three-dimensional structure as shown in FIG. 9 can be formed. Further, by providing ribs (14) in the lateral direction or the diagonal direction on the top plate (3) and the bottom plate (4), a highly rigid three-dimensional structure as shown in FIG. 10 can be formed. As described above, the ribs (11) are formed on the top plate (3) or the bottom plate (4). By providing (14), the rigidity of the top plate (3) and the bottom plate (4) is increased, and the dent resistance is improved, so a thin plate can be used, which is effective in reducing the weight, and also in the effect of patterning and non-slip. Also occurs.
When the side plate (5) is processed so as to have reinforcing ribs (15) as shown in FIG. 11 in the bending, the primary forming process of the drawing, or the final elasto-plastic working process, this increases the rigidity of the side plate (5). It is possible to make a three-dimensional structure that is highly resistant to buckling. Reinforcing ribs (11) provided on the top plate (3), the bottom plate (4) and the side plate (5). (14). The plate between (15) is pre-punched and partially cut by mechanical cutting, etc., and the window (1
Further weight reduction can be achieved by shaping 6). When the ribs (15) are processed so as to reach the top plate (3) and the bottom plate (4), the adjacent top plates (3) and the adjacent bottom plates (4) mesh with each other as shown in FIG. As a result, the plates can be prevented from shifting and a high-strength three-dimensional structure can be obtained without welding.

【0007】本方式ではそのままでは原板の幅のほぼ四
分の一の立体構造体ができることになるが、一次成形体
を造る際、天板(3)底板(4)の双方を押さえて深絞
り加工すると、側板(5)が薄くなり軽量化されると同
時に立体構造体の幅を減少させずに、ほぼ原板の半分程
度の幅を持つ立体構造体を造ることができる。薄くなっ
た側板(5)には深絞り加工時に補強用のリブ(15)
を成形しておくことにより剛性を補うことができる。こ
の場合天板(3)底板(4)の厚さが保たれているので
断面二次モーメントの大きい理想的な立体構造体にな
る。また天板(3)底板(4)のどちらか一方例えば、
天板(3)だけを拘束して深絞り加工すると、底板
(4)側板(5)共に薄くなり、天板(3)側が強く断
面二次モーメント軸の偏ったかつ幅の広い立体構造体を
つくることができる。天板(3)が座屈と凹みに強くな
るので床板などに利用できる。このように深絞り加工で
きる金属は軟らかい金属なので、一次成形体を成形後あ
るいは立体構造体を成形後に熱処理を加えると剛性と同
時に強度も高めることができる。鉄・鋼の場合には浸
炭、浸窒素、ベイクハードニング、焼き入れなどの熱処
理を加え、その他の材料でも熱処理を加えることにより
硬度、強度、剛性共に大きな軽量立体構造体を造ること
ができる。
According to this method, a three-dimensional structure having a width of approximately 1/4 of the original plate can be formed as it is. However, when the primary molded body is manufactured, both the top plate (3) and the bottom plate (4) are pressed to deep draw. When processed, the side plate (5) becomes thin and lightweight, and at the same time, the three-dimensional structure having a width of about half the original plate can be manufactured without reducing the width of the three-dimensional structure. Reinforcing ribs (15) for deep drawing on the thinned side plate (5)
By molding, the rigidity can be supplemented. In this case, since the thicknesses of the top plate (3) and the bottom plate (4) are maintained, an ideal three-dimensional structure having a large second moment of area is obtained. Also, either one of the top plate (3) and the bottom plate (4), for example,
When deep drawing is performed with only the top plate (3) constrained, both the bottom plate (4) and the side plates (5) become thin, and the top plate (3) side has a strong three-dimensional structure in which the second moment axis of the cross section is biased and wide. Can be created. Since the top plate (3) is strong against buckling and dents, it can be used as a floor plate. Since the metal that can be deep-drawn is a soft metal, rigidity and strength can be increased at the same time when heat treatment is applied after molding the primary molded body or after molding the three-dimensional structure. In the case of iron / steel, a light-weight three-dimensional structure having a large hardness, strength, and rigidity can be produced by adding heat treatment such as carburizing, nitrogen-immersing, bake hardening, and quenching to other materials.

【0008】[0008]

【作用】このようにして成形されただけの立体構造体に
上から荷重をかけると図13の矢印に示す様に、力は横
方向に分散され三角柱形状の立体要素がお互いに押し合
って競り合い、合わせ目を接合させていなくともそれ自
体で強固な構造体が形づくられる。また図3、図7、図
9、図10、図12に示す立体構造体の天板(3),底
板(4)の合わせ目部分を溶接、臘付け、半田、圧接、
鍛接、拡散接合、糊付け、接着剤、嵌め合わせ、ボル
ト、クランプ、治具などで接合させると更に強固な立体
構造体が得られる。一つの例を図19(d)に示す。合
わせ目の全部を接合してもよいしまた点溶接などで部分
的に接合するだけでも充分に強度を上げることができ
る。またこの溶接ビードが滑り止めあるいはデザインの
役目をも果たしている。この様にすると二次元方向に剛
性が増すので床、天井、壁、屋根、扉の構成材料として
用いると、建築物の梁を簡略化できるのは勿論輸送運搬
するときにもその形状を保つので便利である。
When a load is applied to the three-dimensional structure just molded in this way from above, the forces are laterally distributed and the triangular prism-shaped three-dimensional elements are pressed against each other to compete as shown by the arrow in FIG. , Even if the seams are not joined, a strong structure is formed by itself. Further, the seam portions of the top plate (3) and the bottom plate (4) of the three-dimensional structure shown in FIGS. 3, 7, 9, 10, and 12 are welded, attached, soldered, pressed,
A stronger solid structure can be obtained by joining with forging, diffusion joining, gluing, adhesive, fitting, bolts, clamps, jigs and the like. One example is shown in FIG. All the joints may be joined together, or the joints may be partially joined together by spot welding or the like to sufficiently increase the strength. The weld beads also serve as a non-slip or design. By doing so, the rigidity increases in the two-dimensional direction, so when it is used as a constituent material for floors, ceilings, walls, roofs, and doors, the beams of buildings can be simplified, and of course the shape can be maintained during transportation. It is convenient.

