JPH07167634A - Probe for measurement and displacement gage with the probe - Google Patents

Probe for measurement and displacement gage with the probe

Info

Publication number
JPH07167634A
JPH07167634A JP5315448A JP31544893A JPH07167634A JP H07167634 A JPH07167634 A JP H07167634A JP 5315448 A JP5315448 A JP 5315448A JP 31544893 A JP31544893 A JP 31544893A JP H07167634 A JPH07167634 A JP H07167634A
Authority
JP
Japan
Prior art keywords
measurement
light
probe
measured
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5315448A
Other languages
Japanese (ja)
Inventor
Keizo Matsuo
圭造 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP5315448A priority Critical patent/JPH07167634A/en
Publication of JPH07167634A publication Critical patent/JPH07167634A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure the shape of the internal surface of a cylindrical article to be measured having a small inside diameter with high accuracy. CONSTITUTION:A probe 50 for measurement is composed of a cylindrically formed main body 6 and a parabolic mirror 5 being installed at one end of the main body 6 and deflecting measuring beams passing through a cylinder and being changed into parallel luminous flux in the orthogonal direction while focusing beams so as to be focalized 7 in the direction of deflection. The probe 50 for measurement irradiates a surface to be measured with measuring beams while receiving reflected beam from the surface to be measured, and is used for a displacement gage for a shape measuring device measuring the shape of the article to be measured 13 in a non-contact manner.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光学素子の形状、うね
り、粗さ等を高精度で測定する非接触型の形状測定装置
に設置されて、光学素子の被測定面までの距離を測定す
る変位計に使用される測定用プローブに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is installed in a non-contact type shape measuring device for measuring the shape, waviness, roughness, etc. of an optical element with high accuracy and measures the distance to the surface to be measured of the optical element. The present invention relates to a measurement probe used for a displacement meter.

【0002】[0002]

【従来の技術】近年、観察や測定の分野では高解像度、
高精度の要求が高まっている。そのため、これらの分野
で利用される観察装置や測定装置の光学系に用いられる
光学素子にも高い精度が要求されるようになっている。
そして、可視光に比べて非常に波長が短いX線が、試料
を高解像度で観察するのに適した光(電磁波)として利
用されている。しかし、X線は、X線に対する物質の屈
折率が1に近いためほとんど屈折せず、可視光のように
屈折を利用した光学素子(例えば、レンズなど)は使用
できない。そこで、反射を利用した光学素子が用いられ
るが、その場合でも、X線が反射面すれすれに入射する
斜入射の配置で全反射をする素子に限られる。そのた
め、反射面が特殊な形状に形成されたX線光学素子が多
く使われている。このようなX線用の光学素子の一種と
して、例えば、ウォルター型光学素子が知られている。
ウォルター型光学素子は、内径の小さい円筒状の内面を
光学面(反射面)とするもので、その反射面は同軸上に
接続された回転双曲面と回転楕円面の2つの曲面によっ
て形成されている。
2. Description of the Related Art Recently, in the field of observation and measurement, high resolution,
The demand for high precision is increasing. Therefore, high precision is also required for optical elements used in the optical systems of observation devices and measurement devices used in these fields.
Then, X-rays having a wavelength extremely shorter than that of visible light are used as light (electromagnetic waves) suitable for observing a sample with high resolution. However, X-rays hardly refract because X-rays have a refractive index of a substance close to 1, and optical elements (for example, lenses) that utilize refraction such as visible light cannot be used. Therefore, an optical element utilizing reflection is used, but even in that case, it is limited to an element which totally reflects in an oblique incidence arrangement in which X-rays are incident just on the reflection surface. Therefore, an X-ray optical element having a reflecting surface formed in a special shape is often used. As a type of such an X-ray optical element, for example, a Walter type optical element is known.
The Wolter type optical element uses a cylindrical inner surface with a small inner diameter as an optical surface (reflection surface), and the reflection surface is formed by two curved surfaces of a rotating hyperboloid and a rotating ellipsoid which are coaxially connected. There is.

