JPH07169469A - Electrode - Google Patents

Electrode

Info

Publication number
JPH07169469A
JPH07169469A JP5344300A JP34430093A JPH07169469A JP H07169469 A JPH07169469 A JP H07169469A JP 5344300 A JP5344300 A JP 5344300A JP 34430093 A JP34430093 A JP 34430093A JP H07169469 A JPH07169469 A JP H07169469A
Authority
JP
Japan
Prior art keywords
electrode
layer portion
water
base material
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5344300A
Other languages
Japanese (ja)
Inventor
Seiji Mizuno
誠司 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP5344300A priority Critical patent/JPH07169469A/en
Publication of JPH07169469A publication Critical patent/JPH07169469A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)

Abstract

PURPOSE:To provide an electrode having both water repellency and conductivity. CONSTITUTION:A positive electrode 20 and a negative electrode 30 opposed to each other through an electrolytic film 10 with catalyst reacting layers 12, 14 being interposed have first electrode layer parts 21, 32, second electrode layer parts 22, 32, third electrode layer parts 23, 33, and outside electrode layer parts 24, 34 laminated thereon, respectively. Each electrode layer part is formed by curving a continued electrode base material in bellows, and the electrode base material is a woven fabric using a core material having a copper wire as the core as warp and weft. The first electrode layer parts 21, 32 and the outside electrode layer parts 24, 34 show electric conductivity with an external member through a conductive sheath provided on the copper wire corresponding to this part, and mutually continued by the copper wire of the warp of the fabric. The second electrode layer parts 22, 32 and the third electrode layer parts 23, 33 show water repellency through a water repellent sheath provided on the core wire corresponding to this part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電解質を挟んで対向す
る電極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to electrodes facing each other with an electrolyte in between.

【0002】[0002]

【従来の技術】この種の電極は、物質の化学エネルギと
電気エネルギとを変換するエネルギ変換装置、例えば、
燃料としての水素と酸素とを反応させ、その化学エネル
ギを電気エネルギに変換する燃料電池や、逆に、電気エ
ネルギを受けて水を電気分解して水素と酸素とを発生す
る水素(酸素)発生装置などに用いられており、それぞ
れの装置における電解質を挟んで対向する。この場合、
燃料電池であれば、電気エネルギを運動エネルギに変換
する機関を経由して両電極間を電気的に接続すること
で、当該機関に電気エネルギを伝達することができる。
2. Description of the Related Art An electrode of this kind is an energy conversion device for converting chemical energy and electric energy of a substance, for example,
A fuel cell that reacts hydrogen and oxygen as fuel and converts its chemical energy into electric energy, or conversely, hydrogen (oxygen) that receives electric energy and electrolyzes water to generate hydrogen and oxygen It is used in devices, etc., and faces each other with the electrolyte in each device interposed. in this case,
In the case of a fuel cell, electric energy can be transmitted to the engine by electrically connecting both electrodes via an engine that converts electric energy into kinetic energy.

【0003】これらのエネルギ変換装置の電極では、通
常、水を生成する反応か、この逆の水を分解する反応が
行なわれる。例えば、燃料電池(固体高分子型燃料電
池)の電極では、その極性に応じて以下に記す反応式で
示される反応が進行する。 陰極(水素極): H2→2H++2e- … 陽極(酸素極): 2H++2e-+(1/2)O2→H2O …
At the electrodes of these energy conversion devices, a reaction for producing water or a reverse reaction for decomposing water is usually carried out. For example, in an electrode of a fuel cell (solid polymer fuel cell), the reaction shown by the following reaction formula proceeds according to its polarity. Cathode (hydrogen electrode): H 2 → 2H + + 2e - ... anode (oxygen electrode): 2H + + 2e - + (1/2) O 2 → H 2 O ...

【0004】陰極で式の反応により生成した水素イオ
ンは、H+x2O)の水和状態で電解質である例えば
高分子イオン交換膜を透過(拡散)し、膜を透過した水
素イオンは、陽極で式の反応に供される。
Hydrogen ions produced by the reaction of the formula at the cathode permeate (diffuse) a polymer ion exchange membrane which is an electrolyte in the hydrated state of H + ( x H 2 O), and the hydrogen ions permeate through the membrane. Are subjected to a reaction of the formula at the anode.

【0005】これらの反応を連続的に行なうためには、
電極へ反応物質を連続的に供給すると共に、電極付近か
ら生成物質(電極生成物質)を取り除く必要がある。例
えば、燃料電池の場合、陽極では、酸素をガス状で連続
的に供給すると共に生成物質である水を取り除く必要が
ある。生成物質の水を取り除かないと、水が電極付近に
滞留して電極(陽極)におけるガス(酸素ガス)透過性
が低下し、運転効率の低下、延いては上記した電極反応
を停止させてしまうからである。
In order to carry out these reactions continuously,
It is necessary to continuously supply the reaction substance to the electrode and remove the generated substance (electrode generated substance) from the vicinity of the electrode. For example, in the case of a fuel cell, at the anode, it is necessary to continuously supply oxygen in a gaseous state and to remove water as a product. If the product water is not removed, the water will stay near the electrode and the gas (oxygen gas) permeability at the electrode (anode) will decrease, which will reduce the operating efficiency and eventually stop the above electrode reaction. Because.

【0006】一方、陰極では、水素を同じくガス状で連
続的に供給すると共に水素イオンを電解質膜中にスムー
ズに拡散させる必要がある。水素イオンは電解質膜中の
水と結合して上記の水和状態となって電解質膜中を移動
するため、陰極付近の水が不足しないように、陰極付近
の電解質膜に外部から水を補給する必要がある。陰極付
近の水が不足すると、電解質膜中への水素イオンの拡散
が阻害され、電解質膜中の水素イオンが不足し、陽極で
の反応が妨げられるからである。よって、陰極や膜中の
水分を確保するために、陰極には水素ガスを水蒸気で加
湿して供給されている。
On the other hand, in the cathode, it is necessary to continuously supply hydrogen in a gaseous state as well and to smoothly diffuse hydrogen ions into the electrolyte membrane. Hydrogen ions combine with water in the electrolyte membrane to move into the above-mentioned hydrated state and move in the electrolyte membrane, so that the electrolyte membrane near the cathode is replenished with water from the outside so that the water near the cathode does not become insufficient. There is a need. This is because if the amount of water near the cathode is insufficient, the diffusion of hydrogen ions into the electrolyte membrane is hindered, the hydrogen ions in the electrolyte membrane are insufficient, and the reaction at the anode is hindered. Therefore, in order to secure the water content in the cathode and the film, hydrogen gas is humidified with steam and supplied to the cathode.

【0007】ところが、単に水蒸気を水素ガスとともに
供給するだけでは、陰極での水蒸気の結露,滞留が起き
この陰極におけるガス(水素ガス)透過性が低下する。
このため、この陰極内での水分滞留を防止するために、
或いは陽極で生成する水分の陽極内での滞留を防止する
ために、はっ水性を電極に付与することが行なわれてい
る(例えば、特開昭60−211774)。このよう
に、はっ水性を付与することで電極内から水分を電極外
部に弾き出し、電極内での水分滞留の回避が図られてい
る。はっ水性を付与するに当たっては、特開昭60−2
11774では、はっ水性樹脂であるフッ素系樹脂(ポ
リテトラフロオロエチレン)を炭素繊維紙等の電極基材
に含浸させることが行なわれている。
However, if water vapor is simply supplied together with hydrogen gas, dew condensation and retention of water vapor will occur at the cathode and the gas (hydrogen gas) permeability at this cathode will decrease.
Therefore, in order to prevent water retention in the cathode,
Alternatively, water repellency is applied to the electrode in order to prevent the water generated at the anode from accumulating in the anode (for example, JP-A-60-211774). In this way, by imparting water repellency, moisture is repelled from the inside of the electrode to the outside of the electrode, and the retention of moisture in the electrode is avoided. In imparting water repellency, JP-A-60-2
In 11774, an electrode base material such as carbon fiber paper is impregnated with a fluororesin (polytetrafluoroethylene) which is a water-repellent resin.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、はっ水
性を付与するだけでは、次のような問題が指摘されてい
る。はっ水性樹脂を電極基材に含浸させると、基材表面
が非導電性のはっ水性樹脂で覆われた部分については、
基材表面における外部との電気的な導電が断たれる。こ
のため、陰極と陽極とを電動モータ等を経由して電気的
に接続しこの電動モータを駆動する場合、電極とその接
続部材、例えば集電体との間の電気的な導通がはっ水性
樹脂にて妨げられ、電気エネルギの伝達ロスを招く。な
お、特開昭60−211774に提案されているよう
に、電極基材の表面に触媒元素を直接担持しても、電極
基材表面にはっ水性樹脂で覆われた部分が存在すること
に変わりはなく、上記した問題が生じる。
However, the following problems have been pointed out only by imparting water repellency. When the electrode base material is impregnated with a water-repellent resin, the surface of the base material is covered with a non-conductive water-repellent resin.
The electrical conductivity with the outside on the surface of the base material is cut off. Therefore, when the cathode and the anode are electrically connected via an electric motor or the like to drive the electric motor, the electrical continuity between the electrode and the connecting member, for example, the current collector, is water-repellent. It is blocked by the resin and causes a transmission loss of electric energy. As proposed in JP-A-60-211774, even if the catalytic element is directly carried on the surface of the electrode base material, there is a portion covered with the water-repellent resin on the surface of the electrode base material. There is no change, and the above-mentioned problems occur.

【0009】本発明は、上記問題点を解決するためにな
され、水分の電極内滞留を防止するためのはっ水性と外
部との高い電気的な導電性とを兼ね備えた電極を提供す
ることをその目的とする。
The present invention has been made to solve the above problems, and provides an electrode having both water repellency for preventing water from staying in the electrode and high electrical conductivity with the outside. To that end.

【0010】[0010]

【課題を解決するための手段】かかる目的を達成するた
めの請求項1記載の電極で採用した手段は、電解質を挟
んで対向する電極であって、前記電解質側の第1層部
と、該第1層部に前記電解質側と反対側に積層される中
間層部と、該中間層部を挟んで前記第1層部と対向する
よう前記中間層部に積層された最外層部とを備え、前記
第1層部と前記最外層部とを、前記第1層部又は前記最
外層部に接触する外部部材との間で電子の授受が可能で
導電性とガス透過性を有する電極基材を用いて形成する
とともに、前記第1層部と前記最外層部とを電気的に導
通して形成し、前記中間層部を、はっ水性とガス透過性
とを有する部材としたことをその要旨とする。
[Means for Solving the Problems] In order to achieve the above object, the means adopted in the electrode according to claim 1 are electrodes facing each other with an electrolyte interposed therebetween, and a first layer portion on the electrolyte side, An intermediate layer portion laminated on the first layer portion on the side opposite to the electrolyte side, and an outermost layer portion laminated on the intermediate layer portion so as to face the first layer portion with the intermediate layer portion interposed therebetween. An electrode base material capable of transferring electrons between the first layer portion and the outermost layer portion and an external member in contact with the first layer portion or the outermost layer portion, and having conductivity and gas permeability It is formed by using, and the first layer portion and the outermost layer portion are electrically connected to each other, and the intermediate layer portion is a member having water repellency and gas permeability. Use as a summary.

【0011】この場合、請求項2ないし請求項4記載の
電極では、それぞれ次の手段を採用した。まず、請求項
2記載の電極では、接触する外部部材との間で電子の授
受が可能で導電性とガス透過性を有する連続した電極基
材に、はっ水性表面を有するはっ水表面部と、外部部材
との間で電子の授受が可能な導電表面部とを区画して形
成し、該導電表面部が前記第1層部と最外層部となるよ
う、かつ前記はっ水表面部が前記中間層部となるよう、
前記電極基材を屈曲積層した。
In this case, the electrodes described in claims 2 to 4 employ the following means, respectively. First, in the electrode according to claim 2, a water-repellent surface portion having a water-repellent surface on a continuous electrode base material capable of exchanging electrons with a contacting external member and having conductivity and gas permeability. And a conductive surface portion capable of exchanging electrons with an external member are formed so as to be partitioned, and the conductive surface portion serves as the first layer portion and the outermost layer portion, and the water repellent surface portion. So that the intermediate layer portion,
The electrode base material was bent and laminated.

【0012】請求項3記載の電極では、導電性を有する
心材に、はっ水性樹脂被覆によりはっ水性を有するに到
ったはっ水表面心材部と、外部部材との間で電子の授受
が可能な導電表面心材部とを区画して形成し、前記心材
のはっ水表面心材部が前記電極基材のはっ水表面部とな
るよう、かつ前記心材の導電表面心材部が前記電極基材
の導電表面部となるよう、前記心材を織布或いは編成し
て前記電極基材を形成した。
In the electrode according to claim 3, electrons are transferred between the water-repellent surface core material portion which has been rendered water-repellent by the water-repellent resin coating to the conductive core material and the external member. Is formed by partitioning a conductive surface core material part capable of forming a water-repellent surface core material part of the core material into a water-repellent surface part of the electrode base material, and the conductive surface core material part of the core material is the electrode. The electrode base material was formed by woven or knitting the core material so as to become the conductive surface portion of the base material.

【0013】請求項4記載の電極では、前記心材の導電
表面心材部を、心材表面を耐食性を有する導電性粒子で
被覆して形成した。
In the electrode according to claim 4, the conductive surface of the core material is formed by coating the core material surface with conductive particles having corrosion resistance.