【0009】例えば上下方向曲げ剛性を代表する断面二
次モーメントについてコの字型のキーストンプレートと
比較してみる。ここで図14に示すような高さ5cm、
板の厚さ1.6mm、1スパン20.08cm、1スパ
ン分の材料の断面積が4.76cmの大きさをもつキ
ーストンプレートの1スパン当たりの断面二次モーメン
トを計算すると21.85cmとなる。したがって1
cm幅当たりの断面二次モーメントは21.85cm
/20.08cm=1.09cm、1cm幅当たりの
断面積、即ち材料の使用量に相当する値は4.76cm
/20.08cm=0.24である。一方図3に示
す正三角形断面形状の高さ5cm、天板(3)底板
(4)の厚さ0.8mm、側板(5)の厚さ0.35m
m、1スパン5.77cm、1スパン分の材料の断面積
1.31cmの大きさをもつ本立体構造体の1スパン
当たりの断面二次モーメントを計算すると6.34cm
となる。したがって1cm幅当たりの断面二次モーメ
ントは6.34cm/5.77cm=1.10c
、1cm幅当たりの断面積即ち材料の使用量に相当
する値は1.31cm/5.77cm=0.23cm
である。これらを対比して表1に解り易く示す。以上
の結果から占有面積当たり同量の材料を使ってキースト
ンプレートと遜色ない断面二次モーメントを持つ立体構
造体ができることが解る。キーストンプレートでは表面
が凸凹しているので表面に更に一枚の板、あるいはコン
クリート敷設が必要になるし、それ単体では捩じりに対
する剛性は非常に小さい。しかるに本立体構造体は既に
表面が平らであり、合わせ目を溶接するとこれ単体で三
次元方向に剛性が強く捩じりに対する剛性が大きい。
For example, the second moment of area, which represents the vertical bending rigidity, will be compared with a U-shaped keystone plate. Here, as shown in FIG. 14, a height of 5 cm,
The thickness of the plate is 1.6 mm, one span is 20.08 cm, and the second moment of area per one span of the keystone plate having a cross-sectional area of the material for one span of 4.76 cm 2 is 21.85 cm 4 Becomes Therefore 1
The second moment of area per cm width is 21.85 cm 4.
/20.08 cm = 1.09 cm 4 , the cross-sectional area per 1 cm width, that is, the value corresponding to the amount of material used is 4.76 cm
It is a 2 /20.08cm=0.24 2. On the other hand, the height of the regular triangular cross-section shown in FIG. 3 is 5 cm, the thickness of the top plate (3) and the bottom plate (4) is 0.8 mm, and the thickness of the side plate (5) is 0.35 m.
m, 1 span 5.77 cm, 1 second span material cross-sectional area 1.31 cm 2 The geometrical moment of inertia per span of this three-dimensional structure is calculated to be 6.34 cm 2.
It becomes 4 . Therefore, the second moment of area per 1 cm width is 6.34 cm 4 /5.77 cm = 1.10 c
m 4 , cross-sectional area per 1 cm width, that is, a value corresponding to the amount of material used is 1.31 cm 2 /5.77 cm = 0.23 cm
It is 2 . Table 1 shows them in comparison with each other in an easy-to-understand manner. From the above results, it can be seen that a three-dimensional structure having a second moment of area comparable to the keystone plate can be formed by using the same amount of material per occupied area. Since the surface of the keystone plate is uneven, it is necessary to further lay one plate or concrete on the surface, and the rigidity of the keystone plate against torsion is very small. However, the surface of this three-dimensional structure is already flat, and when the seams are welded, this alone has a high rigidity in the three-dimensional direction and a high rigidity against torsion.

【0010】[0010]

【表1】 [Table 1]

【0011】図15に示す様に合わせ目の間、あるいは
凹んだ空間部分にゴム、プラスチックス、木などの吸音
材あるいは制振材(17)を挟むと制振性立体構造体が
できる。このとき合わせ目を部分的に橋を渡すように接
合するか、または側板(5)と吸音材或いは制振材(1
7)を接着させると剛性の大きい制振性立体構造体がで
きる。また図16に示す様に合わせ目の間に間挿材(1
8)を挟むように設計すると本立体構造体の幅を拡げる
ことができる。間挿材(18)の合わせ目を溶接などで
接合すると、前記構造体と同様に剛性の大きい幅の広い
立体構造体を作ることができる。また図17に吸音材あ
るいは制振材(17)を合わせ目に挟み成形体に孔を開
け、内部に音を吸収する材料をライニングするなどして
遮音壁とした例を示す。高速道路、新幹線、鉄道、空
港、工場などに強度を備えた制振吸音壁として有効であ
る。
As shown in FIG. 15, when a sound absorbing material such as rubber, plastics or wood or a vibration damping material (17) is sandwiched between the joints or in the recessed space, a vibration damping three-dimensional structure is formed. At this time, the joints are joined so as to partially cross the bridge, or the side plate (5) and the sound absorbing or damping material (1
When 7) is adhered, a vibration-damping three-dimensional structure having high rigidity is formed. Further, as shown in FIG. 16, an interposing material (1
By designing so as to sandwich 8), the width of the present three-dimensional structure can be expanded. By joining the joints of the interposing members (18) by welding or the like, it is possible to form a wide three-dimensional structure having high rigidity like the above-mentioned structure. FIG. 17 shows an example of a sound insulation wall in which a sound absorbing material or a vibration damping material (17) is sandwiched between seams and holes are formed in a molded body, and a sound absorbing material is lined inside. It is effective as a vibration damping and sound absorbing wall with strength on highways, bullet trains, railways, airports, factories, etc.