【0003】ところで、X線光学系で使用されるX線光
学素子は、X線の波長が短いことから、要求される精度
が一般の光学素子と比べて非常に厳しい。そのため、こ
れら高い精度を要求されるX線光学素子では、製作後の
形状が設計通りであるかを確認するために反射面の形状
(うねり、粗さ等を含む)を高精度で測定することが必
要不可欠になっている。形状の測定には、形状測定装置
が用いられる。この形状測定装置は測定用プローブを備
えた変位計を有し、この変位計によって被測定物(光学
素子)における複数の測定点(被測定面)と基準点との
間の距離を測定していくことで、この被測定物の形状を
求めている。前記測定用プローブは、被測定物の測定点
か否かを判断するために使用され、球状や針状の測定子
を測定面に接触させる接触式測定プローブや、被測定面
で反射した光を検出する焦点ズレ方式や干渉計方式を用
いた光学式非接触測定プローブが用いられる。しかし、
X線光学素子は小型のものが多く、例えば、前述のウォ
ルター型X線光学素子では、通常、内径が5〜15mm程度
で製作されている。そのため、このウォルター型X線光
学素子のように円筒の内面を反射面としていると、一般
に使用されている光学式非接触測定プローブでは大きす
ぎて円筒内部に挿入できず、形状を測定することができ
ない。そこで、従来は、図3に示すような、先端に球状
の測定子19が形成された細長いアーム20を有する接
触式測定プローブを用いていた。測定時は、このアーム
20を光学素子13の円筒部の内側に挿入し、先端の測
定子19を光学素子13の内面に接触させて、素子の反
射面の形状を測定していた。
By the way, an X-ray optical element used in an X-ray optical system is required to have a very high accuracy as compared with a general optical element because the wavelength of X-ray is short. Therefore, for these X-ray optical elements that require high accuracy, the shape of the reflecting surface (including undulations and roughness) must be measured with high accuracy in order to confirm that the shape after fabrication is as designed. Has become essential. A shape measuring device is used for measuring the shape. This shape measuring device has a displacement gauge equipped with a measuring probe, and measures the distance between a plurality of measurement points (measurement surface) and a reference point on an object to be measured (optical element) by the displacement meter. By going through, the shape of this measured object is obtained. The measurement probe is used to determine whether or not the measurement point of the object to be measured, a contact type measurement probe for contacting the measuring surface with a spherical or needle-shaped probe, or light reflected by the surface to be measured. An optical non-contact measuring probe using a defocusing method for detecting or an interferometer method is used. But,
Many of the X-ray optical elements are small, and for example, the above-mentioned Walter type X-ray optical element is usually manufactured with an inner diameter of about 5 to 15 mm. Therefore, if the inner surface of the cylinder is used as a reflecting surface as in this Wolter type X-ray optical element, a commonly used optical non-contact measurement probe cannot be inserted inside the cylinder because it is too large to measure the shape. Can not. Therefore, conventionally, as shown in FIG. 3, a contact-type measuring probe having an elongated arm 20 having a spherical measuring element 19 formed at its tip has been used. At the time of measurement, this arm 20 was inserted inside the cylindrical portion of the optical element 13 and the probe 19 at the tip was brought into contact with the inner surface of the optical element 13 to measure the shape of the reflective surface of the element.

【0004】[0004]

【発明が解決しようとする課題】しかし、接触式測定プ
ローブを用いて光学素子を測定すると、測定プローブの
測定子と光学素子の光学面(反射面)とが接触して、こ
の光学面に傷がつくという現象が起きていた。例えば、
X線光学素子では、光学面にニッケル(Ni)コートのよ
うな反射膜を設けているが、光学面に傷が付くと光学性
能が悪化して所望の性能が得られなくなる。そのため、
ニッケルコートを形成する前段階の反射面の形状を測定
して、その形状の良否を評価していた。しかし、反射膜
を形成する前の素子を測定した結果が設計通りであって
も、反射膜の形成によって形状が変化してしまう場合が
あり、正確な形状を測定することができないという問題
があった。
However, when an optical element is measured using the contact type measurement probe, the probe of the measurement probe and the optical surface (reflection surface) of the optical element come into contact with each other, and the optical surface is scratched. There was a phenomenon of getting stuck. For example,
In the X-ray optical element, a reflection film such as a nickel (Ni) coat is provided on the optical surface, but if the optical surface is scratched, the optical performance deteriorates and desired performance cannot be obtained. for that reason,
The shape of the reflecting surface was measured before the nickel coat was formed, and the quality of the shape was evaluated. However, even if the measurement result of the element before forming the reflection film is as designed, the shape may change due to the formation of the reflection film, and there is a problem that an accurate shape cannot be measured. It was

