JPH07167997A - X-ray radiation device - Google Patents

X-ray radiation device

Info

Publication number
JPH07167997A
JPH07167997A JP5315147A JP31514793A JPH07167997A JP H07167997 A JPH07167997 A JP H07167997A JP 5315147 A JP5315147 A JP 5315147A JP 31514793 A JP31514793 A JP 31514793A JP H07167997 A JPH07167997 A JP H07167997A
Authority
JP
Japan
Prior art keywords
ray
parabola
axis
rays
focal point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5315147A
Other languages
Japanese (ja)
Other versions
JP3141660B2 (en
Inventor
Hisao Fujisaki
久雄 藤崎
Katsumi Sugizaki
克己 杉崎
Hiroshi Nagata
浩 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP05315147A priority Critical patent/JP3141660B2/en
Publication of JPH07167997A publication Critical patent/JPH07167997A/en
Application granted granted Critical
Publication of JP3141660B2 publication Critical patent/JP3141660B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PURPOSE:To allow high intensity X-rays to be radiated uniformly to an irradiated object. CONSTITUTION:An X-ray radiation device is provided with a converging mirror of which the reflecting surface is the inner peripheral surface Fi of the rotating curved surface obtained by rotating a line segment Ls, formed of part of a parabola Pr, around an axis A passing the focus (f) of the parabola Pr and inclined onto the line segment Ls side in relation to the main axis X of the parabola Pr. X-rays Lx are radiated toward the inner peripheral surface of the converging mirror from the position of the focus (f).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、X線顕微鏡において観
察試料にX線を照射し、あるいは、X線投影露光装置に
おいてレチクルにX線を照射する場合等に用いられるX
線照射装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for irradiating an observation sample with X-rays in an X-ray microscope, or for irradiating a reticle with X-rays in an X-ray projection exposure apparatus.
The present invention relates to a radiation irradiation device.

【0002】[0002]

【従来の技術】X線顕微鏡による試料の観察において
は、たとえば図7に示すようなレーザプラズマによるX
線照射装置が使用される。このX線照射装置は、図示さ
れていないレーザ発振器からのレーザ光Lを集光レンズ
60により集光して、レーザ光導入窓65を介して真空
容器61内のターゲット62にスポット照射し、ターゲ
ット62の表面に径100μm程度のプラズマPを生成
せしめ、このプラズマPより可視光除去フイルタ63を
透過して出射するX線Lxを、X線反射多層膜が表面に
形成された回転楕円面鏡64により集光し、観察試料M
に照射する。
2. Description of the Related Art In observing a sample with an X-ray microscope, X-rays with a laser plasma as shown in FIG.
A line irradiation device is used. This X-ray irradiation device condenses laser light L from a laser oscillator (not shown) with a condensing lens 60 and irradiates a target 62 in a vacuum container 61 with a spot through a laser light introduction window 65 to form a target. A plasma P having a diameter of about 100 μm is generated on the surface of 62, and the X-ray Lx emitted from the plasma P through the visible light removing filter 63 is emitted from the spheroidal mirror 64 having an X-ray reflection multilayer film formed on the surface thereof. Collected by
To irradiate.

【0003】X線投影露光装置によるレチクルなどへの
X線照射においては、たとえば図8に示すように、シン
クロトロン放射光Sを光源として回折格子分光器70に
より分光し、回折格子分光器70よりの回折光Ldから
フィルタ71によって短波長光の高次回折成分や可視光
などの混合光を除去し、単色化されたX線Lxをレチク
ルRに照射する。
In irradiating a reticle or the like with an X-ray by an X-ray projection exposure apparatus, for example, as shown in FIG. From the diffracted light Ld of 1, the mixed light such as the high-order diffracted component of the short wavelength light and the visible light is removed by the filter 71, and the reticle R is irradiated with the monochromatic X-ray Lx.

【0004】[0004]

【発明が解決しようする課題】しかしながら、上述した
従来のX線照射装置のいずれにおいても、回転楕円面鏡
64や回折格子分光器70を用いて観察試料Mやレチク
ルRにX線を照射していたので、X線源(プラズマP、
シンクロトロン)におけるX線強度分布が被照射物体上
の照度分布として反映し、光源のX線強度分布が一様で
ない場合には照明むらが生じる。すなわち、回転楕円面
鏡64や回折格子分光器70により照射されるX線はい
わばX線源の像であるため、このX線源の強度むらがそ
のまま観察試料MやレチクルR上における照明むらとな
る。
However, in any of the above-described conventional X-ray irradiators, the observation sample M and the reticle R are irradiated with X-rays by using the spheroidal mirror 64 and the diffraction grating spectroscope 70. Therefore, the X-ray source (plasma P,
The X-ray intensity distribution in the synchrotron) is reflected as the illuminance distribution on the irradiated object, and if the X-ray intensity distribution of the light source is not uniform, uneven illumination occurs. That is, since the X-rays emitted by the spheroidal mirror 64 and the diffraction grating spectroscope 70 are, so to speak, an image of the X-ray source, the intensity unevenness of the X-ray source is the same as the illumination unevenness on the observation sample M or the reticle R. Become.