【0014】また、上記目的を達成するための請求項5
記載の電極で採用した手段は、電解質を挟んで対向する
電極であって、導電性を有する心材に、導電性粒子を分
散したはっ水性樹脂の被覆層を形成し、該被覆層を有す
る心材を織布或いは編成してなることをその要旨とす
る。
Further, claim 5 for achieving the above object.
The means adopted in the electrode described above is an electrode facing each other with an electrolyte interposed, and a core material having conductivity is formed with a coating layer of a water-repellent resin in which conductive particles are dispersed, and the core material having the coating layer. The essence is to woven or knit.

【0015】[0015]

【作用】上記構成を有する請求項1記載の電極は、電解
質に組み込まれた際に、電解質側の第1層部において、
電解質と、或いは電解質に密着形成されたいわゆる触媒
層と密着する。そして、この第1層部は、電解質側に位
置することから、電解質を透過するイオンや電極生成物
質、燃料電池であれば上記した式,における水素イ
オンや水の生成に関与することが可能である。一方、こ
の第1層部と中間層部を挟んで対向する最外層部は、電
極における最外部、即ち電解質側と反対側に位置するた
め、外部部材との間で電子の授受に関与することが可能
である。
The electrode having the above-mentioned structure according to claim 1, when incorporated into an electrolyte, in the first layer portion on the electrolyte side,
It is in close contact with the electrolyte or with a so-called catalyst layer formed in close contact with the electrolyte. Since this first layer portion is located on the electrolyte side, it is possible to participate in the generation of ions and electrode-generating substances that permeate the electrolyte, and in the case of a fuel cell, the hydrogen ions and water in the above formula. is there. On the other hand, since the outermost layer portion that faces the first layer portion with the intermediate layer portion interposed therebetween is located at the outermost portion of the electrode, that is, on the side opposite to the electrolyte side, it is involved in the transfer of electrons with the external member Is possible.

【0016】最外層部と第1層部とは、これらに接触す
る外部部材との間で電子の授受が可能で導電性を有する
電極基材を用いて形成されているので、第1層部であれ
ば電解質或いは触媒層との間で電子の授受が可能とな
り、最外層部であれば集電体等の外部部材との間で電子
の授受が可能となる。しかも、第1層部と最外層部とは
電気的に導通して形成されているので、燃料電池であれ
ば、式の反応が進行して水素イオンとともに生じる電
子は、自由電子として第1層部から最外層部に移動し、
この最外層部に接触する集電体等の外部部材に、支障な
く受け渡される。また、外部部材からは、電子は最外層
部に支障なく受け渡され、受け渡された電子は、この最
外層部から第1層部に移動し式の反応に供される。つ
まり、外部との電子の授受がロスなく行なわれる。この
場合、ロスのない電子の授受は、燃料電池に限らず、電
極を電解質を挟んで有する他の装置、例えば電子を供給
を受けて水を電気分解し水素(ガス)と酸素(ガス)と
を生成する水素・酸素生成装置にあっても見られること
は勿論である。
Since the outermost layer portion and the first layer portion are formed by using an electrode base material having conductivity which is capable of exchanging electrons with an external member contacting them, the first layer portion is formed. In that case, electrons can be exchanged with the electrolyte or the catalyst layer, and with the outermost layer, electrons can be exchanged with an external member such as a current collector. Moreover, since the first layer portion and the outermost layer portion are formed so as to be electrically connected to each other, in the case of the fuel cell, the electrons that are generated along with the hydrogen ions due to the progress of the reaction of the formula are the first layer as free electrons. From the department to the outermost layer,
It is delivered to an external member such as a current collector that comes into contact with the outermost layer without any trouble. In addition, the electrons are transferred from the external member to the outermost layer without any trouble, and the transferred electrons move from the outermost layer to the first layer to be used in the reaction of the type. That is, the exchange of electrons with the outside is performed without loss. In this case, the transfer of electrons without loss is not limited to the fuel cell, but other devices having electrodes sandwiching the electrolyte, for example, electrons are supplied to electrolyze water to generate hydrogen (gas) and oxygen (gas). Needless to say, it can be seen even in a hydrogen / oxygen generator that produces hydrogen.

【0017】更に、請求項1記載の電極は、上記した第
1層部と最外層部の他に、この第1層部に電解質側と反
対側に積層される中間層部を備えることで、この中間層
部を第1層部と最外層部との間に位置させる。この中間
層部は、はっ水性とガス透過性とを有する部材から形成
されているので、第1層部と最外層部との間において、
はっ水性とガス透過性とを当然に発揮する。
Further, the electrode according to claim 1 comprises, in addition to the above-mentioned first layer portion and outermost layer portion, an intermediate layer portion laminated on the first layer portion on the side opposite to the electrolyte side, The intermediate layer portion is located between the first layer portion and the outermost layer portion. Since this intermediate layer portion is formed of a member having water repellency and gas permeability, between the first layer portion and the outermost layer portion,
Naturally exhibits water repellency and gas permeability.

【0018】また、請求項1記載の電極では、中間層部
を第1層部および最外層部と別体とすることが可能であ
る。
In the electrode according to the first aspect, the intermediate layer portion can be separated from the first layer portion and the outermost layer portion.

【0019】請求項2記載の電極は、導電性とガス透過
性を有する連続した電極基材にはっ水表面部と導電表面
部とを区画して形成し、この連続した電極基材を屈曲積
層することで、導電表面部を電気的に導通された第1層
部と最外層部とし、はっ水表面部を第1層部と最外層部
との間の中間層部とする。電気的に導通された第1層部
と最外層部となる導電表面部は、外部部材との間で電子
の授受が可能であるので、外部との電子の授受がロスな
く行なわれる。中間層部となるはっ水表面部は、はっ水
性表面を有し電極基材の一部であることから、第1層部
と最外層部との間において、はっ水性とガス透過性とを
発揮する。
The electrode according to claim 2 is formed by partitioning a water-repellent surface portion and a conductive surface portion on a continuous electrode substrate having conductivity and gas permeability, and bending this continuous electrode substrate. By laminating, the conductive surface portion is the electrically conductive first layer portion and the outermost layer portion, and the water repellent surface portion is the intermediate layer portion between the first layer portion and the outermost layer portion. Electrons can be exchanged between the first layer portion and the outermost layer portion that are electrically connected to each other, and the electrons can be exchanged with the outside without loss. Since the water-repellent surface part, which is the intermediate layer part, has a water-repellent surface and is a part of the electrode substrate, the water-repellent property and the gas permeability are between the first layer part and the outermost layer part. To exert.

【0020】この請求項2記載の電極では、連続した一
つの電極基材から形成することが可能となる。また、連
続した電極基材自体が外部部材との間で電子の授受が可
能であるので、導電表面部を区画形成するに当たり、特
別な処理を必要とせず、はっ水表面部の区画形成領域
に、はっ水処理を施して当該領域の表面にはっ水性を付
与すればよい。この場合、導電表面部を区画形成するに
当たり、電極基材の当該区画領域に、耐食性を有する導
電性粒子を被覆する導電性付与処理を施すこともでき
る。
The electrode according to the second aspect can be formed from one continuous electrode base material. In addition, since the continuous electrode base material itself can transfer and receive electrons to and from the external member, no special treatment is required for forming the conductive surface portion, and the water-repellent surface portion is formed in the partition formation region. Then, water repellency treatment may be performed to impart water repellency to the surface of the region. In this case, in forming the conductive surface portion by partitioning, the partitioning region of the electrode base material may be subjected to a conductivity imparting treatment for coating the conductive particles having corrosion resistance.

【0021】請求項3記載の電極は、はっ水表面心材部
と導電表面心材部とを区画形成した導電性の心材を織布
或いは編成して電極基材を形成することで、この心材の
はっ水表面心材部を電極基材のはっ水表面部とし、心材
の導電表面心材部を電極基材の導電表面部とする。そし
て、心材自体が導電性を有することから、この心材の織
布或いは編成を経て形成された電極基材は、導電性とガ
ス透過性を有する連続した電極基材となるとともに、自
ずからはっ水表面部と導電表面部とを区画して備えた電
極基材となる。また、心材の織布或いは編成を経ている
ことから、請求項3記載の電極は、電極におけるガス透
過を阻害しない。
According to the third aspect of the present invention, an electroconductive core material having a water-repellent surface core material portion and a conductive surface core material portion formed by division is woven or knitted to form an electrode base material. The water-repellent surface core material portion is the water-repellent surface portion of the electrode base material, and the conductive surface core material portion of the core material is the conductive surface portion of the electrode base material. Since the core material itself has conductivity, the electrode base material formed by woven or knitting the core material becomes a continuous electrode base material having conductivity and gas permeability, and naturally water repellent. The electrode base material is provided with the surface portion and the conductive surface portion partitioned. Further, since the core material is woven or knitted, the electrode according to claim 3 does not hinder gas permeation through the electrode.

【0022】この場合、心材を織布或いは編成するに際
しては、平織りや綾織り,糸が交差することにより生じ
る屈曲がない織り方の一例であるノンクリンプ織り,縦
糸に対してその左右から横糸を60℃の交角で交差させ
て織り上げる3軸織り等の織布手法や、ニット編み,パ
イル編み等の編成手法を用いることができる。また、心
材のはっ水表面心材部を電極基材のはっ水表面部とし、
心材の導電表面心材部を電極基材の導電表面部とするに
当たっては、電極の大きさ(面積),中間層部の層の
数,はっ水表面部や導電表面部の占有面積等と、採用す
る織布手法や編成手法を考慮すればよい。
In this case, when the core material is woven or knitted, a plain weave or a twill weave, a non-crimp weave which is an example of a weave without bending caused by the crossing of the yarns, and a weft yarn 60 from the left and right of the warp yarn It is possible to use a woven cloth method such as triaxial weaving in which the cloth is crossed at a crossing angle of ° C. or a knitting method such as knit knitting or pile knitting. In addition, the water repellent surface of the core material and the water repellent surface portion of the electrode base material,
Conducting surface of the core material When the core material is used as the conductive surface of the electrode base material, the size (area) of the electrode, the number of layers in the intermediate layer, the area occupied by the water repellent surface and the conductive surface, etc., The woven method and knitting method to be used may be taken into consideration.

【0023】請求項4記載の電極は、心材の導電表面心
材部を耐食性を有する導電性粒子で被覆して形成したの
で、心材を良導電体である種々の金属とすることが可能
である。
Since the electrode according to claim 4 is formed by coating the conductive surface of the core material with conductive particles having corrosion resistance, the core material can be made of various metals that are good conductors.

【0024】請求項5記載の電極は、導電性を有する心
材の被覆層を、導電性粒子を分散したはっ水性樹脂の層
とし、この心材の織布或いは編成を経て製作される。よ
って、請求項5記載の電極は、心材の被覆層自体が発揮
する外部との電気的な導電性とはっ水性を通して、電極
自体としても外部との電気的な導電性とはっ水性を発揮
する。しかも、導電性粒子をはっ水性樹脂の層に分散し
ていることから、導電性とはっ水性を電極表面において
偏在してではなく均一に発揮する。また、心材の織布或
いは編成を経ていることから、請求項5記載の電極は、
電極におけるガス透過を阻害しない。この場合、導電性
粒子を耐食性を有するものとすれば、心材を良導電体で
ある種々の金属とすることが可能である。
The electrode according to the fifth aspect is manufactured by woven or knitting the core material, in which the coating layer of the conductive core material is a layer of water-repellent resin in which conductive particles are dispersed. Therefore, the electrode according to claim 5 exhibits electrical conductivity and water repellency with respect to the outside, which is exhibited by the coating layer itself of the core material, and also exhibits electrical conductivity and water repellency with respect to the outside as the electrode itself. To do. Moreover, since the conductive particles are dispersed in the layer of the water-repellent resin, the conductivity and the water-repellency are uniformly exerted on the surface of the electrode instead of being unevenly distributed. Further, since the core material is woven or knitted, the electrode according to claim 5 is
Does not interfere with gas permeation through the electrodes. In this case, if the conductive particles have corrosion resistance, the core material can be made of various metals that are good conductors.

【0025】[0025]

【実施例】以上説明した本発明の構成・作用を一層明ら
かにするために、以下本発明の好適な実施例について説
明する。なお、以下の説明に際しては、本発明にかかる
電極を燃料電池(固体高分子型燃料電池)の電極に適用
した場合の実施例について説明する。図1は、この実施
例における燃料電池のセル構造の模式図である。図示す
るように、セルは、膜状の電解質である電解質膜10
と、この電解質膜10の膜面に密着した陽極側触媒反応
層12および陰極側触媒反応層14と、これら各触媒反
応層に密着した多層構造(4層構造)の陽極20および
陰極30と、それぞれの極に密着する集電体40,42
と、各セルを仕切るセパレータ44とにより構成されて
いる。
Preferred embodiments of the present invention will be described below in order to further clarify the structure and operation of the present invention described above. In the following description, an example in which the electrode according to the present invention is applied to an electrode of a fuel cell (solid polymer fuel cell) will be described. FIG. 1 is a schematic diagram of the cell structure of the fuel cell in this example. As shown, the cell is an electrolyte membrane 10 that is a membrane-like electrolyte.
An anode-side catalytic reaction layer 12 and a cathode-side catalytic reaction layer 14 that are in close contact with the membrane surface of the electrolyte membrane 10, and an anode 20 and a cathode 30 having a multilayer structure (four-layer structure) that are in close contact with each of these catalytic reaction layers. Current collectors 40, 42 in close contact with each pole
And a separator 44 for partitioning each cell.