【0012】[0012]

【実施例】以上に示した立体構造体をビルの床に用いた
ところ図18のようにH形鋼・T形鋼・C形鋼などの梁
(19)と組み合わせることによって床の設計が自由に
なり、軽量化したばかりでなく、窓(16)を利用して
配線を縦横に引きまわすことができOAオフィス用の床
構造としても最適であることが解った。本発明ではコイ
ル板をロール成形することにより長スパンの立体構造体
を造ることができることも大きな特徴であり、例えば大
面積の体育館、屋根開閉式球技場、倉庫、展示館などの
屋根を長径間支柱無しで作ることができる。更に大きな
長径間構造では荷重と自重により底板(4)に大きな引
っ張り応力が働くので、図19に示すように本立体構造
体の内部下面、あるいはその外部下面に平行に鉄筋棒、
鉄筋線、金属ワイヤー、型鋼、高張力合成樹脂ワイヤ
ー、種々のファイバーその他ファスナーなどからなるス
トリンガー(20)を張り両端から締め付け補強し、い
わゆるPS(Pre−Stressed)構造にすると
よい。図20(a)(b)に示すように天板(3)の幅
を底板(4)の幅より広くした一次成形体を作り、同様
の弾塑性加工を加えると図20(c)に示す強固な円筒
構造体を形作ることができる。また天板(3)の長さを
底板(4)の長さより長くした一次成形体を作り同様に
加工すると図21に示す支保鋼、トンネル内壁止水プレ
ート、スノーシェルターのように従来のコルゲートシー
トに代わるアーチ状の構造体を作ることができる。この
構造は特に一次成形体作成時および弾塑性加工時に上下
異周速ロールで加工すると容易に作ることができる。
[Embodiment] When the above-mentioned three-dimensional structure is used for a floor of a building, the floor can be freely designed by combining it with a beam (19) of H-section steel, T-section steel, C-section steel, etc. as shown in FIG. It was found that not only was the weight reduced, but also the wiring could be routed vertically and horizontally by utilizing the window (16), which is also optimal as a floor structure for an OA office. The present invention is also characterized in that a long-span three-dimensional structure can be produced by roll-forming a coil plate.For example, a roof of a large-area gymnasium, a roof stadium, a warehouse, an exhibition hall, etc. It can be made without columns. In a larger span structure, a large tensile stress acts on the bottom plate (4) due to the load and its own weight. Therefore, as shown in FIG. 19, a reinforcing bar parallel to the inner bottom surface of the three-dimensional structure or its outer bottom surface,
A stringer (20) made of a reinforcing wire, a metal wire, a shaped steel, a high-strength synthetic resin wire, various fibers, and other fasteners may be stretched and tightened from both ends to form a so-called PS (Pre-Stressed) structure. As shown in FIGS. 20 (a) and 20 (b), a primary molded body in which the width of the top plate (3) is wider than the width of the bottom plate (4) is made, and the same elasto-plastic processing is applied, as shown in FIG. A strong cylindrical structure can be formed. Further, when a primary molded body in which the length of the top plate (3) is made longer than the length of the bottom plate (4) is made and processed in the same manner, the conventional corrugated sheet like the supporting steel, the tunnel inner wall water blocking plate and the snow shelter shown in FIG. It is possible to make an arched structure that replaces the. This structure can be easily made by processing with different upper and lower peripheral speed rolls, especially at the time of making the primary formed body and the elasto-plastic processing.

【0013】ロール、プレスなどで塑性加工して曲面を
含む一次成形体を作り、次いで弾塑性加工を加えると図
22、図23に示すような複雑形状の強固な立体構造体
も作ることができる。図23(b)にはライナーを裏打
ち溶接して剛性を高めた構造を示した。例えば乗用車の
強度フレームと外殻を一体化したモノコックボディとし
て、図22の立体構造体を使用したところ捩り剛性が非
常に大きく、軽い車体になり省エネルギーで安全性の高
い乗用車が設計できた。同様に乗用車のサイドドアーイ
ンパクトビームのような、ドアーの形状に沿った強度メ
ンバーの製造にも図22、図23の複雑曲面成形の技術
を適用することができるし、吸音材或いは制振材(1
7)を内挿して静粛なドアーや外殻構造体としても利用
できる。箱型構造に用いるとフレームと外壁を一体化で
き効果が大きい。鉄道車両、陸上大型車両、航空機、船
などの輸送機器の構造体として、これら立体構造体を用
いたところハニカム構造より強度、剛性共に大きく、安
全性が高く軽い、かつ安価で内容積を大きく取れる外殻
ができた。これに図15、図17の様に吸音材あるいは
制振材(17)を挟むか接着すると振動が少なく静かな
外殻構造体になる。
If a primary molded body including a curved surface is formed by plastic working with a roll, a press or the like and then elasto-plastic working is applied, a solid three-dimensional structure having a complicated shape as shown in FIGS. 22 and 23 can also be formed. . FIG. 23B shows a structure in which the liner is lined and welded to increase the rigidity. For example, when the three-dimensional structure shown in FIG. 22 is used as a monocoque body in which the strength frame and the outer shell of a passenger car are integrated, the torsional rigidity is very large, the car body becomes light, and energy saving and high safety passenger car could be designed. Similarly, the technique of complex curved surface molding shown in FIGS. 22 and 23 can be applied to the production of a strength member along the shape of a door, such as a side door impact beam of a passenger car, and a sound absorbing material or a vibration damping material ( 1
It can also be used as a quiet door or outer shell structure by inserting 7). When used in a box-type structure, the frame and outer wall can be integrated, resulting in a great effect. When these three-dimensional structures are used as the structure of transportation equipment such as railway vehicles, large land vehicles, aircraft, ships, etc., the strength and rigidity are higher than the honeycomb structure, the safety is high and the weight is low, and the large internal volume can be obtained at a low cost. An outer shell is created. When a sound absorbing material or a vibration damping material (17) is sandwiched or adhered thereto as shown in FIGS. 15 and 17, an outer shell structure with less vibration is produced, which is quiet.