【0005】反射鏡として、回転放物線面による凹面鏡
が使用されれば、その凹面鏡の焦点より発するすべての
光線が回転放物線面の中心軸線(放物線の主軸)に平行
な光線になり、平行光が得られ、照明むらが解消され
る。しかし回転放物線面による凹面鏡は集光能を有して
おらず、観察試料、レチクルなどに照射するX線強度を
高めることができない。
If a concave mirror having a rotating parabolic surface is used as the reflecting mirror, all light rays emitted from the focal point of the concave mirror will be light rays parallel to the central axis of the rotating parabolic surface (main axis of the parabola), and parallel light will be obtained. The uneven lighting is eliminated. However, the concave mirror having a rotating parabolic surface does not have the ability to collect light, and the intensity of X-rays that irradiate the observation sample, reticle, etc. cannot be increased.

【0006】本発明の目的は、被照射物体に対して高強
度のX線を均一に照射することの可能なX線照射装置を
提供することにある。
An object of the present invention is to provide an X-ray irradiating device capable of uniformly irradiating an irradiated object with high-intensity X-rays.

【0007】[0007]

【課題を解決するための手段】一実施例を示す図1〜図
5に対応づけて説明すると、請求項1の発明は、放物線
Prの一部がなす線分Lsを、この放物線Prの焦点f
を通りかつ放物線Prの主軸Xに対して線分Ls側に傾
斜した軸線Aの周りに回転して得られる回転曲面の内周
面を反射面3とする集光鏡1を備え、焦点fの位置から
集光鏡1の内周面へ向けてX線Lxを放射するX線照射
装置を構成することにより、上述の目的を達成している
(図1〜3参照)。
1 to 5 showing an embodiment, the invention of claim 1 defines a line segment Ls formed by a part of a parabola Pr as a focal point of the parabola Pr. f
A condenser mirror 1 having a reflecting surface 3 which is an inner peripheral surface of a rotating curved surface obtained by rotating around an axis A which passes through and which is inclined toward the line segment Ls side with respect to the main axis X of the parabola Pr, The above-described object is achieved by configuring the X-ray irradiation device that emits the X-ray Lx from the position toward the inner peripheral surface of the condenser mirror 1 (see FIGS. 1 to 3).

【0008】また、請求項2の発明は、一つの焦点fを
共有する互いに異なる複数の放物線Pr1、Pr2の各々
の一部がなす複数の線分Ls1、Ls2のそれぞれを、焦
点fを通りかつ各線分Ls1、Ls2に対応する放物線P
1、Pr2の主軸X1、X2に対して線分Ls1、Ls2
に傾斜した一つの軸線Aの周りに回転して得られる複数
の回転曲面の内周面の各々を反射面31、32とする集光
鏡1を備え、焦点fの位置から集光鏡1の内周面へ向け
てX線Lxを放射するX線照射装置を構成することによ
り上述の目的を達成している(図4,5参照)。焦点f
の位置に点状X線源2を配置してもよく、また、集光鏡
1の反射面にX線反射多層膜4を設けてもよい。
Further, in the invention of claim 2 , each of a plurality of line segments Ls 1 and Ls 2 formed by a part of each of a plurality of different parabolas Pr 1 and Pr 2 sharing one focus f A parabola P passing through f and corresponding to each of the line segments Ls 1 and Ls 2.
reflecting each of the inner circumferential surface of the plurality of rotating curved surface obtained by rotating around the r 1, of the Pr 2 spindle X 1, line Ls 1 relative to X 2, Ls 2 one axis which is inclined side A The above-mentioned object is achieved by constructing an X-ray irradiator that includes the condenser mirror 1 having the surfaces 3 1 and 3 2 and radiates the X-ray Lx from the position of the focus f toward the inner peripheral surface of the condenser mirror 1. Achieved (see Figures 4 and 5). Focus f
The point X-ray source 2 may be arranged at the position of, and the X-ray reflection multilayer film 4 may be provided on the reflecting surface of the condenser mirror 1.