【0026】電解質膜10は、水素イオンに対するイオ
ン交換基としてスルホン基を有する高分子陽イオン交換
膜(以下、単に陽イオン交換膜ともいう)であり、水素
イオンを膜厚方向に沿って選択的に透過する。具体的に
説明すると、電解質膜10は、フッ素系スルホン酸高分
子樹脂から作製された陽イオン交換膜(例えばパーフル
オロカーボンスルホン酸高分子膜(商品名:ナフィオ
ン, Du Pont社製))であり、その膜厚は100μm程
度である。
The electrolyte membrane 10 is a polymer cation exchange membrane having a sulfone group as an ion exchange group for hydrogen ions (hereinafter, also simply referred to as a cation exchange membrane), and selectively selects hydrogen ions along the thickness direction. See through. More specifically, the electrolyte membrane 10 is a cation exchange membrane (for example, a perfluorocarbon sulfonic acid polymer membrane (trade name: Nafion, manufactured by Du Pont Co.)) made of a fluorine-based sulfonic acid polymer resin, The film thickness is about 100 μm.

【0027】陽極側触媒反応層12,陰極側触媒反応層
14は、後述する陽極20,陰極30と電解質膜10と
の間に介在し、これらのホットプレスを経ることで、電
解質膜10の膜面および各電極の膜面に密着される。こ
の陽極側触媒反応層12,陰極側触媒反応層14は、触
媒として白金を20wt%担持したカーボン粒子が電解
質膜10膜面に対して0.4mg/cm2 の割合となる
よう凝集・積層したカーボン粒子凝集層であり、ホット
プレスに先立ち電解質膜10膜面或いは電極膜面に塗布
され、その後のホットプレスを経て作製される。
The anode-side catalytic reaction layer 12 and the cathode-side catalytic reaction layer 14 are interposed between an anode 20, a cathode 30 and an electrolyte membrane 10, which will be described later, and are subjected to hot pressing to form a film of the electrolyte membrane 10. And the film surface of each electrode. The anode-side catalytic reaction layer 12 and the cathode-side catalytic reaction layer 14 were aggregated and laminated such that carbon particles carrying 20 wt% of platinum as a catalyst were 0.4 mg / cm 2 with respect to the membrane surface of the electrolyte membrane 10. It is a carbon particle agglomeration layer, which is applied to the surface of the electrolyte membrane 10 or the surface of the electrode film prior to hot pressing, and is manufactured through subsequent hot pressing.

【0028】陽極20は、電解質膜10側から、陽極側
触媒反応層12に密着する第1電極層部21と第2電極
層部22と第3電極層部23と最外電極層部24とがこ
の順に積層された4層構造を有する。また、陰極30
も、陰極側触媒反応層14に密着する第1電極層部31
と第2電極層部32と第3電極層部33と最外電極層部
34とがこの順に積層された4層構造を有する。なお、
図1においては、陽極20については各層の積層の様子
を模式的に示し、陰極30については各層の構成の様子
を模式的に示している。
The anode 20 includes a first electrode layer portion 21, a second electrode layer portion 22, a third electrode layer portion 23, and an outermost electrode layer portion 24, which are in close contact with the anode side catalytic reaction layer 12 from the electrolyte membrane 10 side. Have a four-layer structure in which they are stacked in this order. Also, the cathode 30
Also the first electrode layer portion 31 that adheres to the cathode side catalytic reaction layer 14
The second electrode layer portion 32, the third electrode layer portion 33, and the outermost electrode layer portion 34 are laminated in this order to have a four-layer structure. In addition,
In FIG. 1, the anode 20 schematically shows how the layers are laminated, and the cathode 30 schematically shows how the layers are formed.

【0029】この陽極20,陰極30は、図2に示すよ
うに連続した1枚の電極基材50を電極面積ごとに、例
えば電極面積がL2 cm2 (Lcm×Lcm)であれ
ば、Lcm幅の電極基材50を、Lcmごとの折り目5
1で屈曲させ、いわゆる蛇腹状に折り畳んで形成され
る。このように電極基材50を折り畳むと、折り目51
で区画される基材パート50a〜50dのうち、基材パ
ート50aが陽極20,陰極30の第1電極層部21,
31となり、基材パート50bが陽極20,陰極30の
第2電極層部22,32となり、基材パート50cが陽
極20,陰極30の第3電極層部23,33となり、基
材パート50dが陽極20,陰極30の最外電極層部2
4,34となる。なお、この電極基材50、延いては陽
極20,陰極30の作成については後述する。
As shown in FIG. 2, the anode 20 and the cathode 30 have a continuous electrode base material 50 for each electrode area, for example, if the electrode area is L 2 cm 2 (Lcm × Lcm), Lcm. The width of the electrode base material 50, and the creases 5 for each Lcm
It is bent at 1 and folded in a so-called bellows shape. When the electrode base material 50 is folded in this manner, the fold line 51 is formed.
Of the base material parts 50a to 50d partitioned by, the base material part 50a is the anode 20, the first electrode layer portion 21 of the cathode 30,
31, the base material part 50b becomes the second electrode layer portions 22 and 32 of the anode 20 and the cathode 30, the base material part 50c becomes the third electrode layer portions 23 and 33 of the anode 20 and the cathode 30, and the base material part 50d becomes Outermost electrode layer portion 2 of anode 20 and cathode 30
4,34. The production of the electrode base material 50, by extension, the anode 20 and the cathode 30 will be described later.

【0030】集電体40,42は、多孔質でガス透過性
を有するポーラスカーボンにより形成されており、気孔
率が30ないし40%のものである。また、集電体40
には、陽極燃料である酸素含有ガスの流路であると共に
陽極20で生成する水の集水路をなす流路41が形成さ
れており、集電体42には、陰極燃料である水素含有ガ
スと水蒸気との混合ガス(加湿水素ガス)の流路43が
形成されている。セパレータ44は、カーボンを圧縮し
てガス不透過としたガス不透過カーボンにより形成され
ており、電解質膜10,陽極20,陰極30,集電体4
0,42により構成されるセルを積層する際の隔壁をな
す。なお、本実施例では、集電体40,42およびセパ
レータ44を別体として形成したが、集電体40とセパ
レータ44をガス不透過カーボンにより一体として形成
する構成や集電体42とセパレータ44をガス不透過カ
ーボンにより一体として形成する構成、集電体40,4
2およびセパレータ44をガス不透過カーボンにより一
体として形成する構成も好適である。
The current collectors 40 and 42 are made of porous carbon having gas permeability and have a porosity of 30 to 40%. In addition, the current collector 40
Is formed with a flow path 41 for oxygen-containing gas as anode fuel and a water collecting path for water generated at the anode 20, and the current collector 42 is provided with hydrogen-containing gas as cathode fuel. A flow path 43 for a mixed gas of hydrogen and water vapor (humidified hydrogen gas) is formed. The separator 44 is formed of gas-impermeable carbon that is made gas-impermeable by compressing carbon, and includes an electrolyte membrane 10, an anode 20, a cathode 30, and a current collector 4.
It forms a partition wall when the cells composed of 0 and 42 are stacked. Although the current collectors 40 and 42 and the separator 44 are formed as separate bodies in this embodiment, the current collector 40 and the separator 44 are integrally formed by gas impermeable carbon, or the current collector 42 and the separator 44 are formed. In which the gas is impermeable to carbon are integrally formed, current collectors 40 and 4
It is also preferable that the separator 2 and the separator 44 are integrally formed of gas impermeable carbon.

【0031】次に、陽極20,陰極30の製造方法につ
いて説明する。まず、この陽極20,陰極30を形成す
るための電極基材50について説明する。電極基材50
は、図2のX部拡大模式図に示すように、縦糸材と横糸
材とを寸法2mmで平織りした織布物である。この場
合、電極基材50の長手方向に沿って縦糸材52が織り
込まれ、これと交差して横糸材53が織り込まれてい
る。
Next, a method of manufacturing the anode 20 and the cathode 30 will be described. First, the electrode base material 50 for forming the anode 20 and the cathode 30 will be described. Electrode base material 50
Is a woven fabric in which a warp yarn material and a weft yarn material are plain woven with a dimension of 2 mm, as shown in an enlarged schematic view of the X portion of FIG. In this case, the warp yarn material 52 is woven along the longitudinal direction of the electrode base material 50, and the weft yarn material 53 is woven so as to intersect with the warp yarn material 52.

【0032】電極基材50を織布するための縦糸材52
は、図3に示すように、直径0.5mmの銅製ワイヤー
54をコアとし、その表面に100μm程度の厚みの被
覆層(シース)を有する。この縦糸材52を電極基材5
0の長さ4L(図2参照)を単位としてみると、縦糸材
52は、その端部からLの範囲に亘っては、導電性を有
するカーボンペーストからなる導電性シース55を備
え、両導電性シース間の2Lの範囲に亘っては、はっ水
性を有するポリテトラフルオロエチレンからなるはっ水
性シース56を備える。
Warp yarn material 52 for weaving the electrode base material 50
As shown in FIG. 3, a copper wire 54 having a diameter of 0.5 mm is used as a core, and a coating layer (sheath) having a thickness of about 100 μm is provided on the surface thereof. The warp material 52 is used as the electrode base material 5.
Taking the length 4L of 0 (see FIG. 2) as a unit, the warp yarn material 52 is provided with a conductive sheath 55 made of a carbon paste having conductivity in the range of L from the end thereof. A water-repellent sheath 56 made of polytetrafluoroethylene having water repellency is provided over a range of 2 L between the sex sheaths.

【0033】このように異なる性質のシースを有する縦
糸材52は、図4に示すように、共有押し出し成形法に
より製造される。即ち、銅製ワイヤー54を加熱装置内
蔵のダイ70にエントリーポート71から押し入れ、銅
製ワイヤー54がこのダイ70を通過する間に、樹脂押
し出し装置72から或いはカーボンペースト押し出し装
置73から、半溶融状態のポリテトラフルオロエチレン
76又はカーボン粒子含有のカーボンペースト77を、
それぞれの油圧ラム74,75により加圧して押し出
す。そして、樹脂押し出し装置72からのポリテトラフ
ルオロエチレン76の加圧押出とカーボンペースト押し
出し装置73からのカーボンペースト77の加圧押出と
を、交互に等間隔(2Lの長さのシースが得られる間
隔)で繰り返し行なう。銅製ワイヤー54がダイ70を
通過する間およびダイ通過後には加熱され、ダイ70を
通過した銅製ワイヤー54は図示しない巻き取り装置に
巻き取られる。このように銅製ワイヤー54とポリテト
ラフルオロエチレン76およびカーボンペースト77を
共有押し出しすることで、銅製ワイヤー54に導電性シ
ース55,はっ水性シース56を2Lずつの長さで交互
に有する縦糸材52が完成する。
As shown in FIG. 4, the warp yarn material 52 having the sheath having different properties is manufactured by the coextrusion molding method. That is, the copper wire 54 is pushed into the die 70 having a built-in heating device from the entry port 71, and while the copper wire 54 passes through the die 70, the resin extruding device 72 or the carbon paste extruding device 73 is used to make a semi-molten poly wire. A carbon paste 77 containing tetrafluoroethylene 76 or carbon particles,
The hydraulic rams 74 and 75 pressurize and push out. Then, the pressure extrusion of the polytetrafluoroethylene 76 from the resin extrusion device 72 and the pressure extrusion of the carbon paste 77 from the carbon paste extrusion device 73 are alternately arranged at equal intervals (intervals at which a sheath having a length of 2 L is obtained). ) Repeat. The copper wire 54 is heated while passing through the die 70 and after passing through the die 70, and the copper wire 54 passing through the die 70 is wound up by a winding device (not shown). By co-extruding the copper wire 54, the polytetrafluoroethylene 76, and the carbon paste 77 in this manner, the warp material 52 having the conductive sheath 55 and the water-repellent sheath 56 alternately on the copper wire 54 in the length of 2 L each. Is completed.

【0034】なお、ポリテトラフルオロエチレン76の
加圧押出の間は、カーボンペースト押し出し装置73か
らはカーボンペースト77の押し出しはなされず、加圧
押し出しされたポリテトラフルオロエチレン76のみが
銅製ワイヤー54にはっ水性シース56として被膜され
る。同様に、カーボンペースト77の加圧押出の間は、
樹脂押し出し装置72からはポリテトラフルオロエチレ
ン76の押し出しはなされず、加圧押し出しされたカー
ボンペースト77のみが銅製ワイヤー54に導電性シー
ス55として被膜される。
During the pressure extrusion of the polytetrafluoroethylene 76, the carbon paste 77 is not extruded from the carbon paste extruding device 73, and only the polytetrafluoroethylene 76 extruded under pressure is applied to the copper wire 54. It is coated as a water repellent sheath 56. Similarly, during the pressure extrusion of the carbon paste 77,
Polytetrafluoroethylene 76 is not extruded from the resin extruding device 72, and only the carbon paste 77 extruded under pressure is coated on the copper wire 54 as the conductive sheath 55.