【0014】図24(a)の一次成形体から図24
(b)に示す二層の立体構造ができる。これは高強度構
造体用途の他熱交換器、断熱構造体などにも利用でき
る。同様の製造方法によって図25に示す屋根瓦、壁あ
るいは滑り止め床板状の物も作ることができる。これに
吸音材あるいは制振材(17)を挟むかまたは接着する
ことによって雨音の聞こえない屋根、振動音の少ない
床、壁にすることができる。以上示したように立体構造
の断面が一筆書きできる形状の物は本技術を基本にして
製造することができる。図26(a)に示すスロープあ
るいは壁、屋根形状は例えば図26(b),(c)に示
すような天板(3)の方が底板(4)より若干広い一次
成形体を弾塑性加工することによって作ることができ
る。また図27(b)(c)の一次成形体を弾塑性加工
することによって図27(a)の階段構造を一挙に製造
することができる。これにも吸音材あるいは制振材(1
7)を挟むことによって静かな非常階段などとして利用
できる。図28に示すように縦方向あるいは横方向にテ
ーパー(勾配)を持たせた立体構造も造ることができ
る。また以上述べた種々の立体構造体をそのままあるい
は表面に更にエンボスデザインを加え剛性を高めて軽量
足場板、簡易橋梁、簡易舗装板としての利用価値が高
い。また合わせ目から水抜きできるのでコンクリート型
枠、化粧型枠としても利用できコンクリートの表面に模
様を転写することができる。またフォークリフトでその
まま扱える輸送用の耐久性軽量パレットとしても利用で
きる。
From the primary molding of FIG. 24 (a) to FIG.
A two-layer three-dimensional structure shown in (b) is formed. It can be used for heat exchangers, heat insulating structures, etc. as well as for high strength structures. A roof tile, a wall, or a non-slip floor plate-like object shown in FIG. 25 can be manufactured by the same manufacturing method. By sandwiching or adhering a sound absorbing material or a vibration damping material (17) thereto, it is possible to form a roof where rain noise cannot be heard, a floor and a wall where vibration noise is small. As shown above, a three-dimensional structure having a cross-section that can be drawn with a single stroke can be manufactured based on the present technology. As for the slope or wall or roof shape shown in FIG. 26 (a), for example, the top plate (3) shown in FIGS. 26 (b) and (c) is elasto-plastically processed into a primary molded body which is slightly wider than the bottom plate (4). It can be made by doing. Further, the staircase structure of FIG. 27A can be manufactured all at once by subjecting the primary molded body of FIGS. 27B and 27C to elasto-plastic processing. This also includes sound absorbing material or damping material (1
By sandwiching 7), it can be used as a quiet emergency staircase. As shown in FIG. 28, a three-dimensional structure having a taper (gradient) in the vertical direction or the horizontal direction can be manufactured. In addition, the various three-dimensional structures described above can be used as they are or as a lightweight scaffolding board, simple bridge, and simple paving board by increasing the rigidity by adding an embossed design to the surface. Further, since water can be drained from the joint, it can be used as a concrete formwork or a decorative formwork, and a pattern can be transferred onto the surface of concrete. It can also be used as a durable lightweight pallet that can be handled as it is by a forklift.

【0015】[0015]

【発明の効果】本発明は以上説明したように構成されて
いるので次のような効果を発揮する。一枚の板をを弾塑
性加工することによって軽量立体構造を作っており、上
下の板(天板(3)と底板(4))とサンドイッチされ
る板(側板(5))とが同じ板で繋がっているので剛性
が高い。通常のハニカム構造では上下の板とサンドイッ
チされる板とが別別で接着剤で接合されており、その構
造体の強度が接着剤の強度に左右されているのとは根本
的に異なる。その代わり本技術では天板(3)底板
(4)共に細かく分割されており、夫々が材料の弾性回
復力だけで接触しているのでそのままでは横方向の剛性
は小さい。しかし図3に示すように合わせ目が外に顔を
出しており、ここを溶接などで接続すると一枚板と同じ
強度に保って横方向の剛性も高めることができるので三
次元方向に剛性の高い立体構造が得られる。本発明技術
では側板(5)にリブ(15)を付けて薄く絞れば断面
二次モーメントを更に大きくすることができ、ハニカム
構造より軽くて強い優れた軽量立体構造を作ることがで
きる。
Since the present invention is constructed as described above, it has the following effects. A lightweight three-dimensional structure is made by elastically processing one plate, and the upper and lower plates (top plate (3) and bottom plate (4)) and the sandwiched plate (side plate (5)) are the same plate. Since it is connected with, the rigidity is high. In the usual honeycomb structure, the upper and lower plates and the sandwiched plate are separately bonded by an adhesive, which is fundamentally different from the fact that the strength of the structure depends on the strength of the adhesive. Instead, in the present technology, both the top plate (3) and the bottom plate (4) are finely divided, and since they are in contact with each other only by the elastic recovery force of the material, the rigidity in the lateral direction is small as it is. However, as shown in Fig. 3, the seams are exposed to the outside, and if they are connected by welding or the like, the strength can be kept the same as that of a single plate and the rigidity in the lateral direction can be increased. A high three-dimensional structure is obtained. In the technique of the present invention, the ribs (15) are attached to the side plate (5) and the thickness is reduced to further increase the second moment of area, and an excellent lightweight solid structure that is lighter and stronger than the honeycomb structure can be formed.

【0016】本軽量立体構造を建築物の床、隔壁、天井
および屋根に用いたところ、これだけで充分な強度が得
られ梁の数を大幅に減らすことができた。また吸音材或
いは制振材(17)、断熱材などを使うことにより遮音
効果と断熱効果も得られ、静かで快適な建物ができた。
この建物では各階の間に余裕を取りやすく、本軽量立体
構造自身の内部も空間で繋がっているのでユーティリテ
ィー配管のほか、OA用の配線ダクト空調用のダクトな
どが自由に取れるハイテクビルになった。200m径間
のドームの天井を支柱を設けずに本軽量立体構造で作る
ことができコストを低減できた。本軽量立体構造は建設
工事などの足場板、河川の仮設橋梁や道路工事の仮設舗
装板としても使うことができ、その最大の効用は軽いた
め人が持ち運んで簡単に敷設できることである。本軽量
立体構造を筐体にすると更に剛性、強度を増すことから
陸、海、空の輸送機器の骨組みを簡略化し外殻構造体を
軽く、したがって全体構造を軽くすることができるの
で、動力機関の負担を少なくし、内容積とペイロードを
増やし輸送効率を上げて、省エネルギー、安全性向上、
コスト削減に効果が大きい。
When this lightweight three-dimensional structure is used for the floor, partition wall, ceiling and roof of a building, sufficient strength can be obtained and the number of beams can be greatly reduced. In addition, the sound-insulating effect and the heat-insulating effect were obtained by using the sound absorbing material, the vibration damping material (17), the heat insulating material, etc., and the building was quiet and comfortable.
In this building, it is easy to make room between each floor, and since the inside of this lightweight three-dimensional structure itself is also connected by space, it became a high-tech building where utility ducts, wiring ducts for OA, ducts for air conditioning, etc. can be freely taken. . The dome ceiling with a diameter of 200 m can be made with this lightweight three-dimensional structure without providing columns, and the cost can be reduced. This lightweight three-dimensional structure can also be used as a scaffolding board for construction work, a temporary bridge for rivers, and a temporary pavement board for road construction. Its maximum utility is that it can be easily carried and laid by people. If this lightweight three-dimensional structure is used as a housing, the rigidity and strength will be further increased, so that the skeleton of land, sea, and air transportation equipment can be simplified and the outer shell structure can be made lighter, and therefore the entire structure can be made lighter. To reduce the burden on the vehicle, increase the internal volume and payload, and increase the transportation efficiency to save energy and improve safety.
Greatly effective in cost reduction.