【0005】また、測定子が細長いアームの先端に設け
られているので測定プローブの剛性が弱く、光学素子と
の接触圧(測定圧)によってはアームが変形したり、周
囲から伝わる振動等によって、測定結果に悪影響を与え
るという問題もあった。さらに、真円度を測定するとき
のように、光学素子を回転させる必要がある場合には測
定プローブと測定面との摩擦によって、測定プローブが
回転方向に引っ張られて測定精度に悪影響を与えるとい
う問題もあった。
Further, since the measuring element is provided at the tip of the elongated arm, the rigidity of the measuring probe is weak, and the arm is deformed due to the contact pressure (measuring pressure) with the optical element, or the vibration transmitted from the surroundings causes There is also a problem that the measurement result is adversely affected. Furthermore, when it is necessary to rotate the optical element, such as when measuring the roundness, the measurement probe is pulled in the rotation direction due to the friction between the measurement probe and the measurement surface, which adversely affects the measurement accuracy. There was also a problem.

【0006】本発明は、このような問題を解決すること
を目的とする。
The present invention aims to solve such a problem.

【0007】[0007]

【課題を解決するための手段】上記目的のため、本発明
では、被測定物の測定点までの距離を非接触で測定する
変位計で使用される、前記測定点に測定光を照射すると
ともに該測定点からの反射光を受光する測定用プローブ
を、円筒状に形成された本体と、該本体の一端に設置さ
れて前記円筒内を通過して来た平行光束化された測定光
を直交する方向に偏向させるとともに、該偏向方向に焦
点を結ぶように集光する放物面鏡とで構成した。
To achieve the above object, the present invention uses a displacement meter for measuring the distance to a measurement point of an object to be measured in a non-contact manner. A measuring probe for receiving reflected light from the measuring point is provided with a main body formed in a cylindrical shape, and a parallel luminous flux which is installed at one end of the main body and which has passed through the inside of the cylinder is orthogonalized. And a parabolic mirror for converging light so as to focus the light in the deflection direction.

【0008】[0008]

【作用】本発明の測定用プローブでは、平行光束化され
た測定光を、放物面鏡によって直交する方向に偏向させ
るとともに、該偏向方向に焦点を結ぶように集光する。
そのため、放物面鏡によって測定光を素子の測定点に向
ける偏向機能と、測定光を測定点上に集光させる集光機
能の2つを満足させることができる。つまり、前記焦点
の位置を測定点として測定光を反射させれば、内径の小
さい円筒状の光学素子の内側へ長手方向から入っていっ
た平行光束化された測定光は、この素子の内面(測定
点)で反射して再び平行光束となって戻ってくる。従っ
て、変位計の測定用プローブを、放物面鏡とこれを保持
する本体だけで構成することが可能となる。これは、同
じ光学系を平面鏡とレンズを組み合わせて構成する場合
と比較して、光学部品が一つになるので光学系が単純で
コンパクトになる。放物面鏡自体は、例えば、前述のウ
ォルター型X線光学素子のように、内径が5〜15mm程度
の円筒内に挿入できる程度に小型化することができ、プ
ローブそのものの小型化も可能である。放物面鏡は、焦
点の大きさを数μm程度まで小さくすることが可能であ
る。本発明の測定用プローブは、被測定物の測定点に接
触しないので、測定点までの距離を測定する際に素子の
光学面(反射面)を傷付けることがない。また、振動等
の外乱の影響を抑えることができるため、従来よりも測
定精度が向上する。
In the measuring probe of the present invention, the measuring light, which has been converted into a parallel light flux, is deflected by a parabolic mirror in a direction orthogonal to the parabolic mirror and is condensed so as to be focused in the deflecting direction.
Therefore, it is possible to satisfy both the deflection function of directing the measurement light to the measurement point of the element by the parabolic mirror and the light condensing function of condensing the measurement light on the measurement point. That is, if the measurement light is reflected with the position of the focal point as a measurement point, the measurement light converted into a parallel light flux entering the inside of the cylindrical optical element having a small inner diameter from the longitudinal direction ( It is reflected at the measurement point) and returns again as a parallel light beam. Therefore, the measuring probe of the displacement gauge can be composed of only the parabolic mirror and the main body holding the parabolic mirror. Compared with the case where the same optical system is configured by combining a plane mirror and a lens, the number of optical components is one, so the optical system is simple and compact. The parabolic mirror itself can be miniaturized so that it can be inserted into a cylinder having an inner diameter of about 5 to 15 mm like the above-mentioned Walter type X-ray optical element, and the probe itself can be miniaturized. is there. The size of the focal point of the parabolic mirror can be reduced to about several μm. Since the measuring probe of the present invention does not contact the measuring point of the object to be measured, it does not damage the optical surface (reflection surface) of the element when measuring the distance to the measuring point. Moreover, since the influence of disturbance such as vibration can be suppressed, the measurement accuracy is improved as compared with the conventional case.