【0035】次いでこの縦糸材52は、図示しない平織
り織機に縦糸として供給され、横糸材53とで平織りに
付され、図5に示すように縦糸材52と横糸材53とで
平織りされた織布物57が得られる。この織布物57に
おいては、各縦糸材52の導電性シース55,はっ水性
シース56は、2Lずつ交互に表われる。そして、図中
点線で示すように、この織布物57を導電性シース55
の領域の中間で横糸材53に沿って切りとり、更に幅L
で縦糸材52に沿って切りとることで、幅がLでその長
さが4Lの電極基材50が完成する。
Next, the warp yarn material 52 is supplied as a warp yarn to a plain weaving loom (not shown), is plain-woven with the weft yarn material 53, and is woven with the warp yarn material 52 and the weft yarn material 53 as shown in FIG. Object 57 is obtained. In this woven cloth 57, the conductive sheaths 55 and the water-repellent sheaths 56 of each warp yarn material 52 are alternately shown by 2L. Then, as shown by the dotted line in the figure, the woven cloth 57 is attached to the conductive sheath 55.
Cut along the weft thread material 53 in the middle of the area of
By cutting along the warp yarn material 52, the electrode base material 50 having a width L and a length 4L is completed.

【0036】この場合、横糸材53は、縦糸材52のシ
ースの性質に応じて使い分けられる。即ち、縦糸材52
の導電性シース55部分で平織りされる範囲では、銅製
ワイヤー54に導電性シース55のみを設けた横糸材5
3が用いられ、縦糸材52のはっ水性シース56部分で
平織りされる範囲では、銅製ワイヤー54にはっ水性シ
ース56のみを設けた横糸材53が用いられる。つま
り、縦糸材52の導電性シース55とはっ水性シース5
6の切り替わり部で、平織り織機の横糸交換装置により
縦糸材52が使い分けられる。
In this case, the weft thread material 53 is used properly according to the nature of the sheath of the warp thread material 52. That is, the warp yarn material 52
In the range in which the conductive sheath 55 is plain woven, the weft material 5 in which only the conductive sheath 55 is provided on the copper wire 54
3 is used, and in the range of plain weaving in the water repellent sheath 56 portion of the warp yarn 52, the weft yarn member 53 provided with only the water repellent sheath 56 is used for the copper wire 54. That is, the conductive sheath 55 of the warp yarn material 52 and the water-repellent sheath 5
At the switching portion of 6, the warp yarn material 52 is selectively used by the weft yarn exchanging device of the plain weaving loom.

【0037】こうして完成した電極基材50は、図2,
図5から明らかなように、その両端の基材パート50
a,50dが縦糸材52および横糸材53の導電性シー
ス55を露出した領域となり、基材パート50b,50
cが縦糸材52および横糸材53のはっ水性シース56
を露出した領域となる。従って、既述したようにこの電
極基材50を蛇腹状に折り畳んで形成される陽極20
は、第1電極層部21が導電性シース55の露出領域と
なるので当該電極層部で外部に対して導電性を呈し、こ
の第1電極層部21で陽極側触媒反応層12と導通す
る。更に、陽極20は、最外電極層部24が導電性シー
ス55の露出領域となるので当該電極層部で外部に対し
て導電性を呈し、この最外電極層部24で集電体40と
導通する。また、陽極20は、この第1電極層部21と
最外電極層部24とを縦糸材52の銅製ワイヤー54お
よび導電性シース55を介して電気的に良好に導通させ
るとともに、第1電極層部21と最外電極層部24との
間の第2電極層部22および第3電極層部23で、はっ
水性シース56の露出を通してはっ水性を呈する。つま
り、陽極20は、はっ水性と導電性とを兼ね備えた電極
となる。しかも、陽極20は、電極基材50が縦糸材5
2と横糸材53の織布物であることから、優れたガス透
過性を有する。陰極30についても同様である。
The electrode base material 50 thus completed is shown in FIG.
As is clear from FIG. 5, the base material parts 50 at both ends thereof
a and 50d become regions where the conductive sheath 55 of the warp yarn material 52 and the weft yarn material 53 is exposed, and the base material parts 50b and 50
c is the water-repellent sheath 56 of the warp yarn material 52 and the weft yarn material 53.
Is the exposed area. Therefore, as described above, the anode 20 formed by folding the electrode base material 50 in a bellows shape.
The first electrode layer portion 21 becomes an exposed region of the conductive sheath 55, so that the electrode layer portion is electrically conductive to the outside, and the first electrode layer portion 21 is electrically connected to the anode-side catalytic reaction layer 12. . Further, in the anode 20, the outermost electrode layer portion 24 becomes the exposed region of the conductive sheath 55, so that the electrode layer portion is electrically conductive to the outside, and the outermost electrode layer portion 24 serves as the current collector 40. Conduct. In addition, the anode 20 electrically connects the first electrode layer portion 21 and the outermost electrode layer portion 24 through the copper wire 54 of the warp yarn material 52 and the conductive sheath 55 in a good electrical manner, and at the same time, the first electrode layer. The second electrode layer portion 22 and the third electrode layer portion 23 between the portion 21 and the outermost electrode layer portion 24 exhibit water repellency through the exposure of the water repellent sheath 56. That is, the anode 20 is an electrode having both water repellency and conductivity. Moreover, in the anode 20, the electrode base material 50 is the warp yarn material 5.
Since it is a woven fabric of 2 and the weft material 53, it has excellent gas permeability. The same applies to the cathode 30.

【0038】上記した電解質膜10,陽極20,陰極3
0等から燃料電池(セル)を製造するには、まず縦糸材
52,横糸材53での平織り織布,切断を経た電極基材
50を既述したように蛇腹状に折り畳んで、陽極20と
陰極30を形成する。次いで、陽極20,陰極30の第
1電極層部21,31の表面又は電解質膜10の表面
に、触媒として白金を20wt%担持したカーボン粒子
を0.4mg/cm2 の割合で塗布し、陽極20,陰極
30の第1電極層部21,31が電解質膜10側となる
ように、陽極20と陰極30との間に電解質膜10を挟
持して、これらをホットプレス(120℃,100kg
/cm2 )する。その後、集電体40,42およびセパ
レータ44を密着して組み付ける。
The above-mentioned electrolyte membrane 10, anode 20, cathode 3
In order to manufacture a fuel cell (cell) from 0 or the like, first, the plain weave fabric made of the warp yarn material 52 and the weft yarn material 53, and the cut electrode base material 50 are folded into a bellows shape as described above to form the anode 20 and the anode 20. The cathode 30 is formed. Then, carbon particles carrying 20 wt% of platinum as a catalyst are coated at a rate of 0.4 mg / cm 2 on the surfaces of the first electrode layer portions 21 and 31 of the anode 20 and the cathode 30 or the surface of the electrolyte membrane 10, 20, the electrolyte membrane 10 is sandwiched between the anode 20 and the cathode 30 so that the first electrode layer portions 21 and 31 of the cathode 30 are on the electrolyte membrane 10 side, and these are hot-pressed (120 ° C., 100 kg
/ Cm 2 ). After that, the current collectors 40 and 42 and the separator 44 are closely attached and assembled.

【0039】こうして構成された燃料電池は、各極に集
電体40,42の流路41,43から燃料ガス(加湿水
素ガス,酸素ガス)が供給されると、供給された燃料ガ
スは、陽極20,陰極30の最外電極層部24,34か
ら第2電極層部22,32および第3電極層部23,3
3を経て第1電極層部21,31に透過(拡散)する。
この際、織布物であることに起因して陽極20,陰極3
0は極めて良好なガス透過性を有することから、最外電
極層部24,34から第1電極層部21,31にかけて
の燃料ガスの拡散は支障なく円滑に行なわれる。
In the thus constructed fuel cell, when fuel gas (humidified hydrogen gas, oxygen gas) is supplied to the respective electrodes from the flow paths 41, 43 of the current collectors 40, 42, the supplied fuel gas becomes The outermost electrode layer portions 24 and 34 of the anode 20 and the cathode 30 to the second electrode layer portions 22 and 32 and the third electrode layer portions 23 and 3
After passing through 3, the light is transmitted (diffused) to the first electrode layer portions 21 and 31.
At this time, due to the fact that it is a woven fabric, the anode 20 and the cathode 3
Since 0 has extremely good gas permeability, the fuel gas can be smoothly diffused from the outermost electrode layer portions 24, 34 to the first electrode layer portions 21, 31 without any trouble.

【0040】第1電極層部21,31に拡散した燃料ガ
スは、これら電極層部に密着している陽極側触媒反応層
12,陰極側触媒反応層14に到り、当該触媒反応層に
おいては、上述した式,に示す反応に供される。こ
の反応は陽極側触媒反応層12,陰極側触媒反応層14
の触媒作用により促進して進行する。陰極30側では、
式の反応の進行により生成した水素イオンは、H+
x2O)の水和状態で電解質膜10を透過(拡散)し、
膜を透過した水素イオンは、陽極20で式の反応に供
される。
The fuel gas diffused in the first electrode layer portions 21 and 31 reaches the anode-side catalytic reaction layer 12 and the cathode-side catalytic reaction layer 14 which are in close contact with these electrode layer portions, and in the catalytic reaction layers. , The reaction represented by the above formula. This reaction is carried out by the anode side catalytic reaction layer 12 and the cathode side catalytic reaction layer 14.
Is promoted by the catalytic action of. On the cathode 30 side,
Hydrogen ions generated by the progress of the reaction of the formula are H + (
x H 2 O) permeates (diffuses) the electrolyte membrane 10 in the hydrated state,
The hydrogen ions that have permeated the membrane are subjected to the reaction of the formula at the anode 20.

【0041】より詳述すると、式の進行により得られ
た自由電子は、陰極側触媒反応層14と陰極30の第1
電極層部31とが導通していることから、抵抗なく第1
電極層部31の導電性シース55から銅製ワイヤー54
に移動する。そして、この自由電子は、縦糸材52の銅
製ワイヤー54内を第1電極層部31から最外電極層部
34まで抵抗なく移動する。この最外電極層部34は集
電体42と導通しているので、最外電極層部34まで移
動した自由電子は、抵抗なく集電体42に移動し、この
集電体42が接続されている外部のモータ等を経由して
陽極20側の集電体40に到る。なお、外部のモータ等
において、この自由電子はロータの回転等の仕事に使わ
れる。
More specifically, the free electrons obtained by the progress of the equation are the first electrons of the cathode side catalytic reaction layer 14 and the cathode 30.
Since the electrode layer portion 31 is electrically connected, the first
From the conductive sheath 55 of the electrode layer portion 31 to the copper wire 54
Move to. Then, the free electrons move in the copper wire 54 of the warp yarn material 52 from the first electrode layer portion 31 to the outermost electrode layer portion 34 without resistance. Since the outermost electrode layer portion 34 is electrically connected to the current collector 42, the free electrons that have moved to the outermost electrode layer portion 34 move to the current collector 42 without resistance, and the current collector 42 is connected. It reaches the collector 40 on the side of the anode 20 via an external motor or the like. In an external motor or the like, these free electrons are used for work such as rotation of the rotor.

【0042】そして、集電体40に移動した自由電子
は、この集電体40と陽極20の最外電極層部24とが
導通していることから、抵抗なく陽極20の最外電極層
部24の導電性シース55を経て縦糸材52の銅製ワイ
ヤー54に移動する。次いで、この自由電子は、縦糸材
52の銅製ワイヤー54内を陽極20の最外電極層部2
4から第1電極層部21まで抵抗なく移動する。この第
1電極層部21は陽極側触媒反応層12と導通している
ので、第1電極層部21まで移動した自由電子は、抵抗
なく陽極側触媒反応層12に移動し、電解質膜10を透
過した水素イオンとともに、陽極側触媒反応層12にお
いて式の反応に供される。この式の反応の進行にと
もない、陽極20の第1電極層部21においては水が生
成する。
The free electrons that have moved to the current collector 40 are electrically connected to the current collector 40 and the outermost electrode layer portion 24 of the anode 20, so that the outermost electrode layer portion of the anode 20 is resistance-free. It moves to the copper wire 54 of the warp yarn material 52 through the conductive sheath 55 of 24. Then, the free electrons pass through the copper wire 54 of the warp material 52 and form the outermost electrode layer portion 2 of the anode 20.
It moves from 4 to the first electrode layer portion 21 without resistance. Since the first electrode layer portion 21 is in conduction with the anode-side catalytic reaction layer 12, the free electrons that have moved to the first electrode layer portion 21 move to the anode-side catalytic reaction layer 12 without resistance and the electrolyte membrane 10 Together with the permeated hydrogen ions, they are used in the reaction of the formula in the anode-side catalytic reaction layer 12. As the reaction of this formula progresses, water is generated in the first electrode layer portion 21 of the anode 20.

【0043】つまり、本実施例の陽極20,陰極30を
用いれば、自由電子の受け渡しの際に抵抗となる物質、
例えば非導電性のはっ水材が存在しないので、ロスなく
電子の授受を行なうことができる。
That is, if the anode 20 and the cathode 30 of this embodiment are used, a substance which becomes a resistance when the free electrons are transferred,
For example, since there is no non-conductive water repellent material, electrons can be transferred without loss.