【図面の簡単な説明】[Brief description of drawings]

【図1】一次成形体を示す図である。FIG. 1 is a view showing a primary molded body.

【図2】ダイス又はロール等加工治具の断面とワーク加
工後の断面を示す図である。
FIG. 2 is a diagram showing a cross section of a processing jig such as a die or a roll and a cross section after processing a work.

【図3】立体構造の形状を示す図である。FIG. 3 is a diagram showing a shape of a three-dimensional structure.

【図4】一次成形体を示す図である。FIG. 4 is a view showing a primary molded body.

【図5】一次成形体の断面とダイス又はロール等加工治
具の断面を示す図である。
FIG. 5 is a view showing a cross section of a primary molded body and a cross section of a processing jig such as a die or a roll.

【図6】一次成形体の断面とダイス又はロール等加工治
具の断面を示す図である。
FIG. 6 is a view showing a cross section of a primary molded body and a cross section of a processing jig such as a die or a roll.

【図7】立体構造の形状をを示す図である。FIG. 7 is a diagram showing a shape of a three-dimensional structure.

【図8】一次成形体の断面とダイス又はロール等加工治
具の断面を示す図である。
FIG. 8 is a view showing a cross section of a primary molded body and a cross section of a processing jig such as a die or a roll.

【図9】立体構造の形状をを示す図である。FIG. 9 is a diagram showing a shape of a three-dimensional structure.

【図10】リブ付きの高剛性立体構造の形状を示す図で
ある。
FIG. 10 is a diagram showing the shape of a high-rigidity three-dimensional structure with ribs.

【図11】側板を補強するリブと軽量化のための窓開け
を示す図である。
FIG. 11 is a diagram showing ribs that reinforce the side plates and opening of windows for weight reduction.

【図12】補強用リブが噛み合った高剛性立体構造を示
す図である。
FIG. 12 is a diagram showing a high-rigidity three-dimensional structure in which reinforcing ribs are engaged with each other.

【図13】上からの荷重が横方向に分散され内部で力が
バランスすることを示す図である。
FIG. 13 is a diagram showing that the load from above is dispersed laterally and the forces are balanced inside.

【図14】キーストンプレートを示す図である。FIG. 14 is a view showing a keystone plate.

【図15】制振性立体構造体の断面と形状を示す図であ
る。
FIG. 15 is a diagram showing a cross section and a shape of a vibration damping three-dimensional structure.

【図16】広幅の立体構造体の断面を示す図である。FIG. 16 is a view showing a cross section of a wide three-dimensional structure.

【図17】吸音遮音壁を示す図である。FIG. 17 is a diagram showing a sound absorbing and sound insulating wall.

【図18】建築物などの床、壁、天井での本立体構造体
の施工方法例を示す図である。
FIG. 18 is a diagram showing an example of a method of constructing the present three-dimensional structure on a floor, wall, or ceiling of a building or the like.

【図19】長径間の屋根、天井、橋など本立体構造体の
施工方法例を示す図である。
FIG. 19 is a diagram showing an example of a method of constructing the present three-dimensional structure such as a roof, a ceiling, and a bridge having a long diameter.

【図20】一次成形体と製品の円筒成形体を示す図であ
る。
FIG. 20 is a view showing a primary molded body and a cylindrical molded body of a product.

【図21】アーチ状の本立体構造体を示す図である。FIG. 21 is a diagram showing an arch-shaped three-dimensional structure.

【図22】曲面を含む複雑形状の立体構造体を示す図で
ある。
FIG. 22 is a diagram showing a three-dimensional structure having a complicated shape including a curved surface.

【図23】曲面を含む複雑形状の立体構造体を示す図で
ある。
FIG. 23 is a diagram showing a three-dimensional structure having a complicated shape including a curved surface.

【図24】二層立体構造体を示す図である。FIG. 24 is a diagram showing a two-layer three-dimensional structure.

【図25】屋根瓦、壁、滑り止め床などに用いた立体構
造体を示す図である。
FIG. 25 is a diagram showing a three-dimensional structure used for a roof tile, a wall, a non-slip floor, and the like.

【図26】屋根瓦、スロープ、壁、滑り止め床などに用
いた立体構造体を示す図である。
FIG. 26 is a diagram showing a three-dimensional structure used for roof tiles, slopes, walls, non-slip floors, and the like.

【図27】階段状の立体構造体とその一次成形体を示す
図である。
FIG. 27 is a diagram showing a staircase-shaped three-dimensional structure and its primary molded body.

【図28】縦横方向にテーパーを持つ立体構造体を示す
図である。
FIG. 28 is a diagram showing a three-dimensional structure having a taper in vertical and horizontal directions.

【符号の説明】[Explanation of symbols]

1、2 隅部または角部分 3 天板 4 底板 5 側板 6、9、10、12、13 ロールあるいはプレス、ダ
イスなどの加工治具 7 板の合わせ目を連続的に溶接した溶接線 8 板の合わせ目を部分的に溶接した溶接点 11、14、15 補強用のリブ 16 部分的に切り抜いた窓 17 吸音材あるいは制振材 18 間挿材 19 H形鋼、T形鋼、C形鋼などの梁 20 棒鋼、ワイヤー、形鋼などからなる高張力ストリ
ンガー 21 補強用裏打ち材(ライナー)
1, 2 Corners or corners 3 Top plate 4 Bottom plate 5 Side plate 6, 9, 10, 12, 13 Processing jigs such as rolls, presses, dies, etc. 7 Welding line that welds seams of plates continuously 8 Plates Welding points where the seams are partially welded 11, 14 and 15 Reinforcing ribs 16 Partially cut out windows 17 Sound absorbing or damping materials 18 Intercalation materials 19 H-section steel, T-section steel, C-section steel, etc. Beam 20 High-strength stringer made of steel bar, wire, shaped steel, etc. 21 Reinforcing lining material (liner)