【0009】[0009]

【作用】焦点位置Fより発したX線Lxは、集光鏡1の
反射面3によって反射し、反射されたX線Lxは、放物
線Pr、Prの主軸X、X´に平行な進路p、p´をも
って進行する。また、本発明の集光鏡1の反射面3は、
軸線Aを中心として環状に形成されている。従って、反
射面3全体から反射されたX線Lxは、集光鏡1の回転
中心をなす軸線Aの放物線主軸Xに対する傾斜角aの2
倍の集束角bをもって、軸線Aを中心とする領域C内に
集光する。
The X-ray Lx emitted from the focus position F is reflected by the reflecting surface 3 of the condenser mirror 1, and the reflected X-ray Lx is a path p parallel to the main axes X and X'of the parabolas Pr and Pr, Proceed with p '. The reflecting surface 3 of the condenser mirror 1 of the present invention is
It is formed in an annular shape around the axis A. Therefore, the X-ray Lx reflected from the entire reflecting surface 3 has an inclination angle a of 2 with respect to the parabolic main axis X of the axis A forming the center of rotation of the condenser mirror 1.
The light is focused in a region C centered on the axis A with a double focusing angle b.

【0010】なお、本発明の構成を説明する上記課題を
解決するための手段と作用の項では、本発明を分かり易
くするために実施例の図を用いたが、これにより本発明
が実施例に限定されるものではない。
Incidentally, in the section of means and action for solving the above problems for explaining the constitution of the present invention, the drawings of the embodiments are used for the purpose of making the present invention easy to understand. It is not limited to.

【0011】[0011]

【実施例】【Example】

−第1実施例− 図1は本発明によるX線照射装置の第1実施例を示す断
面図、図2は斜視図である。これらの図に示すように、
本実施例のX線照射装置は、集光鏡1と微小X線源2と
を含んでいる。
-First Embodiment- Fig. 1 is a sectional view showing a first embodiment of the X-ray irradiation apparatus according to the present invention, and Fig. 2 is a perspective view. As shown in these figures,
The X-ray irradiation apparatus of this embodiment includes a condenser mirror 1 and a micro X-ray source 2.

【0012】集光鏡1は略円環状の外形を有し、その内
周面が反射面3とされている。この反射面3は、図3に
示すように、放物線Prの一部がなす線分Lsを、放物
線Prの焦点fを通り、かつ放物線Prの主軸(対称
軸)Xに対して線分Lsの側に傾斜した軸線Aの周りに
一回転して得られる回転曲面の内周面Fiからなる。な
お、図3において、符号Pr′は放物線Prを軸線Aの
周りに180°回転させた状態を、符号Ls´は線分L
sを軸線Aの周りに180°回転させた状態を示し、ま
た符号X′はその放物線Pr′の主軸を示している。注
意すべきことは、線分Lsを軸線Aの周りに回転するこ
とにより、これに対応する放物線Pr、およびその主軸
Xも軸線Aの周りに回転しているのであり、反射面3の
任意の周方向の位置において対応する主軸Xの向きはそ
れぞれ異なる。後述のように、この主軸Xの向きがX線
の照射方向および領域を決定する。
The condensing mirror 1 has a substantially annular outer shape, and its inner peripheral surface is a reflecting surface 3. As shown in FIG. 3, the reflecting surface 3 passes a line segment Ls formed by a part of the parabola Pr through a focal point f of the parabola Pr, and a line segment Ls of the main axis (symmetry axis) X of the parabola Pr. It is composed of an inner peripheral surface Fi of a curved surface obtained by making one rotation about the axis A inclined to the side. In FIG. 3, reference numeral Pr ′ represents a state in which the parabola Pr is rotated by 180 ° around the axis A, and reference numeral Ls ′ represents the line segment L.
It shows a state in which s is rotated about the axis A by 180 °, and the symbol X'denotes the main axis of the parabola Pr '. It should be noted that, by rotating the line segment Ls around the axis A, the corresponding parabola Pr and its principal axis X are also rotated around the axis A, and any of the reflecting surfaces 3 can be rotated. The directions of the corresponding main axes X at the circumferential positions are different from each other. As will be described later, the direction of the main axis X determines the X-ray irradiation direction and area.