【0044】一方、陽極20で生成した水分や陰極30
に供給される加湿水素ガス中の水分は、電解質膜10を
加湿状態に置くために不可欠であるが、陽極20で過剰
となった水分或いは陰極30で結露したような水分は、
次のようにして電極から取り除かれる。陽極20,陰極
30は、第2電極層部22,32および第3電極層部2
3,33でそれぞれはっ水性を呈するので、陽極20で
過剰となった水分或いは陰極30で結露したような水分
は、当該電極層部における縦糸材52,横糸材53の周
囲から弾かれ、それぞれの集電体40,42における流
路41,43に導かれる。
On the other hand, the water generated at the anode 20 and the cathode 30
Moisture in the humidified hydrogen gas supplied to is essential for keeping the electrolyte membrane 10 in a humidified state, but excess moisture at the anode 20 or moisture like dew condensation at the cathode 30 causes
It is removed from the electrode as follows. The anode 20 and the cathode 30 are the second electrode layer portions 22 and 32 and the third electrode layer portion 2
Since 3 and 33 respectively exhibit water repellency, excess water in the anode 20 or water condensed in the cathode 30 is repelled from around the warp yarn material 52 and the weft yarn material 53 in the electrode layer portion, respectively. Of the current collectors 40 and 42.

【0045】従って、陽極20および陰極30では、電
極内における不用意な水分滞留が防止されると共に、第
1電極層部21,31と最外電極層部24,34との間
およびこれら電極部に接触する集電体等との間において
良好な導電を確保できることから、陽極20,陰極30
における上述の反応を効率よく連続して行なうことがで
きる。よって、本実施例の陽極20,陰極30によれ
ば、電極での反応を連続的に安定して行なうことができ
ることを通して、燃料電池の電池特性,運転効率を向上
させることができ、安定した電力を得ることができる。
Therefore, in the anode 20 and the cathode 30, inadvertent retention of water in the electrodes is prevented, and at the same time between the first electrode layer portions 21 and 31 and the outermost electrode layer portions 24 and 34 and between these electrode portions. Since good conductivity can be ensured between the collector and the current collector that come in contact with the anode 20, the cathode 30
The above-mentioned reaction can be efficiently and continuously performed. Therefore, according to the anode 20 and the cathode 30 of the present embodiment, the reaction at the electrodes can be continuously and stably performed, so that the cell characteristics and the operation efficiency of the fuel cell can be improved, and the stable electric power can be obtained. Can be obtained.

【0046】次に、陽極20,陰極30を用いた本実施
例(第1実施例)の燃料電池の性能評価について説明す
る。対比する燃料電池(従来品)は、陽極および陰極の
みが本実施例のものとは異なり、陽極および陰極とし
て、平織りのカーボンクロスにポリテトラフルオロエチ
レン溶液を含浸させてはっ水性を付与した電極基材を用
いた。そして、両燃料電池について、I−V特性を調べ
た。その結果を図6に示す。なお、電極面積は、144
cm2 (12cm×12cm)である。また、この図6
には、後述する実施例における燃料電池の特性も載せら
れている。
Next, performance evaluation of the fuel cell of this embodiment (first embodiment) using the anode 20 and the cathode 30 will be described. The fuel cell to be compared (conventional product) is different from that of the present embodiment only in the anode and the cathode, and an electrode in which a plain weave carbon cloth is impregnated with a polytetrafluoroethylene solution to provide water repellency as the anode and the cathode. A substrate was used. Then, the IV characteristics of both fuel cells were examined. The result is shown in FIG. The electrode area is 144
It is cm 2 (12 cm × 12 cm). In addition, this FIG.
In the table, the characteristics of the fuel cell in Examples described later are also listed.

【0047】図6から明らかなように、第1実施例の燃
料電池では、測定範囲の総ての電流密度に亘って比較例
の燃料電池よりその特性が優れていた。このことから、
上記したように、はっ水性と導電性とを兼ね備えた陽極
20,陰極30により、燃料電池特性の向上を図れたこ
とが確認できた。
As is clear from FIG. 6, the fuel cell of the first embodiment was superior in characteristics to the fuel cell of the comparative example over the entire current density of the measurement range. From this,
As described above, it was confirmed that the fuel cell characteristics were improved by the anode 20 and the cathode 30 having both water repellency and conductivity.

【0048】また陽極20,陰極30は、連続した一つ
の電極基材50の折畳を経て形成することができるの
で、部品(電極基材)管理が容易となりその製造工程の
簡略化を図ることができる。更に、この陽極20,陰極
30では、連続した電極基材50における基材パート5
0a,50dについては、はっ水性を取り除く必要がな
い。このため、陽極20,陰極30によれば、工程(は
っ水性除去工程)の省略を通して製造工程の簡略化を図
ることができる。
Further, since the anode 20 and the cathode 30 can be formed by folding one continuous electrode base material 50, parts (electrode base material) can be easily managed and the manufacturing process thereof can be simplified. You can Further, in the anode 20 and the cathode 30, the base material part 5 in the continuous electrode base material 50 is used.
For 0a and 50d, it is not necessary to remove the water repellency. Therefore, according to the anode 20 and the cathode 30, the manufacturing process can be simplified by omitting the process (water repellency removing process).

【0049】また、陽極20,陰極30では、基材パー
ト50b,50cにおいてはっ水性を呈するに当たり、
銅製ワイヤー54へのはっ水性シース56被覆と縦糸材
52,横糸材53の織布を経ているに過ぎない。このた
め、陽極20,陰極30は、織布後にはっ水性付与処
理、例えばはっ水性樹脂の含浸,スプレー等を必要とし
ないので、織布の織り目が樹脂で目詰まりしてガス透過
を阻害するようなことがなく、ガス拡散性に優れた電極
となる。
Further, in the anode 20 and the cathode 30, when the base material parts 50b and 50c exhibit water repellency,
The copper wire 54 is merely covered with the water-repellent sheath 56 and the woven fabric of the warp yarn material 52 and the weft yarn material 53. Therefore, since the anode 20 and the cathode 30 do not require a water-repellent treatment such as impregnation of water-repellent resin and spray after the woven cloth, the texture of the woven cloth is clogged with the resin and gas permeation is inhibited. The electrode having excellent gas diffusibility is obtained.

【0050】しかも、陽極20,陰極30では、銅製ワ
イヤー54を耐食性を有するカーボン粒子を含有する導
電性シース55で被覆したので、コア材である銅製ワイ
ヤー54の腐食を回避することができる。このため、陽
極20,陰極30は、従来一般的であったカーボンクロ
ス製の電極に比べて、導電性に優れるとともに、強度や
耐久性に優れた電極となる。
Moreover, in the anode 20 and the cathode 30, since the copper wire 54 is covered with the conductive sheath 55 containing carbon particles having corrosion resistance, corrosion of the copper wire 54 as the core material can be avoided. For this reason, the anode 20 and the cathode 30 are electrodes that are superior in conductivity and strength and durability, as compared with the conventional electrodes made of carbon cloth.

【0051】次に、第2の実施例について説明する。こ
の第2実施例では、次のようにして電極を形成する。ま
ず、図5に示した織布物57を図中の一点鎖線に沿って
切りとり、電極基材50とする。つまり、織布物57を
導電性シース55の領域とはっ水性シース56の領域の
区切りにおいて横糸材53に沿って切りとり、更に幅L
で縦糸材52に沿って切りとる。すると、幅がLでその
長さが4Lの電極基材50が切りとられるが、この電極
基材50は、図2に示す基材パート50aとその隣の基
材パート50bが縦糸材52および横糸材53の導電性
シース55を露出した領域となり、基材パート50cと
その隣の基材パート50dが縦糸材52および横糸材5
3のはっ水性シース56を露出した領域となる。次い
で、この電極基材50を、図7に示すように、基材パー
ト50aと基材パート50bが表面に位置し、基材パー
ト50cと基材パート50dが基材パート50aと基材
パート50bの間に位置するよう、順次折り畳むと、各
基材パートが積層した電極78が形成される。
Next, the second embodiment will be described. In this second embodiment, the electrodes are formed as follows. First, the woven fabric 57 shown in FIG. 5 is cut along the alternate long and short dash line in the figure to obtain the electrode base material 50. That is, the woven cloth 57 is cut along the weft thread 53 at the boundary between the region of the conductive sheath 55 and the region of the water repellent sheath 56, and further, the width L
Is cut along the warp yarn material 52. Then, the electrode base material 50 having a width of L and a length of 4 L is cut off. In the electrode base material 50, the base material part 50a shown in FIG. The conductive sheath 55 of the weft thread material 53 becomes an exposed area, and the base material part 50c and the base material part 50d adjacent thereto are the warp thread material 52 and the weft thread material 5.
This is an area where the water-repellent sheath 56 of No. 3 is exposed. Next, as shown in FIG. 7, in the electrode base material 50, the base material part 50a and the base material part 50b are located on the surface, and the base material part 50c and the base material part 50d are the base material part 50a and the base material part 50b. When sequentially folded so as to be located between the two, the electrodes 78 in which the respective base material parts are laminated are formed.

【0052】この第2実施例の電極78にあっても、上
記した第1実施例の陽極20,陰極30と同様に、第1
電極層部から第2電極層部,第3電極層部および最外電
極層部を積層して備え、その第1電極層部(基材パート
50a)と最外電極層部(基材パート50b)は、導電
性シース55の露出領域となるので外部に対して導電性
を呈する。また、この第1電極層部と最外電極層部と
は、縦糸材52の銅製ワイヤー54および導電性シース
55を介して電気的に良好に導通されるとともに、第1
電極層部と最外電極層部との間の第2電極層部(基材パ
ート50c)および第3電極層部(基材パート50d)
は、はっ水性シース56の露出を通してはっ水性を呈す
る。つまり、電極基材50を図7のように折り畳んで形
成した電極78でも、はっ水性と導電性とを兼ね備えた
電極となるとともに、織布物であることから優れたガス
透過性を有する電極となる。よって、第1実施例の電極
(陽極20,陰極30)と同様の効果を奏することがで
きる。
Even in the electrode 78 of the second embodiment, like the anode 20 and the cathode 30 of the first embodiment described above, the first
An electrode layer portion, a second electrode layer portion, a third electrode layer portion, and an outermost electrode layer portion are laminated and provided, and the first electrode layer portion (base material part 50a) and the outermost electrode layer portion (base material part 50b). ) Is an exposed region of the conductive sheath 55, and thus exhibits conductivity to the outside. Further, the first electrode layer portion and the outermost electrode layer portion are electrically satisfactorily conducted through the copper wire 54 of the warp material 52 and the conductive sheath 55, and
A second electrode layer part (base material part 50c) and a third electrode layer part (base material part 50d) between the electrode layer part and the outermost electrode layer part.
Exhibits water repellency through the exposure of the water repellent sheath 56. That is, even the electrode 78 formed by folding the electrode base material 50 as shown in FIG. 7 is an electrode having both water repellency and conductivity, and an electrode having excellent gas permeability because it is a woven material. Becomes Therefore, the same effects as those of the electrodes (anode 20, cathode 30) of the first embodiment can be obtained.

【0053】次に、上記の第2実施例の電極78の変形
例について説明する。この変形例では、導電性シース5
5のみを有する銅製ワイヤー54を縦糸および横糸とし
て織布した電極基材60と、はっ水性とガス透過性とを
有する中間基材61とを別個に用意する。この中間基材
61としては、はっ水性シース56のみを有する銅製ワ
イヤー54を縦糸および横糸として織布した織布物やは
っ水処理が施されたカーボンクロス、はっ水処理の施さ
れた非導電性繊維から織布或いは編成された織布物,編
成物等を例示することができる。そして、図8に示すよ
うに、電極基材60をくの字状に屈曲させ、その開口部
に中間基材61を入れ込み、この中間基材61を電極基
材60でその両側から挟み込んでプレスして、電極80
を形成する。
Next, a modified example of the electrode 78 of the second embodiment will be described. In this modification, the conductive sheath 5
An electrode base material 60 in which a copper wire 54 having only 5 is woven as warp threads and weft threads, and an intermediate base material 61 having water repellency and gas permeability are separately prepared. As the intermediate base material 61, a woven fabric in which a copper wire 54 having only a water-repellent sheath 56 is woven as warp and weft, a water-repellent carbon cloth, and a water-repellent treatment are applied. A woven fabric or a woven fabric, a knitted fabric, and the like, which are made of non-conductive fibers, can be exemplified. Then, as shown in FIG. 8, the electrode base material 60 is bent in a dogleg shape, the intermediate base material 61 is inserted into the opening, and the intermediate base material 61 is sandwiched between the electrode base materials 60 from both sides and pressed. Then the electrode 80
To form.