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年8月18日[Submission date] August 18, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Name of item to be amended] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0006】図5に示した加工治具(9)の代りに、例
えば図6に示す加工治具(10)を用いて天板(3)と
底板(4)に縦方向にリブ(11)を設けると図7のよ
うな立体構造が得られる。図4(b).(c)に示す連
続一次成形体を、図8のロール、ダイス等の加工治具
(12).(13)を用いて天板(3)と底板(4)を
塑性加工すると図9のような高剛性の立体構造を造るこ
とができる。また天板(3)と底板(4)に横方向ある
いは斜め方向のリブ(14)を設けると図10のような
高剛性の立体構造を作ることができる。このように天板
(3)あるいは底板(4)にリブ(11).(14)を
設けると天板(3)と底板(4)の剛性が増し、耐凹み
特性が向上するので薄い板を使うことができ軽量化に効
果が大きいほか、模様付けや滑り止めの効果も生ずる。
これら曲げ、絞りの一次成形過程、あるいは最終の弾塑
性加工過程で図11に示すように側板(5)に補強用の
リブ(15)をつけるように加工すると、これが側板
(5)の剛性を高め座屈に強い立体構造にすることがで
きる。これら天板(3)底板(4)側板(5)に設けた
補強用リブ(11).(14).(15)の間の板を予
め打ち抜き、機械切削などで部分的に切抜き、窓(1
6)を形作ることにより一層の軽量化を計ることができ
る。またこのリブ(15)を天板(3)と底板(4)に
迄達するように加工すると図12に示すように隣り合う
天板(3)同志、隣り合う底板(4)同志がお互いに噛
み合い、板のずれ防止にもなり溶接しなくとも高強度の
立体構造体が得られる。これら構造体は高強度のトラス
構造が平面的に連続して形成されたものであり、ハニカ
ムコアーに対し「トラスコアー」あるいは「トラスプレ
ート」とも名付けられる新立体構造体である。この簡易
高強度構造は加工治具(6,9,10,12,13)の
型設計技術と金属、超硬材料の他ゴムまたは液圧力など
の型材料技術によって、一部に弾性変形部分を残し、選
択的に板の所要部分だけを塑性変形させるという新技術
で可能になった。
Instead of the processing jig (9) shown in FIG. 5, a processing jig (10) shown in FIG. 6, for example, is used to form ribs (11) on the top plate (3) and the bottom plate (4) in the longitudinal direction. Is provided, a three-dimensional structure as shown in FIG. 7 is obtained. FIG. 4 (b). The continuous primary molded body shown in (c) is processed into a processing jig (12). When the top plate (3) and the bottom plate (4) are plastically processed using (13), a highly rigid three-dimensional structure as shown in FIG. 9 can be formed. Further, by providing ribs (14) in the lateral direction or the diagonal direction on the top plate (3) and the bottom plate (4), a highly rigid three-dimensional structure as shown in FIG. 10 can be formed. As described above, the ribs (11) are formed on the top plate (3) or the bottom plate (4). By providing (14), the rigidity of the top plate (3) and the bottom plate (4) is increased, and the dent resistance is improved, so a thin plate can be used, which is effective in reducing the weight, and also in the effect of patterning and non-slip. Also occurs.
When the side plate (5) is processed so as to have reinforcing ribs (15) as shown in FIG. 11 in the bending, the primary forming process of the drawing, or the final elasto-plastic working process, this increases the rigidity of the side plate (5). It is possible to make a three-dimensional structure that is highly resistant to buckling. Reinforcing ribs (11) provided on the top plate (3), the bottom plate (4) and the side plate (5). (14). The plate between (15) is pre-punched and partially cut by mechanical cutting, etc., and the window (1
Further weight reduction can be achieved by shaping 6). When the ribs (15) are processed so as to reach the top plate (3) and the bottom plate (4), the adjacent top plates (3) and the adjacent bottom plates (4) mesh with each other as shown in FIG. As a result, the plates can be prevented from shifting and a high-strength three-dimensional structure can be obtained without welding. These structures are high strength trusses
The structure is formed continuously in a plane.
“Muscoar”
It is a new three-dimensional structure that is also called "Toto". This simple
High-strength structure of processing jigs (6, 9, 10, 12, 13)
Mold design technology and metal, super hard material other than rubber or liquid pressure etc.
With the mold material technology of
New technology to selectively plastically deform only the required parts of the plate
Made possible.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0013】ロール、プレスなどで塑性加工して曲面を
含む一次成形体を作り、次いで弾塑性加工を加えると図
22、図23に示すような複雑形状の強固な立体構造体
も作ることができる。図23(b)にはライナー(2
1)を裏打ち溶接して剛性を高めた構造を示した。例え
ば乗用車の強度フレームと外殻を一体化したモノコック
ボディとして、図22の立体構造体を使用したところ捩
り剛性が非常に大きく、軽い車体になり省エネルギーで
安全性の高い乗用車が設計できた。同様に乗用車のサイ
ドドアーインパクトビームのような、ドアーの形状に沿
った強度メンバーの製造にも図22、図23の複雑曲面
成形の技術を適用することができるし、吸音材或いは制
振材(17)を内挿して静粛なドアーや外殻構造体とし
ても利用できる。箱型構造に用いるとフレームと外壁を
一体化でき効果が大きい。鉄道車両、陸上大型車両、航
空機、船などの輸送機器の構造体として、これら立体構
造体を用いたところハニカム構造より強度、剛性共に大
きく、安全性が高く軽い、かつ安価で内容積を大きく取
れる外殻ができた。これに図15、図17の様に吸音材
あるいは制振材(17)を挟むか接着すると振動が少な
く静かな外殻構造体になる。また図29には天板(3)
底板(4)の表面の全体あるいは一部に、それを構成す
る板と同質の材料・その他の金属・コンクリート・セラ
ミックス・ガラス・ゴム・合成樹脂・木・紙・発泡材・
断熱材・制振材・その他の有機物などの物質・あるいは
それ等の複合材料からなるライナー(21)、を接着剤
・臘付け・溶接・ボルト・ビス・カシメ・その他ファス
ナーなどで接合し、強度・剛性とも更に向上させた立体
構造を示す。このライナー(21)は目的の形状に合わ
せた板、あるいは天板(3)底板(4)の表面形状に合
わせた板であり、その表面にリブ・波型・縞型などの凹
凸・エンボスあるいはデザイン模様をつけると表面剛性
・滑り止め性が向上し、土木建築用、輸送機器用の内外
装材などの装飾構造体になる。またライナーを部分的に
種々の形状に切り抜くと透水性・通気性を持った床材・
型枠などができる。
If a primary molded body including a curved surface is formed by plastic working with a roll, a press or the like and then elasto-plastic working is applied, a solid three-dimensional structure having a complicated shape as shown in FIGS. 22 and 23 can also be formed. . The liner (2
The structure of 1) is lined and welded to increase the rigidity. For example, when the three-dimensional structure shown in FIG. 22 is used as a monocoque body in which the strength frame and the outer shell of a passenger car are integrated, the torsional rigidity is very large, the car body becomes light, and energy saving and high safety passenger car could be designed. Similarly, the technique of complex curved surface molding shown in FIGS. 22 and 23 can be applied to the production of a strength member along the shape of a door, such as a side door impact beam of a passenger car, and a sound absorbing material or a vibration damping material ( It can also be used as a quiet door or outer shell structure by inserting 17). When used in a box-type structure, the frame and outer wall can be integrated, resulting in a great effect. When these three-dimensional structures are used as the structure of transportation equipment such as railway vehicles, large land vehicles, aircraft, ships, etc., the strength and rigidity are higher than the honeycomb structure, the safety is high and the weight is low, and the large internal volume can be obtained at a low cost. An outer shell is created. When a sound absorbing material or a vibration damping material (17) is sandwiched or adhered thereto as shown in FIGS. 15 and 17, an outer shell structure with less vibration is produced, which is quiet. Further, FIG. 29 shows the top plate (3).
Form it on all or part of the surface of the bottom plate (4)
Materials, other metals, concrete, ceramics
Mix, glass, rubber, synthetic resin, wood, paper, foam material,
Insulation materials, vibration damping materials, other substances such as organic substances, or
A liner (21) made of such a composite material is used as an adhesive.
・ Tightening, welding, bolts, screws, caulking, other fasteners
Solid with joints such as corners to further improve strength and rigidity
The structure is shown. This liner (21) fits the desired shape
The surface shape of the top plate (3) or bottom plate (4)
It is a bent plate, and the surface has concaves such as ribs, corrugations, stripes, etc.
Surface rigidity when convex, embossed or with a design pattern
・ Increased anti-slip properties, and used inside and outside for civil engineering and construction, transport equipment
It becomes a decorative structure such as equipment. Also liner partially
Floor material that has water permeability and breathability when cut out into various shapes.
Formwork etc. can be done.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図16[Correction target item name] Fig. 16