【0013】集光鏡1の反射面3には、その前面にわた
ってX線反射多層膜4が形成されている。X線反射多層
膜4は、ある波長のX線における屈折率と真空の屈折率
(=1)との差が大きい物質と、差が小さい物質とが交
互に積層された構造を有し、ブラッグの条件式を満たす
ことで特定の波長を有するX線を反射させるものであ
る。このX線反射多層膜4によって、反射面3全体はX
線に対して一様な反射率を有するようになる。X線反射
多層膜4によって選択的に反射されるX線の波長は、こ
の多層膜4を構成する各層の物質および周期長(前記差
の大きい物質と小さい物質の1ペア分の膜厚)により定
まり、これらは既知の方法により決定される(代表的な
ものとして、タングステン(W)とカーボン(C)等の
組合せが知られている)。また、各層を形成する物質は
真空蒸着等の薄膜形成技術によって形成される。微小X
線源2は、放物線Prの焦点fに整合する焦点位置Fに
配置され、X線Lxを集光鏡1の反射面3へ向けて放射
する。
An X-ray reflection multilayer film 4 is formed on the front surface of the reflecting surface 3 of the condenser mirror 1. The X-ray reflection multilayer film 4 has a structure in which a substance having a large difference between the refractive index in X-rays of a certain wavelength and a vacuum (= 1) and a substance having a small difference are alternately laminated. By satisfying the conditional expression (1), X-rays having a specific wavelength are reflected. Due to the X-ray reflection multilayer film 4, the entire reflection surface 3 is X-ray.
It has a uniform reflectance for the line. The wavelength of the X-rays selectively reflected by the X-ray reflective multilayer film 4 depends on the material and the cycle length of each layer constituting the multilayer film 4 (the film thickness of one pair of the material having the large difference and the material having the small difference). These are determined by a known method (typically, a combination of tungsten (W) and carbon (C) is known). The material forming each layer is formed by a thin film forming technique such as vacuum deposition. Small X
The radiation source 2 is arranged at a focus position F that matches the focus f of the parabola Pr, and radiates the X-ray Lx toward the reflecting surface 3 of the condenser mirror 1.

【0014】焦点位置Fに配置された微小X線源2が発
したX線Lxは、集光鏡1の反射面3によって反射され
る。反射面3によるX線の反射を図3を参照して詳細に
説明すると、図3において線分Lsに入射したX線は、
放物線Prの主軸Xに平行な進路pをもって軸線Aを横
切る。一方、線分Lsから180°離れた位置にある線
分Ls´に入射したX線Lxは、放物線Pr´の主軸X
´に平行な進路p´をもって軸線Aを横切る。同様にし
て反射面3の全体についてX線の経路を辿ると、図2に
示すように、微小X線源2が発したX線Lxは、集光鏡
1の反射面3により反射されて、集光鏡1の軸線Aの放
物線主軸Xに対する傾斜角aの2倍の集束角b(図1、
図3参照)をもって軸線Aを中心とする微小円形領域C
内に集光する。
The X-ray Lx emitted by the minute X-ray source 2 arranged at the focal point F is reflected by the reflecting surface 3 of the condenser mirror 1. When the reflection of the X-rays by the reflecting surface 3 is described in detail with reference to FIG. 3, the X-rays incident on the line segment Ls in FIG.
It traverses the axis A with a path p parallel to the main axis X of the parabola Pr. On the other hand, the X-ray Lx incident on the line segment Ls ′ located at a position 180 ° away from the line segment Ls is the main axis X of the parabola Pr ′.
Cross the axis A with a path p'parallel to '. Similarly, when the X-ray path is traced for the entire reflecting surface 3, the X-ray Lx emitted from the minute X-ray source 2 is reflected by the reflecting surface 3 of the condenser mirror 1 as shown in FIG. Focusing angle b that is twice the tilt angle a of the axis A of the condenser mirror 1 with respect to the parabolic main axis X (see FIG. 1,
(See FIG. 3) A small circular area C centered on the axis A
Focus inside.

【0015】よって、図1に示すように、この微小円形
領域C内に被照射物体Mを配置することにより、集光さ
れかつ平行なX線Lxにより被照射物体Mの全体を均一
に照射することができる。
Therefore, as shown in FIG. 1, by arranging the irradiated object M in this minute circular region C, the entire irradiated object M is uniformly irradiated by the focused and parallel X-rays Lx. be able to.

【0016】集光鏡1の反射面3にX線反射多層膜4が
コーティングされていない場合には、X線の斜入射によ
る全反射を利用することになり、分光はできない。ま
た、焦点距離が大きくなる。一方、反射面3にX線反射
多層膜4がコーティングされていれば、反射面3におけ
るX線の反射角が大きく設定できるようになり、焦点距
離が短くなって装置全体がコンパクトになる。また、上
述のように、X線反射多層膜4の多層膜材質、層厚の選
択によって任意の単色X線を被照射物体Mに照射するこ
とが可能になる。
When the reflecting surface 3 of the condenser mirror 1 is not coated with the X-ray reflection multilayer film 4, total reflection due to oblique incidence of X-rays is utilized, so that spectroscopy cannot be performed. In addition, the focal length becomes large. On the other hand, if the reflecting surface 3 is coated with the X-ray reflective multilayer film 4, the reflection angle of the X-rays on the reflecting surface 3 can be set to a large value, the focal length becomes short, and the entire apparatus becomes compact. Further, as described above, it becomes possible to irradiate the irradiated object M with an arbitrary monochromatic X-ray by selecting the multilayer film material and the layer thickness of the X-ray reflective multilayer film 4.