【0009】[0009]

【実施例】図1は、本発明の一実施例を示す概略断面図
で、本発明の測定用プローブを備えた変位計の構成を示
す。図2は、図1の放物面鏡5付近の拡大図である。本
実施例の変位計は、平行光束化されたレーザ光を出射す
る光源1、前記レーザ光を測定光3aと参照光3bに分
割する偏光ビームスプリッタ2、測定光3aおよび参照
光3bの光路上にそれぞれ配置されたλ/4波長板4、
光学素子13の内面(被測定面)に測定光3aを照射す
るとともに該被測定面からの反射光を受光する測定用プ
ローブ50、参照光3bを反射する参照面9、偏光ビー
ムスプリッタ2による参照面9からの反射光と前記被測
定面からの反射光との干渉光を検出する検出器10、検
出器10での検出結果に基づいて前記被測定面までの距
離を求める演算手段(図示せず)とを備えている。測定
用プローブ50は、内部が中空のパイプ状に形成された
本体6と本体6の一端側に設置された放物面鏡5によっ
て構成される。放物面鏡5は、アルミニウムにニッケル
メッキしたものをダイヤモンドバイトで切削して反射面
を研磨した。研磨時は、表面粗さが 0.1μm以下となる
ようにした。本体6の中空部の直径は4mmとした。
FIG. 1 is a schematic cross-sectional view showing an embodiment of the present invention, showing the construction of a displacement gauge equipped with the measuring probe of the present invention. FIG. 2 is an enlarged view near the parabolic mirror 5 in FIG. The displacement meter of the present embodiment includes a light source 1 for emitting a laser beam converted into a parallel light flux, a polarization beam splitter 2 for splitting the laser beam into a measuring light 3a and a reference light 3b, an optical path of the measuring light 3a and the reference light 3b. Λ / 4 wave plates 4 respectively arranged in
A measurement probe 50 that irradiates the inner surface (measurement surface) of the optical element 13 with the measurement light 3a and receives reflected light from the measurement surface, a reference surface 9 that reflects the reference light 3b, and a reference by the polarization beam splitter 2. A detector 10 for detecting the interference light between the reflected light from the surface 9 and the reflected light from the surface to be measured, and a calculation means for obtaining the distance to the surface to be measured based on the detection result of the detector 10. And). The measurement probe 50 is composed of a main body 6 formed in the shape of a hollow pipe and a parabolic mirror 5 installed at one end of the main body 6. The parabolic mirror 5 was obtained by cutting aluminum plated with nickel with a diamond cutting tool and polishing the reflecting surface. During polishing, the surface roughness was adjusted to 0.1 μm or less. The diameter of the hollow portion of the main body 6 was 4 mm.