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図16】広幅の立体構造体の断面と形状を示す図であ
る。
FIG. 16 is a diagram showing a cross section and a shape of a wide three-dimensional structure.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図24[Name of item to be corrected] Fig. 24

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図24】二層立体構造体とその一次成形体を示す図で
ある。
FIG. 24 is a view showing a two-layer three-dimensional structure and its primary molded body .

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図29[Name of item to be corrected] Fig. 29

【補正方法】追加[Correction method] Added

【補正内容】[Correction content]

【図29】ライナーで補強、模様付けした立体構造体をFIG. 29: A three-dimensional structure reinforced and patterned with a liner
示す図である。FIG.

【手続補正7】[Procedure Amendment 7]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図29[Name of item to be corrected] Fig. 29

【補正方法】追加[Correction method] Added

【補正内容】[Correction content]

【図29】 FIG. 29

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 一枚の板を部分的に弾性変形させ、他の
部分を塑性変形させるようにダイス・ロールなどの治具
を用いて、撓ませ・折り曲げ・あるいは絞り加工するこ
とによって、板の異なる位置の部分を直接接触させ、あ
るいはその間に同質の板または他の物質を挟むことによ
って間接的に接触させて、二次元的に閉空間を形成させ
るようにしてなる高強度軽量立体構造の製造方法。
1. A plate is flexed, bent, or drawn by using a jig such as a die roll so that one plate is partially elastically deformed and the other part is plastically deformed. Of high-strength and light-weight three-dimensional structure that forms a closed space two-dimensionally by directly contacting parts at different positions or indirectly by sandwiching a plate or other substance of the same quality between them. Production method.
【請求項2】 板が鉄・鋼・ステンレス・アルミ・マグ
ネシウム・チタン等の金属、あるいは紙・合成樹脂など
の有機物・あるいはそれ等の複合材料からなり、その形
は平板または予めリブ・波型・縞型などの凹凸・模様を
つけた板、および一次成形体、あるいは予め切り抜いた
板、および一次成形体を用いた請求項1記載の高強度軽
量立体構造の製造方法。
2. The plate is made of metal such as iron, steel, stainless steel, aluminum, magnesium, titanium or the like, or organic material such as paper or synthetic resin, or a composite material thereof, the shape of which is a flat plate or ribs or corrugations in advance. The method for producing a high-strength lightweight three-dimensional structure according to claim 1, wherein a plate having irregularities / patterns such as a stripe shape, a primary molded body, or a plate cut out in advance, and a primary molded body are used.
【請求項3】 板の異なる部分が互いに接触する合わせ
目部分を、部分的にあるいは全部を溶接・圧接・鍛接・
溶着・拡散接合・半田・臘付け・糊付け・接着剤・嵌め
合わせ・クランプ・ボルト・治具などで結合させるか、
上下面のいずれか又は双方の面に平行に、あるいは板の
異なる部分が互いに接触する合わせ目部分に平行に、鉄
筋棒・鉄筋線・金属ワイヤー・形鋼・種々のファイバー
・合成樹脂ワイヤー・その他ファスナー・ライナーなど
を設け、板に圧縮応力あるいは固着力が働く様にしてな
る請求項1記載の高強度軽量立体構造の製造方法。
3. A welded portion, a pressure welded portion, a forged welded portion, or a portion of a joint portion where different portions of the plate contact each other.
Whether to combine with welding, diffusion bonding, soldering, gluing, gluing, adhesive, fitting, clamps, bolts, jigs, etc.
Parallel to either or both of the upper and lower surfaces, or parallel to the joints where different parts of the plate contact each other, rebar bars, rebar wires, metal wires, shaped steel, various fibers, synthetic resin wires, etc. The method for producing a high-strength lightweight three-dimensional structure according to claim 1, wherein a fastener, a liner, etc. are provided so that a compressive stress or a fixing force acts on the plate.
【請求項4】 互いに接触させ複数の板が会合する部分
の板の間に、あるいは構成された閉空間の内部に、板と
同質の材料・その他の金属・コンクリート・セラミック
スあるいは、ゴム・合成樹脂・接着剤・木・紙・発泡材
・断熱材・制振材・その他の有機物などの物質を挟み、
あるいは充填するか内面に貼るようにしてなる請求項1
記載の高強度軽量立体構造の製造方法。
4. A material of the same quality as the plates, other metal, concrete, ceramics, or rubber, synthetic resin, adhesive, between the plates in the portion where a plurality of plates are brought into contact with each other or inside the constructed closed space. Sandwiching substances such as agents, wood, paper, foam materials, heat insulation materials, damping materials, and other organic substances,
Alternatively, it is filled or attached to the inner surface.
A method for producing the described high-strength, lightweight solid structure.
JP20550493A 1993-06-29 1993-06-29 Manufacture of three-dimensional structure strength high in and small in weight Pending JPH0716968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20550493A JPH0716968A (en) 1993-06-29 1993-06-29 Manufacture of three-dimensional structure strength high in and small in weight