【0017】−第2実施例− 図4は本発明によるX線照射装置の第2実施例を示す図
である。なお、図4において、上述した第1実施例と同
様の構成要素については同一の符号を付し、その説明を
簡略化する。
-Second Embodiment- FIG. 4 is a view showing a second embodiment of the X-ray irradiation apparatus according to the present invention. In FIG. 4, the same components as those in the first embodiment described above are designated by the same reference numerals, and the description thereof will be simplified.

【0018】本実施例においては集光鏡1は複数(より
詳細には2枚)の反射面31、32を備えており、全体と
して樽状の中空環状体に形成されている。これら反射面
1、32は、一つの焦点fを共有する互いに異なる2本
の放物線Pr1、Pr2の各々の一部がなす2本の線分L
1、Ls2のそれぞれを、焦点fを通り、かつ各線分L
1、Ls2に対応する放物線Pr1、Pr2の主軸X1
2に対して線分Ls1、Ls2側に傾斜した一つの軸線
Aの周りに一回転して得られる複数の回転曲面の内周面
Fi1、Fi2からなる。
In this embodiment, the condenser mirror 1 is provided with a plurality (more specifically, two) of reflecting surfaces 3 1 and 3 2 and is formed as a barrel-shaped hollow annular body as a whole. These reflecting surfaces 3 1 and 3 2 have two line segments L formed by a part of each of two different parabolas Pr 1 and Pr 2 sharing one focal point f.
Each of s 1 and Ls 2 passes through the focal point f and each line segment L
principal axes X 1 of parabolas Pr 1 and Pr 2 corresponding to s 1 and Ls 2 ,
It is composed of a plurality of inner circumferential surfaces Fi 1 and Fi 2 of a rotating curved surface obtained by making one rotation around one axis A inclined toward the line segments Ls 1 and Ls 2 with respect to X 2 .

【0019】集光鏡1の反射面31、32にはその全面に
わたってX線反射多層膜4がコーティングされ、特定の
波長を有するX線に対して反射面31、32の全体が一様
な反射率を有するように構成されている。この場合、線
分Ls1とLs2とが軸線方向に互いに連続していること
により、集光鏡1の反射面31と32とは軸線方向に互い
に連続している。
The reflecting surface 3 1 of the collector mirror 1, 3 to 2 X-ray reflection multilayered film 4 is coated over its entire surface, the whole of the reflecting surface 3 1, 3 2 to the X-ray having a specific wavelength It is configured to have a uniform reflectance. In this case, since the line segments Ls 1 and Ls 2 are continuous in the axial direction, the reflecting surfaces 3 1 and 3 2 of the condenser mirror 1 are continuous in the axial direction.

【0020】焦点位置Fに配置された微小X線源2が発
したX線Lxは、集光鏡1の反射面31、32の各々によ
って反射し、各反射面31、32で反射されたX線Lx
は、それぞれの反射面31、32に対応する放物線Pr1
あるいはPrの主軸X1、X2に平行な進路p1、p2をも
って、かつ集光鏡1の軸線Aの放物線主軸X1、X2に対
する傾斜角a1、a2の2倍の集束角b1、b2をもって軸
線Aを中心とする一つの微小円形領域C内に重複集光す
る。
The focal position F on the arranged small X-ray source 2 is an X-ray Lx emitted is reflected by each reflecting surface 3 1, 3 2 of the collector mirror 1, each reflecting surface 3 1, 3 2 Reflected X-ray Lx
Is a parabola Pr 1 corresponding to each of the reflecting surfaces 3 1 , 3 2.
Alternatively, it has the paths p 1 and p 2 parallel to the principal axes X 1 and X 2 of Pr, and the focusing angle is twice the tilt angles a 1 and a 2 with respect to the parabolic principal axes X 1 and X 2 of the axis A of the condenser mirror 1. b 1, b overlap collecting light into a small circular area C where 2 about the axis a with.

【0021】したがって、本実施例によっても、微小円
形領域C内に被照射物体Mを配置することにより、集光
されかつ平行なX線Lxにより被照射物体Mの全体を均
一に照射することができる。しかも、本実施例では、反
射面31と32の各々よりのX線Lxが微小円形領域C内
に重複集光するので、被照射物体Mに照射されるX線L
xの強度が倍増する。
Therefore, also in this embodiment, by arranging the irradiated object M in the minute circular region C, it is possible to uniformly irradiate the entire irradiated object M with the focused and parallel X-rays Lx. it can. Moreover, in this embodiment, since the X-rays Lx from the reflecting surfaces 3 1 and 3 2 are condensed in the minute circular region C, the X-rays L radiated to the irradiation target M are irradiated.
The intensity of x doubles.