【0054】こうして形成された電極80も、第1電極
層部(電極基材60の一片)と第2電極層部(中間基材
61)および最外電極層部(電極基材60の他片)を積
層して備え、この第1電極層部と最外電極層部とは、導
電性シース55の露出領域となるので外部に対して導電
性を呈する。また、この第1電極層部と最外電極層部と
は、縦糸又は横糸における銅製ワイヤー54および導電
性シース55を介して電気的に良好に導通されるととも
に、第1電極層部と最外電極層部との間の第2電極層部
は、はっ水性を呈する。よって、電極基材60およびこ
の基材とは別体の中間基材61とから形成した電極80
にあっても、はっ水性と導電性とを兼ね備えた電極とな
る。しかも、電極基材60は織布物であり中間基材61
は当初からガス透過性を有することから、この変形例の
電極80は、優れたガス透過性を有する電極となり、第
1実施例,第2実施例の電極と同様の効果を奏すること
ができる。
The electrode 80 thus formed also includes the first electrode layer portion (one piece of the electrode base material 60), the second electrode layer portion (intermediate base material 61) and the outermost electrode layer portion (the other piece of the electrode base material 60). ) Are laminated, and the first electrode layer portion and the outermost electrode layer portion are exposed regions of the conductive sheath 55, and thus exhibit conductivity to the outside. Further, the first electrode layer portion and the outermost electrode layer portion are electrically well connected to each other through the copper wire 54 and the conductive sheath 55 in the warp or the weft, and at the same time, the first electrode layer portion and the outermost electrode layer portion. The second electrode layer portion between the electrode layer portion and the electrode layer portion exhibits water repellency. Therefore, the electrode 80 formed from the electrode base material 60 and the intermediate base material 61 separate from this base material
Even in this case, it becomes an electrode having both water repellency and conductivity. Moreover, the electrode base material 60 is a woven material, and is an intermediate base material 61.
Since the electrode 80 has gas permeability from the beginning, the electrode 80 of this modified example becomes an electrode having excellent gas permeability, and the same effect as the electrodes of the first and second examples can be obtained.

【0055】また、この変形例の電極80では、はっ水
性を呈するための中間基材61を、第1層部および最外
層部を形成するための電極基材60と別体とすることが
できるので、電極基材60にはっ水性付与のための処理
を必要としない。よって、電極80によれば、水分の電
極内滞留を防止するためのはっ水性と外部との高い電気
的な導電性とを兼ね備えた電極を容易に製造することが
できる。特に、この中間基材61を、はっ水性を有する
樹脂繊維、例えばフッ素繊維そのものの織布物や編成物
とすることができるので、はっ水処理そのものが必要な
く、より容易に製造することができる。
Further, in the electrode 80 of this modification, the intermediate base material 61 for exhibiting water repellency may be separated from the electrode base material 60 for forming the first layer portion and the outermost layer portion. Therefore, the electrode base material 60 does not require a treatment for imparting water repellency. Therefore, according to the electrode 80, it is possible to easily manufacture an electrode having both water repellency for preventing water from staying in the electrode and high electrical conductivity with the outside. In particular, since the intermediate base material 61 can be a woven fabric or a knitted product of resin fibers having water repellency, for example, fluorine fibers themselves, water repellency treatment itself is not necessary, and can be manufactured more easily. You can

【0056】次に、第3実施例について説明する。この
第3実施例における電極を製造するに当たっては、ま
ず、次の心材を用意する。つまり、第3実施例における
心材は、直径0.5mmの銅製ワイヤーをコアとし、そ
の表面に、カーボン粒子を分散したフッ素樹脂溶液(例
えば、ポリテトラフルオロエチレン)のシース(カーボ
ン粒子分散シース)を100μm程度の厚みで有する。
このカーボン粒子分散シースを形成するには、カーボン
粒子60wt%とポリテトラフルオロエチレン溶液40
wt%とを混合・攪拌したペーストを用意し、縦糸材5
2の形成と同様に、銅製ワイヤーと上記ペーストとを共
有押し出しすればよい。この共有押し出しにより、銅製
ワイヤーの表面にカーボン粒子分散シースを有する心材
が作成される。そして、この心材を織布或いは編成して
電極面積にあせて切りとり、薄様状の電極(第3実施例
電極)とする。この第3実施例電極を形成する心材のカ
ーボン粒子分散シースには、導電性を有するカーボン粒
子がはっ水性を有するポリテトラフルオロエチレンに分
散していることから、第3実施例電極は、このカーボン
粒子分散シースを通して、導電性とはっ水性とをその表
面において偏在させることなく均一に呈し、導電性とは
っ水性とを兼ね備えた電極となる。しかも、第3実施例
電極は、心材の織布物であることから、導電性とはっ水
性とを兼ね備えるとともに、優れたガス透過性を有する
電極となり、第1実施例,第2実施例の電極と同様の効
果を奏することができる。
Next, the third embodiment will be described. In manufacturing the electrode in the third embodiment, first, the following core material is prepared. That is, in the core material of the third embodiment, a copper wire having a diameter of 0.5 mm is used as a core, and a sheath of a fluororesin solution (for example, polytetrafluoroethylene) in which carbon particles are dispersed (carbon particle dispersion sheath) is provided on the surface thereof. It has a thickness of about 100 μm.
To form this carbon particle dispersion sheath, 60 wt% of carbon particles and 40 of polytetrafluoroethylene solution are used.
Prepare a paste that is mixed with wt% and stirred, and
Similar to the formation of No. 2, the copper wire and the paste may be coextruded. By this co-extrusion, a core material having a carbon particle-dispersed sheath on the surface of the copper wire is created. Then, the core material is woven or knitted and cut to fit the electrode area to obtain a thin electrode (third embodiment electrode). Since carbon particles having conductivity are dispersed in polytetrafluoroethylene having water repellency in the carbon particle dispersion sheath of the core material forming the electrode of the third embodiment, the electrode of the third embodiment is Through the carbon particle-dispersed sheath, conductivity and water repellency are uniformly exhibited without uneven distribution on the surface, and the electrode has both conductivity and water repellency. Moreover, since the electrode of the third embodiment is a woven fabric of the core material, it is an electrode having both conductivity and water repellency and excellent gas permeability. The same effect as the electrode can be obtained.

【0057】この第3実施例電極を陽極および陰極に用
いた燃料電池(第3実施例燃料電池)について、I−V
特性を調べたところ、図6中に点線で示す特性が得られ
た。図6から明らかなように、第3実施例燃料電池にあ
っても、第1実施例燃料電池に近似した特性が得られ、
測定範囲の総ての電流密度に亘って比較例の燃料電池よ
り優れていた。このことから、第3実施例電極が第1実
施例における陽極20,陰極30と同様にはっ水性と導
電性とを兼ね備えた電極であるが故、燃料電池特性の向
上を図ることができたいえる。
Regarding a fuel cell (third embodiment fuel cell) using the third embodiment electrode as an anode and a cathode, IV
When the characteristics were examined, the characteristics shown by the dotted line in FIG. 6 were obtained. As is apparent from FIG. 6, even in the fuel cell of the third embodiment, characteristics similar to those of the fuel cell of the first embodiment are obtained,
It was superior to the fuel cell of the comparative example over the entire current density of the measurement range. From this, since the electrode of the third embodiment is an electrode having both water repellency and conductivity like the anode 20 and the cathode 30 in the first embodiment, the fuel cell characteristics can be improved. I can say.

【0058】また、この第3実施例電極では、はっ水性
を有する心材の織布を経ていることから、織布物の状態
でのはっ水性付与処理、例えばはっ水性樹脂の含浸,ス
プレー等を必要としない。よって、第3実施例電極は、
織布の織り目が樹脂で目詰まりしてガス透過を阻害する
ようなことがないので、ガス拡散性に優れた電極とな
る。
Further, in the third embodiment electrode, since the woven cloth of the core material having water repellency is used, the water repellency imparting treatment in the state of the woven material, for example, impregnation and spray of water repellant resin is carried out. Etc. are not required. Therefore, the third embodiment electrode is
Since the weave of the woven cloth is not clogged with the resin to impede gas permeation, the electrode has excellent gas diffusibility.

【0059】しかも、第3実施例電極によれば、心材の
織布を経たままの状態で電極として使用できるので、そ
の後の工程、例えばはっ水性付与工程,はっ水性除去処
理,折畳工程等を必要とせず、その製造工程の簡略化を
より一層推進することができる。
Moreover, according to the electrode of the third embodiment, since it can be used as an electrode in a state where it is passed through the woven cloth of the core material, the subsequent steps, for example, the water repellency imparting step, the water repellency removing step, and the folding step Therefore, the simplification of the manufacturing process can be further promoted.

【0060】次に、この第3実施例電極を改良した第4
実施例電極について説明する。この第4実施例電極は、
上記した第3実施例電極の完成後に、次の処理を施す。
つまり、第3実施例電極の表面に、ポリテトラフルオロ
エチレンにてはっ水処理の施されたカーボン粒子を塗り
込んで当該カーボン粒子を積層させ、第4実施例電極と
する。この第4実施例電極は直径0.5mmの銅製ワイ
ヤーをコアとする心材の織布物を基材とするので、カー
ボン粒子を塗り込んでもカーボン粒子は織り目を目詰ま
りさせるものではなく、織り目の交差部における凹所に
積層する。よって、第4実施例電極によれば、電極表面
において、電解質或いは触媒層,外部部材との接触状態
を面接触に近い状態にすることができるので、触媒反応
層や集電体との接触抵抗を低減させることができる。
Next, a modified fourth electrode of the third embodiment electrode is used.
Example electrodes will be described. The fourth embodiment electrode is
After the completion of the above-mentioned third embodiment electrode, the following processing is performed.
That is, the surface of the electrode of the third embodiment is coated with carbon particles that have been subjected to water repellent treatment with polytetrafluoroethylene, and the carbon particles are laminated to form a fourth embodiment electrode. Since the electrode of the fourth embodiment uses a woven fabric of a core material having a copper wire with a diameter of 0.5 mm as a core, even if the carbon particles are applied, the carbon particles do not clog the weave and the weave of the weave. Laminate in the recess at the intersection. Therefore, according to the electrode of the fourth embodiment, the contact state with the electrolyte or the catalyst layer and the external member can be brought into a state close to surface contact on the electrode surface, so that the contact resistance with the catalytic reaction layer and the current collector is reduced. Can be reduced.

【0061】この第4実施例電極を陽極および陰極に用
いた燃料電池(第4実施例燃料電池)について、I−V
特性を調べたところ、図6中に一点鎖線で示す特性が得
られた。図6から明らかなように、第4実施例燃料電池
では、第3実施例燃料電池に勝る特性が得られた。この
ことから、第4実施例電極がはっ水性と導電性とを兼ね
備えた電極であるとともに接触抵抗が低いが故、燃料電
池特性の向上を図ることができたと考えられる。この第
4実施例電極において、電極の表面に塗り込むカーボン
粒子を白金等の触媒を担持したカーボン粒子とすれば、
触媒による電極反応がおき好ましい。
Regarding a fuel cell (fourth embodiment fuel cell) using the fourth embodiment electrode as an anode and a cathode, IV
When the characteristics were examined, the characteristics indicated by the alternate long and short dash line in FIG. 6 were obtained. As is apparent from FIG. 6, the fourth embodiment fuel cell obtained characteristics superior to those of the third embodiment fuel cell. From this, it is considered that the fuel cell characteristics could be improved because the electrode of the fourth embodiment has both water repellency and conductivity and has low contact resistance. In this fourth embodiment electrode, if the carbon particles coated on the surface of the electrode are carbon particles carrying a catalyst such as platinum,
Electrode reaction due to a catalyst is preferred and preferred.

【0062】以上本発明の一実施例について説明した
が、本発明はこの様な実施例になんら限定されるもので
はなく、本発明の要旨を逸脱しない範囲において種々な
る態様で実施し得ることは勿論である。
Although one embodiment of the present invention has been described above, the present invention is not limited to such an embodiment and can be implemented in various modes without departing from the scope of the present invention. Of course.

【0063】例えば、導電性を呈するための導電性シー
ス55とはっ水性を呈するためはっ水性シース56とを
交互に有する銅製ワイヤー54の縦糸材52を作成する
に当たり、以下のようにした。ポリテトラフルオロエチ
レン76の加圧押出の間はカーボンペースト77の押し
出しは行なわず、カーボンペースト77の加圧押出の間
はポリテトラフルオロエチレン76の押し出しは行なわ
ないようにした。しかし、カーボンペースト77の押し
出しは常時行なって銅製ワイヤー54に一律に導電性シ
ース55を設け、ポリテトラフルオロエチレン76の押
し出しを導電性シース55を有する銅製ワイヤー54に
対して間歇的に行なうことで、導電性シース55とはっ
水性シース56とが交互に表面に露呈して縦糸材52を
作成することもできる。この場合、はっ水性シース56
が露呈する範囲では、銅製ワイヤー54の表面は、導電
性シース55とこれを覆うはっ水性シース56の2層の
シースが存在することになる。
For example, in producing the warp yarn material 52 of the copper wire 54 having the conductive sheath 55 for exhibiting the conductivity and the water repellent sheath 56 for exhibiting the water repellency alternately, it was done as follows. The carbon paste 77 was not extruded during the pressure extrusion of the polytetrafluoroethylene 76, and the polytetrafluoroethylene 76 was not extruded during the pressure extrusion of the carbon paste 77. However, the carbon paste 77 is always extruded to uniformly provide the copper wire 54 with the conductive sheath 55, and the polytetrafluoroethylene 76 is extruded intermittently to the copper wire 54 having the conductive sheath 55. Alternatively, the conductive sheath 55 and the water repellent sheath 56 may be alternately exposed on the surface to form the warp yarn material 52. In this case, the water-repellent sheath 56
In the range where is exposed, the copper wire 54 has a two-layered sheath consisting of a conductive sheath 55 and a water-repellent sheath 56 that covers the surface.