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20550493A JPH0716968A (en) 1993-06-29 1993-06-29 Manufacture of three-dimensional structure strength high in and small in weight

Publications (1)

Publication Number Publication Date
JPH0716968A true JPH0716968A (en) 1995-01-20

Family

ID=16507961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20550493A Pending JPH0716968A (en) 1993-06-29 1993-06-29 Manufacture of three-dimensional structure strength high in and small in weight

Country Status (1)

Country Link
JP (1) JPH0716968A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073492A (en) * 1998-09-01 2000-03-07 Haruto Matsui Panel structural member, structure using the same, and construction method therefor
KR100453739B1 (en) * 2002-06-21 2004-10-26 주식회사 하니셀 A Construction Panel
JP2006523145A (en) * 2003-03-17 2006-10-12 コラス・アルミニウム・バルツプロドウクテ・ゲーエムベーハー Method of manufacturing an integrated monolithic aluminum structure and aluminum products machined from the structure
JP2015145124A (en) * 2014-02-04 2015-08-13 三菱重工業株式会社 Composite material structure
DE102018207763A1 (en) * 2018-05-17 2019-11-21 Airbus Operations Gmbh Hull structure for an aircraft
CN113767512A (en) * 2019-03-29 2021-12-07 三洋电机株式会社 Power supply device, electrically powered vehicle equipped with same, power storage device, and method for manufacturing power supply device
CN115945700A (en) * 2023-03-08 2023-04-11 北京航星机器制造有限公司 Composite additive manufacturing method for forming complex component by utilizing anisotropy

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073492A (en) * 1998-09-01 2000-03-07 Haruto Matsui Panel structural member, structure using the same, and construction method therefor
KR100453739B1 (en) * 2002-06-21 2004-10-26 주식회사 하니셀 A Construction Panel
JP2006523145A (en) * 2003-03-17 2006-10-12 コラス・アルミニウム・バルツプロドウクテ・ゲーエムベーハー Method of manufacturing an integrated monolithic aluminum structure and aluminum products machined from the structure
JP2015145124A (en) * 2014-02-04 2015-08-13 三菱重工業株式会社 Composite material structure
WO2015119023A1 (en) * 2014-02-04 2015-08-13 三菱重工業株式会社 Composite material structure
DE102018207763A1 (en) * 2018-05-17 2019-11-21 Airbus Operations Gmbh Hull structure for an aircraft
US11697487B2 (en) 2018-05-17 2023-07-11 Airbus Operations Gmbh Fuselage structure for an aircraft
CN113767512A (en) * 2019-03-29 2021-12-07 三洋电机株式会社 Power supply device, electrically powered vehicle equipped with same, power storage device, and method for manufacturing power supply device
CN113767512B (en) * 2019-03-29 2023-12-29 三洋电机株式会社 Power supply device, electric vehicle provided with same, power storage device, and method for manufacturing power supply device
CN115945700A (en) * 2023-03-08 2023-04-11 北京航星机器制造有限公司 Composite additive manufacturing method for forming complex component by utilizing anisotropy
CN115945700B (en) * 2023-03-08 2023-06-16 北京航星机器制造有限公司 Composite additive manufacturing method for forming complex component by utilizing anisotropy

Similar Documents

Publication Publication Date Title
KR101261069B1 (en) Building panel and building structure
US20020020129A1 (en) Deep-ribbed, load-bearing, prefabricated insulative panel and method for joining
MXPA05014101A (en) An improved beam.
JP2533663B2 (en) Railway vehicle structure
CN113152764B (en) Prefabricated composite floor slab adopting riveted C-shaped steel and steel plate and construction method thereof
GB2245523A (en) Composite materials
JPH0716968A (en) Manufacture of three-dimensional structure strength high in and small in weight
JP2020076226A (en) Shape steel, floor structure, and construction method of floor structure
WO2013052997A1 (en) Composite wall panel
JPH07292802A (en) Building wall structure
WO2002060614A1 (en) A method for manufacturing box girder, a box girder and a constructional part therefor
US20220259855A1 (en) Structural member for a modular building
CN114673251A (en) Corrugated wall building and installation method thereof
CN111980223A (en) Combined steel plate energy dissipation-bearing shear wall with two connected sides
CN112144724A (en) Close hollow superimposed sheet of piecing together
JPH10131394A (en) Built-up reinforcing beam using steel-plate web material
JP3402312B2 (en) Column-beam joint, rolled H-section steel for column and method of manufacturing the same
JP6022435B2 (en) Bearing wall with brace and brace
JP3972475B2 (en) Force bending mounting method for metal honeycomb panels
US3074157A (en) Method for making building panels
JP2998067B2 (en) Lightweight construction method of steel plate building floor and its steel plate building floor
JP2006509124A (en) Modular building unit and assembly method
JP6688311B2 (en) Building
JPH03243459A (en) Body structure for rolling stock
CN113216483A (en) Light steel and light concrete composite floor system