【0010】このような構成の変位計においては、光源
1から発生した平行光束化された測定光は、偏光ビーム
スプリッタ2で測定光3aと参照光3bとに分割され
る。測定光3aはλ/4波長板4を通過した後、測定用プ
ローブ50の本体6内を通過して、放物面鏡5の反射面
に入射する。そして、この反射面で反射し直角に曲がる
と同時に焦点7を結び、光学素子13の内面(被測定
面)に入射する。被測定面8で反射した測定光3aは、
再度、放物面鏡5で平行光束化されてもとの光路を戻
り、偏光ビームスプリッタ2に入射する。偏光ビームス
プリッタ2で分割された参照光3bは、参照面9で反射
してもとの光路を戻り、偏光ビームスプリッタ2に入射
する。測定光3aは偏光ビームスプリッタ2のスプリッ
ト面を透過し、参照光3bはスプリット面で反射するの
で、両者は光路が同一となって干渉を起こす。この干渉
光は、検出器10によって検出される。前記演算手段
は、検出器10での検出結果に基づいて被測定面8まで
の距離を求める。以下、光学素子13の反射面に対して
複数箇所の被測定点8を設定し、この被測定点8までの
距離を測定した結果から素子13の反射面の形状を求め
る。測定光3aが光学素子13の被測定面8上に焦点7
を結んだ否かを検出する機構を設けておくとよい。この
機構は、例えば、測定光3aの反射光の強度を測定し、
その強度が最大となるように測定用プローブ50を図2
の矢印A方向に移動させるように構成すればよい。な
お、変位計の構成自体は従来と同一であるため、演算手
段での演算過程の説明は省略する。また、この変位計の
測定結果から光学素子13の形状を求める過程も従来と
同様であるので説明を省略する。
In the displacement meter having such a configuration, the measuring light beam generated from the light source 1 and converted into a parallel light beam is split by the polarization beam splitter 2 into a measuring light beam 3a and a reference light beam 3b. After passing through the λ / 4 wavelength plate 4, the measurement light 3a passes through the inside of the main body 6 of the measuring probe 50 and is incident on the reflecting surface of the parabolic mirror 5. Then, the light is reflected by the reflecting surface, bent at a right angle, and at the same time, the focal point 7 is formed and enters the inner surface (measurement surface) of the optical element 13. The measurement light 3a reflected by the surface 8 to be measured is
Once again, the parabolic mirror 5 makes a parallel light flux, returns to the original optical path, and enters the polarization beam splitter 2. The reference light 3 b split by the polarization beam splitter 2 returns to the original optical path after being reflected by the reference surface 9 and enters the polarization beam splitter 2. Since the measurement light 3a is transmitted through the split surface of the polarization beam splitter 2 and the reference light 3b is reflected by the split surface, both have the same optical path and cause interference. This interference light is detected by the detector 10. The calculation means obtains the distance to the measured surface 8 based on the detection result of the detector 10. Hereinafter, a plurality of measured points 8 are set on the reflective surface of the optical element 13, and the shape of the reflective surface of the element 13 is obtained from the result of measuring the distance to the measured point 8. The measuring light 3a has a focal point 7 on the surface 8 to be measured of the optical element 13.
It is advisable to provide a mechanism for detecting whether or not the cable is tied. This mechanism measures, for example, the intensity of the reflected light of the measurement light 3a,
The measuring probe 50 is shown in FIG. 2 so that its intensity is maximized.
It may be configured to move in the arrow A direction. Since the configuration of the displacement meter itself is the same as the conventional one, the description of the calculation process in the calculation means is omitted. Further, the process of obtaining the shape of the optical element 13 from the measurement result of this displacement meter is also similar to the conventional one, and therefore its explanation is omitted.

【0011】図4は、図1の構成を有する変位計11を
備えた形状測定装置の構成を示す概略平面図である。こ
の形状測定装置は、変位計11が設置されたX軸ステー
ジ12、被測定物(光学素子)13を取り付ける主軸ス
ピンドル14が設置されたZ軸ステージ15、X軸ステ
ージ12とZ軸ステージ15の位置を測定する測長機1
6、主軸スピンドル14に取り付けられたエンコーダ1
7、X軸ステージ12とZ軸ステージ15を駆動すると
ともに変位計11、測長機16、エンコーダ17の測定
結果から被測定物13の形状を求める制御装置(図示せ
ず)とを備えている。X軸ステージ12とZ軸ステージ
15はそれぞれ直角に配置され、その移動は被測定物1
3の形状に合わせて前記制御手段によって制御され、被
測定物13の2次元的形状を変位計11によって連続的
に測定する。その際、X軸ステージ12とZ軸ステージ
15の移動と同時に主軸スピンドル14を回転させて、
被測定物13の3次元的形状を変位計11によって測定
してもよい。また、X軸ステージ12とZ軸ステージ1
5の位置を測長機16によって測定するとともに、被測
定物13の回転角度を主軸スピンドル14に組み込まれ
たエンコーダ17で測定し、変位計11での測定データ
と同期をとれば、さらに高精度な測定データが求まる。
この場合、変位計11のデータをX軸ステージ12の制
御にフィードバックして、放物面鏡5の焦点7が常に被
測定面8上に位置するようにすることもできる。また、
X軸ステージ12とZ軸ステージ15の制御の際に測定
範囲や測定間隔を変えることで、被測定物13の形状だ
けでなくうねりや粗さデータを求めることも可能であ
る。
FIG. 4 is a schematic plan view showing the configuration of the shape measuring apparatus provided with the displacement gauge 11 having the configuration of FIG. This shape measuring apparatus includes an X-axis stage 12 having a displacement gauge 11 installed therein, a Z-axis stage 15 having a spindle spindle 14 having an object to be measured (optical element) 13 installed therein, an X-axis stage 12 and a Z-axis stage 15. Length measuring machine 1 for measuring position
6, encoder 1 mounted on the spindle 14
7. A controller (not shown) for driving the X-axis stage 12 and the Z-axis stage 15 and obtaining the shape of the object 13 to be measured from the measurement results of the displacement gauge 11, the length measuring machine 16, and the encoder 17. . The X-axis stage 12 and the Z-axis stage 15 are arranged at right angles, and their movement is such that the DUT 1
The two-dimensional shape of the object to be measured 13 is continuously measured by the displacement meter 11 under the control of the control means in accordance with the shape of No. 3. At that time, the spindle spindle 14 is rotated simultaneously with the movement of the X-axis stage 12 and the Z-axis stage 15,
The three-dimensional shape of the DUT 13 may be measured by the displacement meter 11. In addition, the X-axis stage 12 and the Z-axis stage 1
If the position of 5 is measured by the length measuring machine 16 and the rotation angle of the object to be measured 13 is measured by the encoder 17 incorporated in the spindle spindle 14, and it is synchronized with the measurement data of the displacement gauge 11, the accuracy is further improved. Accurate measurement data can be obtained.
In this case, the data of the displacement gauge 11 can be fed back to the control of the X-axis stage 12 so that the focal point 7 of the parabolic mirror 5 is always located on the measured surface 8. Also,
By changing the measurement range and the measurement interval when controlling the X-axis stage 12 and the Z-axis stage 15, it is possible to obtain not only the shape of the DUT 13 but also undulation and roughness data.