【0022】なお、図6を参照して、反射面31および
2の決定方法について説明する。 (1) まず、焦点fを図示の位置に持ち、この焦点fを
通る直線X1を主軸とする放物線Pr1の一部をなす線分
Ls1を考える。焦点fに整合する焦点位置Fに配置さ
れたX線源から発したX線Lxは、内周面が線分Ls1
に一致する反射面で反射して、主軸X1に平行な光路p1
を辿る。 (2) 次に、放物線Pr1の焦点fと共通の焦点を図示
の位置に持ち、この焦点fを通る直線X1と異なる直線
2を主軸とする放物線Pr1と異なる放物線Pr2の一
部をなす線分Ls2を考える。焦点fに整合する焦点位
置Fに配置されたX線源から発したX線Lxは、内周面
が線分Ls2に一致する反射面で反射して、主軸X2に平
行な光路p2を辿る。 (3) 光路p1と光路p2は、図示の領域Cで交わる。 (4) この交差領域Cの中心点と上述の焦点fとを通る
直線Aを回転軸として、放物線Pr1、Pr2の一部をな
す線分Ls1、Ls2を回転させて回転曲面を形成する。
この回転曲面の内周面が集光鏡1の反射面31、32とな
る。
A method of determining the reflecting surfaces 3 1 and 3 2 will be described with reference to FIG. (1) First, consider a line segment Ls 1 that has a focal point f at a position shown in the figure and forms a part of a parabola Pr 1 whose principal axis is a straight line X 1 passing through the focal point f. The X-ray Lx emitted from the X-ray source arranged at the focal point position F that matches the focal point f has a line segment Ls 1 on the inner peripheral surface.
The optical path p 1 parallel to the principal axis X 1 is reflected by the reflecting surface corresponding to
Follow. (2) Next, have a common focus and the focus f of the parabola Pr 1 in the position shown, the parabola Pr 1 different parabola Pr 2 to the main axis of the straight line X 1 is different from a straight line X 2 passing through the focal point f one Consider a line segment Ls 2 forming a part. The X-ray Lx emitted from the X-ray source arranged at the focal position F matching the focal point f is reflected by the reflecting surface whose inner peripheral surface coincides with the line segment Ls 2, and the optical path p 2 parallel to the main axis X 2 is obtained. Follow. (3) The optical path p 1 and the optical path p 2 intersect at the area C shown in the figure. (4) as a rotation axis line A passing through the the intersection region C the center point and the above-described focal point f of the rotary curved surface by rotating the line segment Ls 1, Ls 2 forming part of a parabola Pr 1, Pr 2 Form.
The inner peripheral surface of this rotating curved surface becomes the reflecting surfaces 3 1 , 3 2 of the condenser mirror 1.

【0023】−第3実施例− 図4に示す実施例においては、集光鏡1の反射面31
2とは軸線方向に互いに連続した形態をなしている
が、図5に示すように、径違いに構成されて軸線Aを中
心として互いに同心に配置されてもよい。この場合も図
示するような進路をもってX線Lxが微小円形領域C内
に重複集光するから、上述の第2実施例と同様の作用効
果が得られる。
-Third Embodiment- In the embodiment shown in FIG. 4, the reflecting surfaces 3 1 and 3 2 of the condenser mirror 1 are continuous with each other in the axial direction, but as shown in FIG. In addition, they may be configured differently in diameter and arranged concentrically with each other about the axis A. Also in this case, the X-rays Lx are converged in the minute circular region C in an overlapping manner with the path shown in the figure, so that the same effect as that of the second embodiment can be obtained.

【0024】上述した第1〜第3の実施例において、X
線源2が可視光も放射するものである場合には、X線源
2と反射鏡1との間、あるいは反射鏡1と被照射物体M
との間に可視光除去用のフィルタを配置することが望ま
しい。
In the first to third embodiments described above, X
When the radiation source 2 also emits visible light, it is between the X-ray source 2 and the reflecting mirror 1, or between the reflecting mirror 1 and the illuminated object M.
It is desirable to dispose a filter for removing visible light between and.

【0025】なお、本発明のX線照射装置は、その細部
が上述の各実施例に限定されず、種々の変形が可能であ
る。
The details of the X-ray irradiator of the present invention are not limited to the above-mentioned embodiments, and various modifications are possible.