【0064】また、はっ水性と導電性とを兼ね備えた電
極を形成するに際して用いた電極基材50において、導
電性を呈する領域とはっ水性を呈する領域とを区画して
形成するに当たり、その区画に応じて横糸材53を導電
性シース55のみを有する銅製ワイヤー54とはっ水性
シース56のみを有する銅製ワイヤー54とで使い分け
たが、この限りではない。つまり、導電性シース55と
はっ水性シース56とを交互に有する縦糸材52によ
り、電極基材50は横糸材53のシースの性質に拘らず
導電性を呈する領域とはっ水性を呈する領域とを有する
ことになるので、織布に用いる横糸材53を導電性シー
ス55のみを有する銅製ワイヤー54だけとすることも
できる。このようにすれば、横糸材53を使い分ける必
要がないので、電極製造の工程を簡略化することができ
る。
In the electrode base material 50 used for forming the electrode having both water repellency and conductivity, the region having conductivity and the region having water repellency are divided and formed. The weft material 53 was used separately according to the section, that is, the copper wire 54 having only the conductive sheath 55 and the copper wire 54 having only the water-repellent sheath 56, but the present invention is not limited to this. That is, the warp material 52 having the electrically conductive sheath 55 and the water repellent sheath 56 alternately provides the electrode base material 50 with a region exhibiting conductivity and a region exhibiting water repellency regardless of the nature of the sheath of the weft yarn material 53. Therefore, the weft thread material 53 used for the woven cloth may be only the copper wire 54 having only the conductive sheath 55. In this way, it is not necessary to use the weft thread material 53 properly, so that the electrode manufacturing process can be simplified.

【0065】更に、電極形成のための心材を銅製ワイヤ
ー54をコアとするものとしたが、他の良導電体金属、
例えばニッケル,チタン,アルミ等を用いることもでき
る。また、銅製ワイヤー54に替えてカーボンファイバ
の集合体であるスライバやカーボンファイバの縒り糸を
用いることもできる。この場合には、このスライバや縒
り糸はカーボンファイバが用いられているために耐食性
と導電性とを有するので、スライバや縒り糸にははっ水
性のシースのみを間歇的に設ければよい。そして、この
ようにすることで、軽量化は勿論、耐食性や耐久性に富
んだ電極を得ることができる。
Further, although the core material for forming the electrode is the copper wire 54 as the core, other good conductive metal,
For example, nickel, titanium, aluminum or the like can be used. Further, instead of the copper wire 54, a sliver, which is an aggregate of carbon fibers, or a twisted yarn of carbon fibers can be used. In this case, since the sliver and the twist yarn have the corrosion resistance and the conductivity because the carbon fiber is used, only the water-repellent sheath may be intermittently provided on the sliver and the twist yarn. By doing so, it is possible to obtain an electrode that is not only lightweight but also has excellent corrosion resistance and durability.

【0066】また、電極基材として従来一般に用いられ
ているカーボンクロスを使用することもできる。この場
合には、図2に示す電極基材をカーボンクロスから形成
し、はっ水性樹脂をこのカーボンクロスの基材パート5
0b,50cの範囲のみに含浸させればよい。なお、は
っ水性樹脂の含浸に際しては、カーボンクロスを目詰ま
りさせないことは勿論である。
Further, as the electrode base material, carbon cloth generally used in the past can be used. In this case, the electrode base material shown in FIG. 2 is formed from carbon cloth, and the water-repellent resin is used as the base material part 5 of this carbon cloth.
It is sufficient to impregnate only the range of 0b and 50c. Incidentally, it goes without saying that the carbon cloth is not clogged during the impregnation with the water-repellent resin.

【0067】第4実施例電極において電極表面の凹所に
カーボン粒子を積層したが、第1実施例における陽極2
0や陰極30の第1電極層部21,31の電極側表面或
いは最外電極層部24,34の集電体側表面の凹所に、
カーボン粒子を或いは触媒を担持したカーボン粒子を積
層することもできる。
In the fourth embodiment electrode, carbon particles were laminated in the recess of the electrode surface, but the anode 2 in the first embodiment was used.
0 or the recesses on the electrode side surface of the first electrode layer portions 21 and 31 of the cathode 30 or on the current collector side surface of the outermost electrode layer portions 24 and 34,
It is also possible to stack carbon particles or carbon particles carrying a catalyst.

【0068】また、上記した各実施例では、本発明の電
極を適用した燃料電池(固体高分子型燃料電池)を例に
取り説明したが、りん酸型燃料電池やアルカリ型燃料電
池等の種々の電池に用いられる電極にも実施し得る。ま
た、燃料電池と同一の構成で、化学反応が逆となる装
置、例えば、実施例の固体高分子型燃料電池と同一の構
成で、化学反応が逆となるいわゆる水の電気分解装置や
水素発生装置等およびこれらの装置に用いられる電極に
も実施し得る。さらに、本発明の電極は、燃料電池等の
エネルギ変換装置に用いられる他、エネルギ変換を目的
としない装置やエネルギ変換を行なわない装置等の電極
として用いることも可能である。
In each of the above-described embodiments, the fuel cell (solid polymer fuel cell) to which the electrode of the present invention is applied has been described as an example, but various types of phosphoric acid fuel cells, alkaline fuel cells, etc. It can also be applied to the electrodes used in the battery. In addition, a device having the same structure as the fuel cell but having a reverse chemical reaction, for example, a so-called water electrolyzer or hydrogen generating device having the same structure as the polymer electrolyte fuel cell of the embodiment but having a reverse chemical reaction It can also be implemented in devices and the like and the electrodes used in these devices. Further, the electrode of the present invention can be used not only for an energy conversion device such as a fuel cell, but also as an electrode for a device not intended for energy conversion or a device not performing energy conversion.

【0069】[0069]

【発明の効果】以上説明したように請求項1記載の電極
では、電解質側から第1層部,中間層部,最外層部とを
積層させ、第1層部と最外層部とについては、これらを
外部部材との間で電子の授受が可能で導電性とガス透過
性を有する電極基材を用いて形成することで、外部部材
との間で電子を支障なく受け渡すとともに、ガス透過性
を発揮する。しかも、第1層部と最外層部とを電気的に
導通することで、第1層部と最外層部との間で電子の移
動をなんら阻害しない。更に、第1層部と最外層部との
間に位置する中間層部をはっ水性とガス透過性を備える
ものとして、第1層部と最外層部との間において、はっ
水性とガス透過性とを発揮する。この結果、請求項1記
載の電極は、水分の電極内滞留を防止するためのはっ水
性と外部との高い電気的な導電性とを兼ね備えた電極と
なる。
As described above, in the electrode according to claim 1, the first layer portion, the intermediate layer portion, and the outermost layer portion are laminated from the electrolyte side, and the first layer portion and the outermost layer portion are By forming these using an electrode base material that can transfer electrons to and from external members and has conductivity and gas permeability, it can transfer electrons to and from external members without difficulty Exert. Moreover, by electrically connecting the first layer portion and the outermost layer portion, the movement of electrons is not hindered between the first layer portion and the outermost layer portion. Further, assuming that the intermediate layer portion located between the first layer portion and the outermost layer portion has water repellency and gas permeability, water repellency and gas are provided between the first layer portion and the outermost layer portion. Demonstrate transparency. As a result, the electrode according to claim 1 becomes an electrode having both water repellency for preventing water from staying in the electrode and high electrical conductivity with the outside.

【0070】このため、請求項1記載の電極によれば、
はっ水性による電極における水分滞留の防止と、外部と
の高い電気的な導電性とを通して、各電極における電極
反応を円滑に進行させることができるので、この電極を
用いた燃料電池等の特性を向上することができる。
Therefore, according to the electrode of claim 1,
It is possible to smoothly proceed the electrode reaction in each electrode through prevention of water retention in the electrode due to water repellency and high electrical conductivity with the outside. Can be improved.

【0071】また、請求項1記載の電極では、中間層部
を第1層部および最外層部と別体とすることができるの
で、第1層部および最外層部を形成するための電極基材
にはっ水性付与のための処理を必要としない。よって、
請求項1記載の電極によれば、水分の電極内滞留を防止
するためのはっ水性と外部との高い電気的な導電性とを
兼ね備えた電極を容易に製造することができる。
Further, in the electrode according to claim 1, the intermediate layer portion can be separated from the first layer portion and the outermost layer portion. Therefore, the electrode substrate for forming the first layer portion and the outermost layer portion is formed. The material does not require treatment for imparting water repellency. Therefore,
According to the electrode of the first aspect, it is possible to easily manufacture an electrode having both water repellency for preventing retention of moisture in the electrode and high electrical conductivity with the outside.

【0072】請求項2記載の電極では、第1層部と最外
層部との間の電気的な導通および第1層部と最外層部に
おける外部への電子の支障のない授受を、外部部材との
間で電子の授受が可能で導電性とガス透過性を有する連
続した電極基材を用いることで確保する。一方、第1層
部と最外層部との間の中間層部については、この連続し
た電極基材に区画形成したはっ水表面部を中間層部とす
ることで、はっ水性を発現させる。この結果、請求項2
記載の電極にあっても、水分の電極内滞留を防止するた
めのはっ水性と外部との高い電気的な導電性とを兼ね備
えた電極となる。
In the electrode according to the second aspect, the electrical connection between the first layer portion and the outermost layer portion and the transfer of electrons to the outside between the first layer portion and the outermost layer portion without hindrance are provided to the external member. It is ensured by using a continuous electrode base material capable of exchanging electrons with and having conductivity and gas permeability. On the other hand, regarding the intermediate layer portion between the first layer portion and the outermost layer portion, water repellency is expressed by using the water repellent surface portion partitioned and formed on the continuous electrode base material as the intermediate layer portion. . As a result, claim 2
Even the electrode described above is an electrode having both water repellency for preventing water from staying in the electrode and high electrical conductivity with the outside.

【0073】また請求項2記載の電極によれば、連続し
た一つの電極基材から形成することができるので、部品
(電極基材)管理が容易となりその製造工程の簡略化を
図ることができる。更に、請求項2記載の電極では、連
続した電極基材自体が外部部材との間で電子の授受が可
能であるので、はっ水表面部の区画形成領域にのみはっ
水処理を施して当該領域の表面にはっ水性を付与すれば
よい。このため、導電表面部の区画形成領域について
は、はっ水性を取り除く必要がないので、この請求項2
記載の電極によれば、工程(はっ水性除去工程)の省略
を通して製造工程の簡略化を図ることができる。
Further, according to the electrode of the second aspect, since it can be formed from one continuous electrode base material, management of parts (electrode base material) is facilitated and the manufacturing process thereof can be simplified. . Further, in the electrode according to claim 2, since the continuous electrode base material itself can exchange electrons with the external member, the water-repellent treatment is applied only to the partition formation region of the water-repellent surface portion. Water repellency may be imparted to the surface of the region. For this reason, it is not necessary to remove the water repellency in the partition forming region of the conductive surface portion.
According to the described electrode, the manufacturing process can be simplified by omitting the process (water repellency removing process).

【0074】請求項3記載の電極によれば、第1層部と
最外層部との間の電気的な導通および第1層部と最外層
部における外部への電子の支障のない授受を、はっ水表
面心材部と導電表面心材部とを区画形成した導電性の心
材を織布或いは編成して電極基材を形成することで、確
保する。一方、第1層部と最外層部との間の中間層部に
ついては、この導電性の心材に区画形成したはっ水表面
心材部を中間層部とすることで、はっ水性を発現させ
る。この結果、請求項3記載の電極にあっても、水分の
電極内滞留を防止するためのはっ水性と外部との高い電
気的な導電性とを兼ね備えた電極となる。
According to the electrode of the third aspect, electrical conduction between the first layer portion and the outermost layer portion and transfer of electrons to and from the outside between the first layer portion and the outermost layer portion without hindrance are carried out. This is ensured by forming an electrode base material by weaving or knitting a conductive core material in which a water-repellent surface core material portion and a conductive surface core material portion are partitioned and formed. On the other hand, with respect to the intermediate layer portion between the first layer portion and the outermost layer portion, the water repellent surface core material portion partitioned and formed in the conductive core material is used as the intermediate layer portion to develop water repellency. . As a result, even the electrode according to claim 3 is an electrode having both water repellency for preventing water from staying in the electrode and high electrical conductivity with the outside.

【0075】また、請求項3記載の電極では、中間層部
のはっ水性を得るに当たり、心材の状態におけるはっ水
表面心材部の区画形成とその心材の織布或いは編成を経
ているに過ぎず、織布物および編成物の状態でのはっ水
性付与処理、例えばはっ水性樹脂の含浸,スプレー等を
必要としない。よって、請求項3記載の電極によれば、
心材相互の間隙に樹脂が行き渡ることがなく、電極にお
けるガス透過を阻害しない。このため、請求項3記載の
電極は、ガス拡散性に優れた電極となる。
In order to obtain the water repellency of the intermediate layer portion, the electrode according to the third aspect is merely subjected to the partition formation of the water repellent surface core material in the state of the core material and the woven or knitting of the core material. In addition, there is no need for water repellency imparting treatment in the state of woven fabric and knitted fabric, such as impregnation of water repellent resin and spraying. Therefore, according to the electrode of claim 3,
The resin does not spread into the gaps between the core materials and does not impede gas permeation through the electrodes. Therefore, the electrode according to claim 3 is an electrode having excellent gas diffusivity.