【0012】[0012]

【発明の効果】以上のように、本発明によれば、内径の
小さい円筒状の被測定物の内面形状を高精度で測定する
ことができる。また、測定時に被測定物を傷つけるおそ
れがない。本発明の測定用プローブで得られた測定結果
は、単に光学素子の形状精度の確認だけでなく、製造時
に用いる加工用データとしてフィードバックすることも
可能であるため、高精度なX線光学素子を製造すること
もできる。
As described above, according to the present invention, the inner surface shape of a cylindrical object having a small inner diameter can be measured with high accuracy. In addition, there is no risk of damaging the object to be measured. The measurement result obtained with the measurement probe of the present invention can be fed back not only as the confirmation of the shape accuracy of the optical element but also as the processing data used at the time of manufacturing, so that a highly accurate X-ray optical element can be obtained. It can also be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】は、本発明の一実施例の構成を示す概略断面図
である。
FIG. 1 is a schematic sectional view showing the configuration of an embodiment of the present invention.

【図2】は、図1の放物面鏡部の拡大図である。FIG. 2 is an enlarged view of the parabolic mirror section in FIG. 1.

【図3】は、従来の接触式測定プローブを示す概略図で
ある。
FIG. 3 is a schematic view showing a conventional contact type measurement probe.

【図4】は、本発明の測定用プローブを組み込んだ形状
測定装置を示す概略平面図である。
FIG. 4 is a schematic plan view showing a shape measuring device incorporating the measuring probe of the present invention.

【主要部分の符号の説明】[Explanation of symbols for main parts]

1 光源 2 偏光ビームスプリッタ 3a 測定光 3b 参照光 4 λ/4波長板 5 放物面鏡 6 測定用プローブの本体 7 焦点 8 被測定面 9 参照面 10 検出器 11 変位計 12 X軸ステージ 13 光学素子(被測定物) 14 主軸スピンドル 15 Z軸ステージ 16 測長機 17 エンコーダ 18 接触式測定プローブ 19 測定子 20 アーム 50 測定用プローブ 1 Light Source 2 Polarization Beam Splitter 3a Measurement Light 3b Reference Light 4 λ / 4 Wave Plate 5 Parabolic Mirror 6 Main Body of Measurement Probe 7 Focus 8 Measured Surface 9 Reference Surface 10 Detector 11 Displacement Meter 12 X-axis Stage 13 Optics Element (measurement object) 14 Spindle spindle 15 Z-axis stage 16 Length measuring machine 17 Encoder 18 Contact type measurement probe 19 Measuring element 20 Arm 50 Measuring probe