【0026】[0026]

【発明の効果】以上詳細に説明したように、本発明によ
れば、集光鏡の反射面で反射されたX線はこの反射面を
形成する放物線の主軸に沿って平行に進行し、かつ、反
射面の回転軸の延長方向にある領域に集光されるので、
この領域内に被照射物体を配置することにより、被照射
物体を均一な照度分布をもって一様に集光照射すること
が可能になる。また、請求項2の発明によれば、集光鏡
が複数の反射面を有しているので、その反射面の総面積
に応じて被照射物体に照射されるX線の強度が増大し、
照度が増加する。この反射面の配置個数は立体的配置が
許す限り、幾つであってもよい。さらに、請求項4の発
明によれば、反射面にX線反射多層膜を形成したので、
反射面におけるX線の反射角を大きく設定でき、焦点距
離が短くなるので装置をコンパクトなものにすることが
できる。
As described above in detail, according to the present invention, the X-rays reflected by the reflecting surface of the condenser mirror travel parallel to the main axis of the parabola forming the reflecting surface, and , Is focused on the area in the extension direction of the rotation axis of the reflecting surface,
By arranging the irradiation target object in this area, it becomes possible to uniformly collect and irradiate the irradiation target object with a uniform illuminance distribution. Further, according to the invention of claim 2, since the condenser mirror has a plurality of reflecting surfaces, the intensity of the X-rays irradiated to the irradiation target object increases according to the total area of the reflecting surfaces,
Illuminance increases. The number of the reflecting surfaces arranged may be any number as long as the three-dimensional arrangement allows. Further, according to the invention of claim 4, since the X-ray reflection multilayer film is formed on the reflecting surface,
The X-ray reflection angle on the reflecting surface can be set large and the focal length can be shortened, so that the apparatus can be made compact.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例であるX線照射装置を示す
縦断面図。
FIG. 1 is a vertical cross-sectional view showing an X-ray irradiation device according to a first embodiment of the present invention.

【図2】第1実施例のX線照射装置の概略斜視図。FIG. 2 is a schematic perspective view of the X-ray irradiation apparatus according to the first embodiment.

【図3】第1実施例のX線照射装置に使用される集光鏡
の幾何学的形状を説明する説明図。
FIG. 3 is an explanatory diagram illustrating a geometrical shape of a condenser mirror used in the X-ray irradiation apparatus according to the first embodiment.

【図4】本発明の第2実施例であるX線照射装置を示す
縦断面図。
FIG. 4 is a vertical sectional view showing an X-ray irradiator according to a second embodiment of the present invention.

【図5】本発明の第3実施例であるX線照射装置を示す
縦断面図。
FIG. 5 is a vertical sectional view showing an X-ray irradiator according to a third embodiment of the present invention.

【図6】第2実施例のX線照射装置の反射面を決定する
方法を説明するための図。
FIG. 6 is a diagram for explaining a method of determining a reflecting surface of the X-ray irradiating device of the second embodiment.

【図7】X線顕微鏡に使用されるX線照射装置の従来例
を示す概略構成図。
FIG. 7 is a schematic configuration diagram showing a conventional example of an X-ray irradiation device used in an X-ray microscope.

【図8】X線投影露光装置の従来例を示す概略構成図。FIG. 8 is a schematic configuration diagram showing a conventional example of an X-ray projection exposure apparatus.

【符号の説明】[Explanation of symbols]

1 集光鏡 2 微小X線源 Pr、Pr1、Pr2 放物線 f 焦点 F 焦点位置 A 軸線 X、X1、X2 主軸1 Focusing mirror 2 Micro X-ray source Pr, Pr 1 , Pr 2 Parabola f Focus F Focus position A Axis X, X 1 , X 2 Main axis

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 放物線の一部がなす線分を、前記放物線
の焦点を通りかつこの放物線の主軸に対して前記線分側
に傾斜した軸線の周りに回転して得られる回転曲面の内
周面を反射面とする集光鏡を備え、前記焦点の位置から
前記集光鏡の内周面へ向けてX線を放射するX線照射装
置。
1. An inner circumference of a curved surface obtained by rotating a line segment formed by a part of a parabola around an axis passing through a focal point of the parabola and inclined to the main axis of the parabola toward the line segment side. An X-ray irradiator that includes a condenser mirror having a surface as a reflection surface, and emits X-rays from the position of the focal point toward the inner peripheral surface of the condenser mirror.
【請求項2】 一つの焦点を共有する互いに異なる複数
の放物線の各々の一部がなす複数の線分のそれぞれを、
前記焦点を通りかつ前記各線分に対応する前記放物線の
主軸に対して前記線分側に傾斜した一つの軸線の周りに
回転して得られる複数の回転曲面の内周面の各々を反射
面とする集光鏡を備え、前記焦点の位置から前記集光鏡
の内周面へ向けてX線を放射するX線照射装置。
2. Each of a plurality of line segments formed by a part of each of a plurality of parabolas different from each other sharing one focal point,
Each of the inner peripheral surfaces of a plurality of rotating curved surfaces obtained by rotating around one axis inclined to the line segment side with respect to the main axis of the parabola passing through the focus and corresponding to each of the line segments is a reflecting surface. An X-ray irradiator that emits X-rays from the position of the focal point toward the inner peripheral surface of the condenser mirror.
【請求項3】 請求項1または2に記載のX線照射装置
において、 前記焦点の位置に点状X線源が配置されていることを特
徴とするX線照射装置。
3. The X-ray irradiation apparatus according to claim 1, wherein a point X-ray source is arranged at the position of the focal point.
【請求項4】 請求項1、2または3に記載のX線照射
装置において、 前記集光鏡の反射面にX線反射多層膜が設けられている
ことを特徴とするX線照射装置。
4. The X-ray irradiator according to claim 1, 2 or 3, wherein an X-ray reflective multilayer film is provided on a reflecting surface of the condenser mirror.
JP05315147A 1993-12-15 1993-12-15 X-ray irradiation device Expired - Lifetime JP3141660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05315147A JP3141660B2 (en) 1993-12-15 1993-12-15 X-ray irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05315147A JP3141660B2 (en) 1993-12-15 1993-12-15 X-ray irradiation device