【0076】請求項4記載の電極では、心材の導電表面
心材部を耐食性を有する導電性粒子で被覆して形成した
ので、心材を良導電体である種々の金属としても心材を
腐食させることがない。このため、請求項4記載の電極
は、第1層部と最外層部との間の電気的な導電性に優れ
るとともに、強度や耐久性に優れた電極となる。
In the electrode according to claim 4, since the conductive surface of the core material is formed by coating the core material portion with the conductive particles having corrosion resistance, the core material can be corroded even if it is made of various metals which are good conductors. Absent. Therefore, the electrode according to claim 4 is an electrode having excellent electrical conductivity between the first layer portion and the outermost layer portion, as well as excellent strength and durability.

【0077】請求項5記載の電極では、導電性を有する
心材を導電性粒子を分散したはっ水性樹脂の被覆層で被
覆し、この心材の織布或いは編成を経ることで、この被
覆層自体で電極としての外部との電気的な導電性とはっ
水性を電極表面において均一に発揮する。また、心材の
織布或いは編成を経ていることから、請求項5記載の電
極では、織布物および編成物の状態でのはっ水性付与処
理、例えばはっ水性樹脂の含浸,スプレー等を必要とし
ない。よって、請求項5記載の電極によれば、心材相互
の間隙に樹脂が行き渡ることがなく、電極におけるガス
透過を阻害しない。このため、請求項5記載の電極は、
水分の電極内滞留を防止するためのはっ水性と外部との
高い電気的な導電性とを兼ね備えるとともに、ガス拡散
性に優れた電極となる。
In the electrode according to claim 5, the conductive core material is coated with a coating layer of a water-repellent resin in which conductive particles are dispersed, and the coating material itself is woven or knitted to obtain the coating layer itself. Thus, electrical conductivity with the outside as an electrode and water repellency are uniformly exhibited on the electrode surface. Further, since the core material has been woven or knitted, the electrode according to claim 5 requires a water repellent imparting treatment in the state of the woven material and the knitted material, for example, impregnation of water repellent resin, spraying and the like. Not. Therefore, according to the electrode of the fifth aspect, the resin does not spread in the gap between the core materials, and gas permeation through the electrode is not hindered. Therefore, the electrode according to claim 5 is
The electrode has both excellent water repellency for preventing water from staying in the electrode and high electrical conductivity with the outside, and also has excellent gas diffusibility.

【0078】また、請求項5記載の電極によれば、上記
の被覆層で被覆した心材の織布或いは編成を経た織布物
又は編成物をそのままの状態で電極として使用できるの
で、織布或いは編成を経た後に工程を必要とせず、その
製造工程の簡略化をより一層推進することができる。
According to the electrode of claim 5, the woven fabric of the core material coated with the coating layer, or the woven fabric or the knitted fabric after the knitting can be used as it is as an electrode. No steps are required after the knitting, and the simplification of the manufacturing process can be further promoted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例である固体高分子型燃料電池
のセル構造の模式図。
FIG. 1 is a schematic diagram of a cell structure of a polymer electrolyte fuel cell which is an embodiment of the present invention.

【図2】陽極20および陰極30を形成するための電極
基材50の平面図およびその一部拡大模式図。
2A and 2B are a plan view and a partially enlarged schematic view of an electrode base material 50 for forming an anode 20 and a cathode 30, respectively.

【図3】電極基材50を織布するための単位長さ当たり
の縦糸材52の斜視図。
FIG. 3 is a perspective view of a warp material 52 per unit length for weaving the electrode base material 50.

【図4】縦糸材52の製造工程を説明するための説明
図。
FIG. 4 is an explanatory view for explaining a manufacturing process of the warp yarn material 52.

【図5】縦糸材52,横糸材53から織布した織布物か
ら電極基材50を得るための説明図。
FIG. 5 is an explanatory view for obtaining the electrode base material 50 from a woven fabric woven from a warp yarn material 52 and a weft yarn material 53.

【図6】実施例の電極を用いた燃料電池と比較例の燃料
電池との電池特性の比較評価を説明するためのグラフ。
FIG. 6 is a graph for explaining comparative evaluation of cell characteristics of a fuel cell using an electrode of an example and a fuel cell of a comparative example.

【図7】第2実施例の電極78の製造工程を説明する説
明図。
FIG. 7 is an explanatory view illustrating a manufacturing process of the electrode 78 of the second embodiment.

【図8】電極78の変形例である電極80の製造工程を
説明する説明図。
FIG. 8 is an explanatory diagram illustrating a manufacturing process of an electrode 80 that is a modified example of the electrode 78.

【符号の説明】[Explanation of symbols]

10…電解質膜 12…陽極側触媒反応層 14…陰極側触媒反応層 20…陽極 21,31…第1電極層部 22,32…第2電極層部 23,33…第3電極層部 24,34…最外電極層部 30…陰極 40,42…集電体 41,43…流路 44…セパレータ 50…電極基材 50a〜50d…基材パート 51…折り目 52…縦糸材 53…横糸材 54…銅製ワイヤー 55…導電性シース 56…はっ水性シース 57…織布物 60…電極基材 61…中間基材 70…ダイ 78…電極 80…電極 DESCRIPTION OF SYMBOLS 10 ... Electrolyte membrane 12 ... Anode side catalytic reaction layer 14 ... Cathode side catalytic reaction layer 20 ... Anode 21, 31 ... 1st electrode layer part 22, 32 ... 2nd electrode layer part 23, 33 ... 3rd electrode layer part 24, 34 ... Outermost electrode layer part 30 ... Cathode 40, 42 ... Current collector 41, 43 ... Flow path 44 ... Separator 50 ... Electrode base material 50a-50d ... Base material part 51 ... Crease 52 ... Warp thread material 53 ... Weft thread material 54 ... Copper wire 55 ... Conductive sheath 56 ... Water repellent sheath 57 ... Woven fabric 60 ... Electrode base material 61 ... Intermediate base material 70 ... Die 78 ... Electrode 80 ... Electrode

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 電解質を挟んで対向する電極であって、 前記電解質側の第1層部と、該第1層部に前記電解質側
と反対側に積層される中間層部と、該中間層部を挟んで
前記第1層部と対向するよう前記中間層部に積層された
最外層部とを備え、 前記第1層部と前記最外層部とを、前記第1層部又は前
記最外層部に接触する外部部材との間で電子の授受が可
能で導電性とガス透過性を有する電極基材を用いて形成
するとともに、前記第1層部と前記最外層部とを電気的
に導通して形成し、 前記中間層部を、はっ水性とガス透過性とを有する部材
としたことを特徴とする電極。
1. Electrodes facing each other with an electrolyte interposed therebetween, a first layer portion on the electrolyte side, an intermediate layer portion laminated on the first layer portion on the side opposite to the electrolyte side, and the intermediate layer. An outermost layer portion laminated on the intermediate layer portion so as to face the first layer portion with a portion sandwiched therebetween, the first layer portion and the outermost layer portion being the first layer portion or the outermost layer. Formed by using an electrode base material having conductivity and gas permeability capable of giving and receiving electrons to and from an external member in contact with the outermost layer, and electrically connecting the first layer portion and the outermost layer portion. And the intermediate layer portion is a member having water repellency and gas permeability.
【請求項2】 請求項1記載の電極であって、 接触する外部部材との間で電子の授受が可能で導電性と
ガス透過性を有する連続した電極基材に、はっ水性表面
を有するはっ水表面部と、外部部材との間で電子の授受
が可能な導電表面部とを区画して形成し、 該導電表面部が前記第1層部と最外層部となるよう、か
つ前記はっ水表面部が前記中間層部となるよう、前記電
極基材を屈曲積層した電極。
2. The electrode according to claim 1, wherein a continuous electrode base material capable of giving and receiving electrons to and from an external member which is in contact, and having conductivity and gas permeability has a water repellent surface. A water repellent surface portion and a conductive surface portion capable of giving and receiving electrons to and from an external member are partitioned and formed, and the conductive surface portion serves as the first layer portion and the outermost layer portion, and An electrode in which the electrode base material is bent and laminated so that the water repellent surface portion becomes the intermediate layer portion.
【請求項3】 請求項2記載の電極であって、 導電性を有する心材に、はっ水性樹脂被覆によりはっ水
性を有するに到ったはっ水表面心材部と、外部部材との
間で電子の授受が可能な導電表面心材部とを区画して形
成し、 前記心材のはっ水表面心材部が前記電極基材のはっ水表
面部となるよう、かつ前記心材の導電表面心材部が前記
電極基材の導電表面部となるよう、前記心材を織布或い
は編成して前記電極基材を形成した電極。
3. The electrode according to claim 2, wherein a conductive water-repellent core material has a water-repellent surface core material portion which has water-repellency due to a water-repellent resin coating, and an external member. Is formed by partitioning a conductive surface core material portion capable of electron transfer with, so that the water-repellent surface core material portion of the core material becomes the water-repellent surface portion of the electrode base material, and the conductive surface core material of the core material An electrode in which the core material is woven or knitted to form the electrode base material so that the portion becomes the conductive surface portion of the electrode base material.
【請求項4】 請求項3記載の電極であって、 前記心材の導電表面心材部を、心材表面を耐食性を有す
る導電性粒子で被覆して形成した電極。
4. The electrode according to claim 3, wherein the conductive surface of the core material has a core material portion coated with conductive particles having corrosion resistance.
【請求項5】 電解質を挟んで対向する電極であって、 導電性を有する心材に、導電性粒子を分散したはっ水性
樹脂の被覆層を形成し、 該被覆層を有する心材を織布或いは編成してなる電極。
5. Electrodes facing each other across an electrolyte, wherein a coating layer of a water-repellent resin in which conductive particles are dispersed is formed on a conductive core material, and the core material having the coating layer is woven or A knitted electrode.
JP5344300A 1993-12-16 1993-12-16 Electrode Pending JPH07169469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5344300A JPH07169469A (en) 1993-12-16 1993-12-16 Electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5344300A JPH07169469A (en) 1993-12-16 1993-12-16 Electrode

Publications (1)

Publication Number Publication Date
JPH07169469A true JPH07169469A (en) 1995-07-04

Family

ID=18368177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5344300A Pending JPH07169469A (en) 1993-12-16 1993-12-16 Electrode

Country Status (1)

Country Link
JP (1) JPH07169469A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261421A (en) * 1997-03-17 1998-09-29 Japan Gore Tex Inc Gas diffusion layer material for high polymer solid electrolyte fuel cell and junction thereof
JP2004207231A (en) * 2002-12-11 2004-07-22 Matsushita Electric Ind Co Ltd Electrolyte membrane-electrode junction body for fuel cell and fuel cell operating method using it
JP2008004481A (en) * 2006-06-26 2008-01-10 Toyota Motor Corp Manufacturing device and manufacturing method of diffusion layer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261421A (en) * 1997-03-17 1998-09-29 Japan Gore Tex Inc Gas diffusion layer material for high polymer solid electrolyte fuel cell and junction thereof
JP2004207231A (en) * 2002-12-11 2004-07-22 Matsushita Electric Ind Co Ltd Electrolyte membrane-electrode junction body for fuel cell and fuel cell operating method using it
JP2008004481A (en) * 2006-06-26 2008-01-10 Toyota Motor Corp Manufacturing device and manufacturing method of diffusion layer

Similar Documents

Publication Publication Date Title
KR100374281B1 (en) Fuel Cell
JP3594533B2 (en) Fuel cell
US7150934B2 (en) Electrolyte film electrode union, fuel cell containing the same and process for producing them
JP3549241B2 (en) Electrode for polymer solid electrolyte fuel cell and joined body thereof with polymer solid electrolyte
JP5337936B2 (en) Polymer electrolyte fuel cell
JP5500908B2 (en) Polymer electrolyte fuel cell
JP3376653B2 (en) Energy conversion device and electrode
JP5055854B2 (en) Membrane / electrode assembly for fuel cells
US9531012B2 (en) Gas diffusion layer with flowpaths
JP2009026698A (en) Catalyst layer member for solid polymer electrolyte fuel cell, membrane electrode assembly using the same, and manufacturing methods of them
JP2004200153A (en) Fuel cell and material for fuel cell gas diffusion layer
JP3555209B2 (en) Power generation layer of fuel cell and method of manufacturing the same
JP4372370B2 (en) Fuel cell
JP2023501791A (en) MEMBRANE-ELECTRODE ASSEMBLY, MANUFACTURING METHOD THEREOF, AND FUEL CELL CONTAINING THE SAME
JPH07169469A (en) Electrode
JP4052932B2 (en) Fuel cell
JPH08106915A (en) Electrode of solid polymer fuel cell and manufacture of fuel cell
US8273496B2 (en) Fuel cell containing a cathode diffusion layer having a fabric structure
US20070071975A1 (en) Micro-scale fuel cell fibers and textile structures therefrom
JP2024148519A (en) Membrane electrode assembly, its manufacturing method and fuel cell
WO2024058177A1 (en) Solid polymer electrolyte membrane, membrane electrode assembly, method for producing membrane electrode assembly, and water electrolysis device
KR100517586B1 (en) Fuel cell
JP2005276449A (en) Mea for fuel cell and fuel cell using it
JP5426830B2 (en) Gas diffusion electrode for polymer electrolyte fuel cell, membrane-electrode assembly using the same, method for producing the same, and polymer electrolyte fuel cell using the same
JP2007066723A (en) Fuel cell