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被測定物の測定点までの距離を非接触で
測定する変位計で使用される、前記測定点に測定光を照
射するとともに該測定点からの反射光を受光する測定用
プローブにおいて、 円筒状に形成された本体と、該本体の一端に設置されて
前記円筒内を通過して来た平行光束化された測定光を直
交する方向に偏向させるとともに、該偏向方向に焦点を
結ぶように集光する放物面鏡とを有する測定用プロー
ブ。
1. A measurement probe used in a displacement meter for measuring a distance to a measurement point of an object to be measured in a non-contact manner, which irradiates the measurement light with the measurement light and receives reflected light from the measurement point. In the above, a cylindrical main body and a parallel light flux measurement light that has been installed at one end of the main body and passed through the inside of the cylinder are deflected in a direction orthogonal to each other, and a focus is set in the deflection direction. A measuring probe having a parabolic mirror for converging and converging.
【請求項2】 光源から発した測定光を分割する分割手
段、分割された一方の測定光を反射する参照面、分割さ
れた他方の測定光を被測定面に照射するとともに該被測
定面からの反射光を受光する測定用プローブ、前記参照
面からの反射光と前記被測定面からの反射光とを干渉さ
せる干渉手段、干渉した光を検出する受光手段、該受光
手段での検出結果に基づいて前記被測定面までの距離を
求める演算手段とを有する非接触式の変位計において、
前記測定用プローブに請求項1記載の測定用プローブを
用いたことを特徴とする変位計。
2. A splitting means for splitting the measurement light emitted from the light source, a reference surface for reflecting one of the split measurement lights, and the other split measurement light for irradiating the measurement surface with the measurement surface. Measuring probe for receiving the reflected light of, the interference means for interfering the reflected light from the reference surface and the reflected light from the measured surface, the light receiving means for detecting the interfering light, the detection result by the light receiving means In a non-contact type displacement gauge having a calculation means for obtaining the distance to the surface to be measured based on
A displacement gauge, wherein the measurement probe according to claim 1 is used as the measurement probe.
JP5315448A 1993-12-15 1993-12-15 Probe for measurement and displacement gage with the probe Pending JPH07167634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5315448A JPH07167634A (en) 1993-12-15 1993-12-15 Probe for measurement and displacement gage with the probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5315448A JPH07167634A (en) 1993-12-15 1993-12-15 Probe for measurement and displacement gage with the probe

Publications (1)

Publication Number Publication Date
JPH07167634A true JPH07167634A (en) 1995-07-04

Family

ID=18065494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5315448A Pending JPH07167634A (en) 1993-12-15 1993-12-15 Probe for measurement and displacement gage with the probe

Country Status (1)

Country Link
JP (1) JPH07167634A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033298A (en) * 2005-07-28 2007-02-08 Olympus Corp Inner surface measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033298A (en) * 2005-07-28 2007-02-08 Olympus Corp Inner surface measuring device

Similar Documents

Publication Publication Date Title
JPS63500119A (en) Instruments for measuring surface morphology
CN104568389A (en) Bilateral dislocation differential confocal element parameter measuring method
US8345260B2 (en) Method of detecting a movement of a measuring probe and measuring instrument
US4884697A (en) Surface profiling interferometer
JPH03223609A (en) Touch probe
US4204772A (en) Optical measuring system
JPH03255907A (en) Shape measuring instrument
JPS5965708A (en) Sonde for automatic surface inspection
JP2002071513A (en) Interferometer for immersion microscope objective and evaluation method of the immersion microscope objective
CN111044260A (en) Microscope objective distortion testing device and testing method
KR940002356B1 (en) Method and apparatus for noncontact automatic focusing
JP2002039724A (en) Internal hole surface inspecting device
JPS5979104A (en) Optical device
JPH07167634A (en) Probe for measurement and displacement gage with the probe
JP2006322820A (en) Method and device of measuring displacement of actuator
HU202977B (en) Apparatus for geometrical testing of spherical bodies, preferably steel balls
JP2001033217A (en) Non-contact type distance measuring device and non- contact type internal diameter measuring device
KR100344344B1 (en) Potable Nondestructive and Noncontact Optical Measurement System
US20070242267A1 (en) Optical Focusing Devices
JP2000205998A (en) Reflection eccentricity measuring apparatus
JP5242336B2 (en) Non-contact measuring probe
JP6980304B2 (en) Non-contact inner surface shape measuring device
KR200148536Y1 (en) Shape error measurement device aspheric mirror
JPS63223510A (en) Surface shape measuring instrument
JPS62208017A (en) Infrared cofocal microscope