Publications (2)

Publication Number Publication Date
JPH07167997A true JPH07167997A (en) 1995-07-04
JP3141660B2 JP3141660B2 (en) 2001-03-05

Family

ID=18061983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05315147A Expired - Lifetime JP3141660B2 (en) 1993-12-15 1993-12-15 X-ray irradiation device

Country Status (1)

Country Link
JP (1) JP3141660B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0883136A1 (en) * 1997-06-07 1998-12-09 Horiba, Ltd. X-Ray converging mirror
JP2002512357A (en) * 1998-04-22 2002-04-23 スミソニアン アストロフィジカル オブザーバトリ X-ray diagnostic system
JP2002195963A (en) * 2000-12-25 2002-07-10 Ours Tex Kk X-ray spectroscope apparatus and x-ray analyzing apparatus
JP2011522256A (en) * 2008-05-30 2011-07-28 リガク イノベイティブ テクノロジーズ インコーポレイテッド High intensity X-ray beam system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0883136A1 (en) * 1997-06-07 1998-12-09 Horiba, Ltd. X-Ray converging mirror
US6052431A (en) * 1997-06-07 2000-04-18 Horiba, Ltd. X-ray converging mirror for an energy-dispersive fluorescent X-ray system
JP2002512357A (en) * 1998-04-22 2002-04-23 スミソニアン アストロフィジカル オブザーバトリ X-ray diagnostic system
JP2002195963A (en) * 2000-12-25 2002-07-10 Ours Tex Kk X-ray spectroscope apparatus and x-ray analyzing apparatus
JP2011522256A (en) * 2008-05-30 2011-07-28 リガク イノベイティブ テクノロジーズ インコーポレイテッド High intensity X-ray beam system

Also Published As

Publication number Publication date
JP3141660B2 (en) 2001-03-05

Similar Documents

Publication Publication Date Title
US7119953B2 (en) Phase contrast microscope for short wavelength radiation and imaging method
US6389100B1 (en) X-ray lens system
US5204887A (en) X-ray microscope
JP4990287B2 (en) Concentrator for illumination system with a wavelength of 193 nm or less
EP0459833B1 (en) X-ray microscope
US7508911B1 (en) X-ray imaging system and methods of using and forming an array of optic devices therein
JP3141660B2 (en) X-ray irradiation device
US6327335B1 (en) Apparatus and method for three-dimensional imaging using a stationary monochromatic x-ray beam
JP2006511070A (en) Illumination system with efficient concentrator optics
JPH01292297A (en) X-ray mirror and its manufacture
JP3278812B2 (en) Latent image reading device
EP2304739B1 (en) High intensity x-ray beam system
JPH08247967A (en) Fine area parallel beam irradiator
JPH0511600B2 (en)
JP2569447B2 (en) Manufacturing method of multilayer mirror
JPH1073698A (en) Vacuum ultra-violet spectroscope for laser plasma x ray
TW563328B (en) Optical scanning unit with rotatable diffractive optical element disc
JP3371512B2 (en) Illumination device and exposure device
JPH06300897A (en) X-ray optical device
JP2515893B2 (en) Imaging X-ray microscope
CN111722264B (en) Adjusting method and application of X-ray multilayer film reflecting mirror
JP2906485B2 (en) Thin film production equipment
JPH08146199A (en) Parallel x-ray irradiation device
WO2022091992A1 (en) Terahertz light source, fluid detector, and terahertz wave generating method
JP3650154B2 (en) Laser plasma light source

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 13

EXPY Cancellation because of completion of term